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These notes were taken during the Fall 2025 offering of the Combinatorics course taught by
Abhishek Methuku. They contain definitions, theorems, examples, and proofs written in class,
and some additional material not covered in lectures.

The primary reference for the course is the textbook Combinatorial Mathematics by Douglas B.
West. The course covers material from Chapters 1-9, as well as selected topics from Chapter 10
on Ramsey Theory, and Chapter 14 on the Probabilistic Method.

These notes are also partly based on Prof. Balogh’s notes from his offering of MATH 580, as
found here: https:/ /sites.google.com/view /jozsefbaloghmath/teaching/math580

The material below follows the notation and terminology of the textbook whenever applicable.



A small ritual before continuing

Before we proceed to learn combinatorics and graph theory,
we pause to request the mandatory traditional blessing:

May Paul Erdés — itinerant monarch, patron saint of lemmas, from whatever celestial
couch he is currently borrowing, look upon these pages and not immediately close the PDF.
Wherever he is currently staying, may the coffee be strong.

We ask for the following blessings:

taste: to prefer the sharp lemma over the bloated “generalization” nobody will use,
nerve: to try the simple idea first and not hide behind machinery out of fear,

precision: to keep definitions honest and hypotheses minimal (no decorative assump-
tions),

stamina: to survive ugly computations without becoming the computation,
humility: to notice when a “proof” is actually just vibes plus notation,
ruthlessness: to delete a beloved argument the moment it stops pulling its weight,

courage: to say “I don’t know” early, before the manuscript becomes a mausoleum,

and luck: that the one miraculous trick we need is the one we actually think of.

If a lemma is ugly, may it at least be useful. If it is useless, may it at least be short. And if it
is long and useless, may it be struck from the manuscript without mercy.

The purpose of life is to conjecture
and prove.

- Pﬂ.{.{..-/ ('_Q‘m"m S

AZ QUOTES

Proceed only after paying your respects.
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1 Basic Combinatorics

Theorem 1.1. Let A be a finite set and suppose we can write
A=BiUByU --- UBy
as a disjoint union (a partition) of sets By, ..., Bx. Then

|Al = [B1| + |Ba| + - - - + |Bgl.

Theorem 1.2. Let By, ..., B be finite sets and consider their Cartesian product
B1 X By X --- X Bg.
An element of this product is a k-tuple

(a,...,ax), a;€B;.

If there are |B;| choices for the i-th coordinate (for each i), then the total number of possible
k-tuples is
|By X -+ X Bg| = |Bi] - |B2| - - - | Bgl.

More generally, if A C By X --- X By and for each i the i-th coordinate can be chosen in ¢; ways
(possibly depending on earlier choices), then

|A| = c1c0 - ck.

Goal: Find a set X that can be counted in two different ways = we obtain an identity.
Equating the two expressions for |X| gives a (usually nontrivial) identity. Often, once we
guess the identity, it could also be proved by induction, but double counting gives a more
conceptual proof.

Example 1.1. We want to show

Consider the set
X:={(a,b):1<a<b<n},

the set of all ordered pairs of distinct integers from {1, ...,n} witha < b.

First count. Any pair 1 <a < b < n is determined by the unordered pair {a,b}. There are
exactly (Z) unordered pairs of distinct elements of {1, ..., n}, and each corresponds to exactly
one ordered pair (a,b) with a < b. Hence
n
X| = .
xi= )]
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Second count. Foreachi=1,...,n —1 define
By = {(b‘l,b) eX:b= i+1},

the set of pairs whose second coordinate is i + 1.

Fixi. Thenb =i+ 1and a mustsatisfy1 <a <b=i+1,soacanbeanyof1,2,...,i. Thus
[Bi+1| = i.

The sets By, B3, . .., B, form a partition of X: every pair (a, b) € X has a unique second coordinate
b €{2,...,n},soitlies in exactly one B,. Therefore, by the sum principle,

n-1 n—
X = ) Bial = )i
- ‘

1
i= i=1

Conclusion. We have counted the same set X in two ways:

n-1
n .
|X|=(2) and |X|=;z.

Hence

Theorem 1.3 (Bijection principle). If f: A — B is a bijection between finite sets, then
|A] = |B.

Thus counting A is equivalent to counting any set B that is in bijection with A.

(=02

Both sides count k-element subsets of an n-element set in different ways: choosing a k-subset is
equivalent to choosing its (1 — k)-element complement.

Example 1.2.

Injections both ways imply bijection. Let A, B be finite sets. Suppose
f:A—B, g:B— A

are both injective (one-to-one). Then necessarily |A| = |B|, and hence both f and g are bijections.
So, for finite sets, injections in both directions already force a bijection.

Theorem 1.4 (Pigeonhole principle). If more than kn objects are placed into n boxes, then
at least one box contains at least k + 1 objects. Equivalently: in any distribution of objects
into boxes,

max{occupancies of boxes} > average occupancy,

with equality only when all boxes contain the same number of objects.
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Theorem 1.5 (Polynomial principle). Let P(x) and Q(x) be polynomials of degree at most d
over a field (e.g. R or C). If

P(x) = Q(x)
for at least d + 1 distinct values of x, then in fact
P(x) = Q(x)

as polynomials (all coefficients are equal).

Definition 1.1 (k-word). Fix a finite set A (the alphabet). A k-word over A is an ordered list
of length k of elements of A, i.e. an element of Ak,

Definition 1.2 (Simple word). A simple k-word (or word with distinct letters) is a k-word in
which no letter repeats. Equivalently, it is an ordered k-tuple (a1, ..., ax) with a; € A and
a; # ajfori # j.

Definition 1.3 (k-set). A k-set from A is a k-element subset of A (order does not matter, no
repetition).

We use the standard shorthand

Then

denotes the collection of all k-subsets of [1], and

1= ;)

is the number of k-element subsets of an n-element set.

We can classify size—k selections from an n-element set according to whether order matters and
whether repetitions are allowed:

‘ no repetitions ‘ repetitions allowed
ordered | simple k-words / k-permutations k-words
unordered subsets of size k multisets of size k

A (possibly repeated) word of length k from [n] is just an ordered k-tuple
(a1, ..., ax) € [n]".
By the product principle, each coordinate has n choices independently, so

#{words of length k from [n]} = nk.

A simple k-word is a word of length k with all entries distinct. To count them, choose the letters
one by one:
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* position 1: n choices;
* position 2: n — 1 choices;

* position k: n — k + 1 choices.

By the product principle,

k-1
#{simple k-words from [n]} =n(n -1)---(n -k +1) = 1_[(11 —1).
i=0

It is convenient to introduce shorthand notation.

Definition 1.4 (Falling and rising factorials). For integers k > 0 and n we define the falling
factorial

k-1
nE=nn-1Dn-2)-(n—-k+1) = ﬂ(n—i),
i=0
and the rising factorial

k-1
= nm+ D) +2) -+ k—1) = l_l(n +i).
i=0

When k = 0 we use the empty product convention:

With this notation,
#{simple k-words from [n]} = nk,
Note that

n! =n=, n%:(n+k—1)£

Each simple k-word from [n] corresponds to a k-element subset of [11] together with an ordering
of its elements. Conversely, given any k-subset, there are exactly k! ways to order its elements.

Thus we can obtain the number of k-subsets of [1] by either:

e forgetting order: many different simple words represent the same subset, or
* by the division principle: divide by k!.

Hence

n\ _ #{simple k-words from [n]} _ nk
k)~ k! Tkl

Definition 1.5 (Binomial coefficient). For integers n > 0 and 0 < k < n, the binomial

coefficient B
n
k

denotes the number of ways to choose k elements from an n-element set. Equivalently, it is
the number of k-subsets of [n] = {1,...,n}.




Binomial coefficients 11

2 Binomial coefficients

Definition 2.1 (Binomial coefficient). For integers n > 0 and 0 < k < n, the binomial

coefficient
n
k

denotes the number of ways to choose k elements from an n-element set. Equivalently, it is
the number of k-subsets of [n] = {1,...,n}.

2.1 Binomial coefficients

Theorem 2.1 (Binomial theorem). For every integer n > 0 and for all real (or complex)

numbers x, y,
n
n n n—
(x+y) = § (k)xky k'
k=0

Proof. Expand (x + y)" as

(c+y)x+y)-(x+y)
(n factors). To get a monomial x*4" ¥ in the expansion, we must choose x from exactly k of the
factors and y from the remaining n — k factors.

The number of ways to choose which k factors contribute x is (}) (choose the set of positions
where we pick x). Thus the coefficient of x*y" ¥ is (}), which yields the stated identity. |

2.2 Multisets, Stars and Bars

Definition 2.2 (Multiset). A k-element multiset from [#] is a multiset whose underlying set
is a subset of [n] and whose total multiplicity (counting repetitions) is k. Equivalently, it is
a sequence of multiplicities

(x1,...,xn) € ZL,

such that
X1+ +x, =k,

where x; is the multiplicity of i in the multiset.

Thus we have a bijection:

{k-element multisets from [n]} «— {(x1,...,x,) € ZZ): x1 + -+ x, = k}.

Theorem 2.2 (Stars and Bars). The number of k-element multisets from [#] equals
n+k-1\ (n+k-1
k “\n-1J

Equivalently, the number of n-tuples (x1, ..., x,) of nonnegative integers with >, , x; = k

is (n+llcc—1) )




Binomial coefficients 12

Proof. Consider a solution (x1,...,x,) with x; > 0and x; +--- + x,, = k. Write a string of k dots
(“stars”) and n — 1 bars:

X1 X2 Xn

The number of stars before the first bar is x1, between the first and second bar is x», etc., and
after the last bar is x;,.

Conversely, given any string of k stars and n — 1 bars, reading the numbers of stars in each
segment between consecutive bars recovers a unique n-tuple (x1, ..., x,) with sum k. Thus we
have a bijection between such n-tuples and strings of length k + n — 1 with k stars and n — 1 bars.

k+n-1 B k+n-1
k S\ n=-1 )

since we just choose the positions of the k stars (or of the n —1 bars). This is the desired count. O

The number of such strings is

Definition 2.3 (Composition). A composition of a positive integer k into n parts is an ordered
n-tuple (y1, ..., yn) of positive integers such that

i+ +yn=k.

Corollary 2.3. The number of compositions of k with n parts is

2)

Proof. Write y; = x; + 1 where x; > 0. Then
y1+...+yn:k — x1+---+xn:k—n.

So compositions of k with n positive parts correspond bijectively to solutions of x1+---+x, = k—n
with x; > 0. By the previous theorem, the number of such solutions is

(k—n)+n-1\ (k-1
[E)=65)

We can view the following as correspondences:
* k-words over S «— functions f: [k] — S;
e subsets of S «— indicator functions f: S — {0,1};

¢ multisets from S «— multiplicity functions f: S — N with a fixed total sum;

2.3 Binomial Identities

A double counting proof establishes an identity by counting the same finite set of objects in two
different ways.
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More precisely, suppose we want to prove an equality
LHS = RHS.

We look for a concrete finite set QO such that:

e the left-hand side LHS counts |Q| by one natural method (e.g. by choosing parameters,
splitting into cases, or summing over a statistic), and

e the right-hand side RHS counts |Q| by a different method.

Since both expressions count the same quantity |Q)|, they must be equal.

Goal in practice: When we want to prove an identity (especially involving binomial
coefficients) using double counting, our job is to invent a set {2 so that each side becomes an
honest count of Q) under a different viewpoint.

Theorem 2.4 (Pascal). For1 < k < n,
n\ (n-1 N n-—1
kKl | k k-1)

Proof. Interpret (}) as the number of k-subsets of [n].

Partition all k-subsets of [#] into two classes:

¢ those that do not contain n;

¢ those that do contain 7.

The first class is in bijection with k-subsets of [n — 1] (we just ignore 1), so there are (”;1) of
them. The second class is in bijection with (k — 1)-subsets of [n — 1]: if a k-subset contains 1, the
remaining k — 1 elements lie in [n — 1].

Hence the total number of k-subsets is

() ()

which proves the formula. |

Theorem 2.5. For every n >0,

Proof. Right-hand side: 2" is the number of subsets of [1], since each of the n elements may be
either in or out independently.

n

Left-hand side: group all subsets of [11] by their size. For each k, there are (}) subsets of size k.
By the sum principle,

#{subsets of [n]} = Z (Z)
k=0

Equating both counts gives the identity. O
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Fix integers n > v > 0.

Theorem 2.6 (Hockey-stick identity).

Proof. Right-hand side: ("!]) counts (r + 1)-subsets of [z +1] = {1,...,n +1}.

r+l1
Left-hand side: partition all (r + 1)-subsets of [n + 1] by their largest element. For k =r,...,n,
consider the group of subsets whose largest element is exactly k + 1. Such a subset must contain
k + 1 and choose the remaining r elements from {1, ..., k}, so there are (Ir‘) of them.

Thus .
#{(r + 1)-subsets of [n + 1]} = Z (’;)
k=r

Equating the two expressions for this count gives the identity. |

Theorem 2.7. For each fixed d > 0, the functions fo, fi, ... fs where fi(k) = (’:) form a basis
of the real vector space #; of polynomials in k of degree at most d.

Proof. First recall that $; has dimension d + 1, since {1, k, K2, ..., kd} are linearly independent.

Evaluate the binomial polynomials at the integer points 0,1, ..., d. We use that

m\ |0, m<j,

il |1, m=j.
Form the (d + 1) X (d + 1) matrix A = (a,;) with a,,j = (’7), wherem,j=0,1,...,d. Then A is
lower-triangular with all diagonal entries a;; = (;) =1,sodetA =1 # 0. Hence the functions

5, ..., (%) are linearly independent.
0 d y P

Since we have d + 1 linearly independent vectors in a vector space of dimension d + 1, they form
a basis of P;. O

Example 2.1. We use the above theorem to prove that

i 2 M+ 1)@n+1)
k=1 6

Remark 2.1. This can be proved easily by induction if we have a conjecture for what the
expression would be.

Because {(’5), (1{), (];)} is a basis of P>, we can write

ool -of)

Comparing coefficients (or solving at k =0, 1,2) givesag =0,a1 =1, a2 =2, s0

A1)
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Summing this identity over k = 1,...,n and using % (¥) = ("2') and X (§) = ("3') via

hockey-stick identity yields a combinatorial proof of the well-known formula

i 2 M+ 1)@n+1)
k=1 6

This can be generalized to find expressions of the form };;/_; P(k) for some polynomial P(k)

Theorem 2.8 (Vandermonde, 1772). For nonnegative integers m, n, r,

202

2 k)J\r-k r

where the sum is over all integers k (terms with impossible parameters are interpreted as
0). In particular, form =nand r = n,

Proof. Right-hand side: (") is the number of r-subsets of the set [m +n] ={1,...,m + n}.

Interpret [m + n] as the disjoint union of two blocks
A={1,...,m}, B={m+1,...,m+n}.

Any r-subset S of A U B has some number k of elements from A and r — k from B, where
0<k<r.

For a fixed k, the number of such subsets S with |[S N A| = k is

[

(choose k elements from A and r — k from B). Summing over all k gives the left-hand side, which

must equal the total number of r-subsets, namely (""). O

Definition 2.4 (Extended binomial coefficient). Let u € R (or C) and k € N. Define

(Z) ::%u(u—l)-~-(u—k+1)

where the product is empty and equal to 1 when k = 0. If k is not a nonnegative integer, we
set (}) =0.
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Example 2.2. Foru e Rand k >0,

—u\ _ (-u)(-u—-1)---
[¥)- :

Example 2.3. Takeu =3 and k =5.
(—3) _ (BEHEHEOET)

(—u—-k+1) - 1)k(u+k 1).

5 5!
There are 5 negative factors in the numerator, so the numerator has sign (=1)° = -1, and

(=3)(~4)(=5)(=6)(-7) = (-1)°(3-4:5-6 7).

( 3)_( 34567 1)5( )_(_1)5(3+5—1)’

Thus

5 5! 5

Theorem 2.9 (Newton’s generalized binomial theorem). Letu € R and x € R with |x| < 1.

Then .
1+x)" = Z (Z)xk.

k=0

For integer u = n > 0 this reduces to the ordinary binomial theorem, since (}) = 0 for k > n and
the sum is finite.

Proof. Consider the function
)= (1 +x)"

on (-1, 1). We first compute its derivatives. By the chain rule,
F(x) = u(l+x)" L.
Differentiating repeatedly and using induction on k gives
FOR) =uw—-1)--(u—-k+1)(1+x)"* forallk >0.

(For k = 0 this is the definition of f; assuming the formula for k, differentiating once more yields
the formula for k + 1.)

In particular, evaluating at x = 0 we obtain
FRO) = uw-1) -k +1) = k! (Z)

Now recall the Taylor expansion of a C* function around 0: if f is analytic on (-1, 1), then for
lx[ <1,

and this series converges to f(x). Our function f(x) = (1+x)" is analytic on (-1, 1). Substituting
£®(0) = k!(}) into the Taylor series gives

k(Y s
(1+x)" = k(.k) xk:Z(i) xk,
k=0 k=0

for all |x| < 1, as claimed. O
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3 Combinatorial arguments

3.1 Delannoy numbers

Definition 3.1. For integers m,n > 0, the Delannoy number d,, , is the number of lattice
paths from (0, 0) to (m, n) using only the three types of steps

(1,0), (0,1), (1,1).

Example 3.1. Compute d>.

e Paths using only (1,0) and (0, 1): we need 2 horizontal and 2 vertical steps, in any order:

s

e Paths using two diagonal steps (1, 1): the only possibility is (1,1), (1, 1), so this contributes 1.

¢ Paths using exactly one diagonal step: then we need 1 horizontal step and 1 vertical step in
addition; there are 3! permutations of the multiset {(1, 1), (1,0), (0, 1)}, so this contributes 6.

Thus
d2,2 =6+1+6=13.

A R

EENN ENEN ENNE NEEN NENE NNEE DEN

A S

Theorem 3.1. Forall m,n >0,

S e 0

j

where the sums range over integers for which the binomial coefficients are defined, and
k=m-—j.

Proof. Partition all paths from (0, 0) to (1, n) according to the number j of diagonal steps (1, 1)
they use.

Fix j. Then:

* The path uses m — j horizontal steps (1,0) and n — j vertical steps (0, 1), since the total
x—increment is m and the total y—increment is 7.

¢ The total number of steps is

(m=j)+n=j+j=m+n—j.
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Among these steps, exactly m of them increase the x—coordinate: the (m — j) horizontal steps
and the j diagonal steps. Choosing the positions of these m steps among the m + n — j total

steps gives
m+n-—j
m

¢ Among those m x—increasing steps, we must decide which j are diagonal and which m — j
are horizontal. This can be done in
m
[}

Therefore, for fixed j, the number of paths with exactly j diagonal steps is

m\(m+n-—j
j mo )
Summing over all admissible j gives
_ m\[(m+n-—j
o ‘;(1)( )
Finally, substituting k = m — j yields the equivalent form

2l

possibilities.

ways.

3.2 Lattice balls in Z"

Definition 3.2 (Lattice ball). Fix integers n > 1 and m > 0. The lattice ball of radius m in Z"
is
Bi,’f) = {x =(x1,..., %) €EZ" :|xq| + -+ |xy] < m}.

Equivalently, BY is the set of lattice points that can be reached from 0 = (0, ...,0) in at
most m steps of the form +e; (Where ¢; are the standard basis vectors).

Example 3.2. In Z? with radius m = 2, the ball consists of the 13 points

(0,0), (x1,0), (0,£1), (£2,0), (0,£2), (x1,+1).

Theorem 3.2. For integers n > 1 and m > 0, the size of the lattice ball is

min{n,m}
. n\(m
Bl = (k)(k)zk.

k=0
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Proof. Counting lattice points in B;’f ) is the same as counting integer solutions of
i + -+ |xu| < m.
We group solutions according to the number k of nonzero coordinates.

Step 1: choose which coordinates are nonzero. If a solution has exactly k nonzero coordinates,

there are
n
k

Step 2: choose signs. Once the positions of the k nonzero coordinates are fixed, each of those
coordinates can be positive or negative independently, giving

ways to choose their positions.

2k

choices of signs.

Thus it remains to count, for fixed k, the number of solutions with positive values in those k
chosen coordinates.

Step 3: positive solutions. Let y1, ..., yx be the absolute values of the k nonzero coordinates;
these are integers with y; > 0 and
y1+---+ Yy < m.

The number of such k-tuples is the same as the number of nonnegative integer solutions to a
single equality, via a “slack variable” trick.

First shift y; = x; + 1, where x; > 0. Then
N+t <m & +)+-+x+1)<m &= x1+---+x <m-k.
Introduce one extra nonnegative variable x1 and write
X1+t X+ Xy =m =k, x; > 0.
By stars and bars, the number of nonnegative integer solutions is

(m-k)+(k+1)-1\ (m
[

Hence, for fixed k, there are (",:) ways to choose the absolute values of the k nonzero coordinates.
Step 4: combine the choices. For a fixed k, we have
n m
.ok
HESH
solutions with exactly k nonzero coordinates. Summing over all admissible k (i.e. 0 < k <

min{n, m}) gives
min{n,m} A\ (m
(n)) _ k
=, e

as claimed. O
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3.3 Delannoy identity

Theorem 3.3 (Delannoy identity). For all m,n € N we have

S = 2RI

k

Proof. Recall our two combinatorial interpretations:

* Let A be the set of Delannoy paths from (0, 0) to (m, n). |Al = dy,n = Xk (7) (”ntk).
o Let B be the lattice ball of radius m in Z", so |B| = X (}) ()2*.

We will demonstrate a bijection A <> B between Delannoy paths and lattice balls.

Map ¢ : A — B (Delannoy path — lattice ball point). Take a path P € A. Foreachi € {1,...,n}
look at the portion of P between the horizontal linesy =i —1and y = i.

Because all steps have vertical component 0 or 1, the path crosses from y =i —1 to y = i exactly
once. Before that crossing it may use some horizontal steps H at height y = i — 1; the crossing
itself is precisely one step, either V or D. Thus the segment from height i — 1 to height i has the
form

HH ...HU,

where U is either V or D.
Let h; be the number of those H’s at height y = i — 1. Define

hi, ifS; =V,
—(hi + 1), if S; = D.
Intuitively |b;| is the number of steps that increase the x—coordinate betweeny =i —1and y =i

(the H’s and possibly one D), and the sign records whether the step that actually raises the
y—coordinate is vertical (+) or diagonal (-).

Doing this foreachi =1,...,n gives a vector b = (b, ...,b,) € Z".

The total increase in the x—coordinate while the path rises from y = 0 to y = n is therefore

n
Z |bil.
P

After the path reaches height y = n, it may take additional horizontal steps H at height n;
suppose there are r such steps. Then the endpoint (1, 1) satisfies

n
m = (Zlbi|)+r, r>0,
i=1

s0 2,;|bil < m. Hence b € B, and we set ¢(P) = b.

Map ) : B — A (Lattice ball point — Delannoy path). Now take b = (b1, ...,b,) € B with

n
Z |bil < m.
i=1
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We construct a path 1(b) from (0, 0) to (m, n).
Startat (0,0) and fori = 1,..., n repeat the following step.

Assume we currently are at (x,i — 1).

e If b; > 0: take b; horizontal steps H at height y = i — 1, then one vertical step V to reach
(x +b;, i).

e If b; <0: lett :=|b;| = =b; > 0. Take t — 1 horizontal steps H at height y = i — 1, then one
diagonal step D to reach (x + £, 7).

In either case, between heights i — 1 and i we use exactly |b;| steps that increase the x—coordinate
(all the H’s plus possibly one D), so after finishing the nth layer we are at

(IZ;: bil, ﬂ)~

Finally, add

=

m — |bi| >0
i=1
additional horizontal steps H at height y = n. The resulting path ends at (1, n) and uses only
H,V,D steps, so ¢(b) € A. O
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3.4 Cayley’s Formula

Definition 3.3 (Graph). Let V be a finite set. A (simple) graph on V is a pair G = (V,E)
with
1%
EC
(2

(the edges are unordered pairs of distinct vertices).

On the fixed vertex set V = [n] = {1, 2, ..., n}, each of the (g) possible edges is either present or
absent, independently. Hence

#{graphs on [n]} = 202).

Definition 3.4 (Tree). A tree is a connected, acyclic graph.

How many trees on [n]?

* Any n-vertex tree has exactly n — 1 edges. Therefore the number of labelled trees on [n] is at
most the number of (n — 1)-edge subsets of the edge set of K,:

()

#{trees on [n]} < ( )
n-1

Using the crude bounds
n\ _n? a ea\?
(2) =7 (b) <(5) @=0

#{trees on [n]} < (%) < (e(nZ/Z))” = (E)nn”.

we obtain

n n 2
So up to the multiplicative factor (%)n, the upper bound behaves like n".

* Every path on [n]is a tree. A labelled path on [1] is determined by an ordering of the vertices
up to reversal, so the number of labelled paths is

n!
E .
Thus

n! n\n
#{t > — = (—)
{trees on [n]} > .

(by Stirling’s formula).

So the true number of labelled n-vertex trees lies between about (1 /e)" and (%)nn". Cayley’s
formula (1889) gives the exact value:

#{labelled trees on [n]} = n"2.
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Given a function f : [n] — [n], define its functional
digraph D by
V(Df)=I[n],  E(Df)={x—> f(x):x€[n]}.

Every vertex has out-degree exactly 1.

Each weakly connected component of D contains exactly one directed cycle, and every other
vertex in that component lies on a (directed) tree whose edges are oriented towards that cycle.

Theorem 3.4 (Cayley). The number of labelled trees on the vertex set [1] is 1" 72.

We will follow Joyal’s “functional digraph” proof.

Strategy (The Roadmap): We are establishing a bijection between the set of functions f : [n] —
[1] subject to the constraints f(1) = 1 and f(n) = n (a set of size n""2) and the set of all labelled
trees on [1n] (which we want to prove has size n"~2).

The transformation proceeds in three phases:

1. Digraph Interpretation: We view f as a directed graph. Since f(1) = 1 and f(n) = n,
the vertices 1 and 7 are "fixed points" (loops). Any other cycles in the graph are floating
components.

2. Cycle Sorting: We identify all cycles in the graph (including the loops at 1 and 7). We define
a canonical ordering for these cycles based on their smallest elements.

3. Building the Spine: We "cut" these cycles and stitch them together in that specific sorted
order to form a unique simple path from 1 to n. This path becomes the "spine" of the tree,
and all non-cycle vertices hang off this spine as subtrees, resulting in a valid tree structure.

Proof. There are n" functions f : [n] — [n]. We want n"~2 trees, so we will fix two values.
Consider all functions f : [n] — [n] with f(1) =1, f(n) = n.. We will construct a bijection to
all labelled trees on [n]. Let f be such a function and consider its functional digraph Dy.

Step 1: Each component of D has a unique directed cycle. List these cycles: Cy, ..., C,

Step 2: For each cycle C;, choose a cyclic order
Ci = (vig = vip = =+ > Vi — 0i31)
and let m; be the smallest label on that cycle. Rotate the notation so that m; is written last:
Ci=(ci1 = Cip =+ = Cig—1 = M = Ci1).

Thus the edge leaving m; is m; — ¢; 1. Because f(1) = 1and f(n) = n, the vertices 1 and n are
1-cycles, so there are cycles {1} and {n}.

Step 3: Now order the cycles so that m1 < my < --- < m;,, i.e. the smallest label is increasing. In
this order we necessarily have m; = 1 and m, = n.

Step 4: Forget the orientations of the edges and turn D into an undirected graph by ignoring
arrow directions. This has n vertices and n edges. We now modify the edges lying on the
cycles, keeping all tree-edges (the edges not belonging to any cycle) as they are. For each i with
1<i<r-1
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¢ delete the edge m;—c; 1 from C;;
* add a new edge m;—c;;+1,1 connecting cycle C; to the next cycle C;1.

For the last cycle C, we simply delete the edge m,c,1 (which is the loop from n to n).

In the above procedure, for each i = 1,...,r — 1 we remove one edge and add one edge, and
for i = r we remove one edge and add none. Thus the total number of edges decreases by
exactly 1, so the graph has n — 1 edges. Each component of D originally contained one cycle;
by inserting edges m;—c;+1,1 we link the cycles (and hence their attached trees) into a single
connected component.
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How to reverse reverse the construction:
* Given a tree T on [n], there is a unique simple path from 1 to n. Write it as
P: vy=1,vq,...,0p =n.

Call P the spine of T. Every vertex x ¢ V(P) lies in a unique subtree attached to some vertex
of P. This path is where all the cycle minimum labels will lie.

e For 0 < i < ¢ call v; a local minimum on P if v; < v;_1 and v; < v;;1 We also declare the
endpoints v9 = 1 and vy = n to be local minima. List all local minima along P in order:
my, My, ..., M, where m; =1 and m, = n.

In the forward construction we start from D s, whose components each consist of one directed
cycle with rooted trees feeding into it. When we perform the “cycle surgery” (cut the edge
leaving the minimum of each cycle and connect these minima in increasing order), only edges
belonging to cycles are affected. All vertices that did not lie on cycles keep the same unique
neighbour that lies closer to the cycle and therefore cannot lie on the path between 1 and n,
because both 1 and 7 are cycle vertices. Hence the spine P is exactly the union of all cycle-vertices.

On each original cycle C, the chosen minimum m is the unique vertex whose label is smaller than
the labels of its two neighbours on the cycle. After cutting at m and reconnecting the cycles in
increasing order of their minima, the local picture around m on the spine is unchanged: its two
neighbours on P are still vertices belonging either to its own cycle or to a later cycle, and all of
those vertices have label > m. Conversely, no other vertex on P can have both neighbours larger,
since within each cycle there is only one such vertex (the minimum), and the spine traverses the
vertices of each cycle in a contiguous block. Thus the local minima on P are precisely the cycle
minima used in the forward map.

For 1 <j <r -1, define the j-th block of P by

Bj := (vi(j), Vi(j)s1s - - - » Vi(j41))s

and set B, := {m,}. So By, ..., B, are pairwise disjoint and their union is V(P). If T came from
f, then:

* the vertices in B; are exactly those of the j-th directed cycle of Dy;

* m;j is the minimum of that cycle.

We now define a directed cycle on each block.

* For1<j<r-1: write Bj as B; = (xo, x1,...,xt) withxo =mj, x; = mj;1. On this set we

put the edges x; — x» — --- — x; — x¢ — x1, obtaining a directed cycle C; whose vertices
are the elements of B; and whose minimum is xo = m;.

* For the last block B, = {m,} we put the trivial cycle m, — m,, i.e. we set f(m,) = m,.
Note that each vertex on the spine now has out-degree 1 coming from its cycle.

Consider a vertex u ¢ V(P). In T there is a unique simple path from u to the spine P; let p(u) be
the neighbour of u on this path (the “parent” of u with respect to P). We now define a directed
edge

u— plu),

for every such vertex u. This produces directed trees with all edges oriented fowards the spine.
Now interpret this as a functional digraph. m]
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3.5 Multinomial coefficients

Proposition 3.5 (Multinomial coefficient). Let ki, ..., k, be nonnegative integers with
ki+---+k, =m.

The number of words of length m over an alphabet {1, ..., 7} in which the letter i appears

exactly k; times is
m!

k- Kyl

Proof. Consider a multiset with k; copies of the symbol i for each i = 1,...,r, so in total
m = ki + -+ k, symbols.

Every word of length m in which symbol i appears exactly k; times is just a permutation of this
multiset, and conversely every permutation of the multiset gives such a word.

If all m symbols were distinct, there would be m! permutations. But permuting the k; identical
copies of symbol i does not change the word, so we divide by k;! for each i. Hence the number

of distinct words is
m!

kilka!- -k,

Corollary 3.6. Let T be a labelled tree on [n] = {1, ..., n} and let d; be the degree of vertex
iinT. Assume d, ..., d, are positive integers with

znl di = 2(n — 1)
i=1

(so they are a possible degree sequence for a tree on [#]). Then the number of labelled trees
on [n] with deg (i) = d; for every i is
(n—2)!
H?:l(di - 1)! .

Proof. For any tree T on [n] we have Y7, d; = 2|E(T)| = 2(n — 1) by the handshake lemma.

Recall the bijection between labelled trees on [n] and words of length n — 2 over the alphabet
[7]. Under this bijection, the number of occurrences of the letter i in the word equals d; — 1,
where d; is the degree of vertex i in the tree.

Hence, if we want all trees with degree sequence (d, . . ., d,), we must count all words of length
n — 2 in which letter i appears exactly d; — 1 times. Since

zn:(di—l)=(Zn:di)—n:Z(n—l)—n:n—Z,
i=1 i=1

the multinomial coefficient applies with
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By the proposition, the number of such words is

(n-2)!
H?:l(di - 1)!‘

Definition 3.6 (Multinomial coefficient). For nonnegative integers ki, ..., k; with ky +--- +
ki = k, the multinomial coefficient is

S
koo k) T Rl kel

Theorem 3.7 (Multinomial theorem). Let x1, ..., x, be variables and k € N. Then

DRV VI P 1 £

i=1 ki,...,kn> i=1
k1+-+ky=k

Proof. Expand the product
(x1+...+xn)...(x1 +"'+xn)

(k factors) by distributivity. Each term in the expansion is a monomial xlf Loxb with k4 kg =
k, obtained by choosing x; from exactly k; of the k factors. The number of ways to make such a
choice is the multinomial coefficient ( Ky k kn)’ giving the stated formula. O

Theorem 3.8 (Fermat’s Little Theorem). Let p be prime and n € Z. Then if p 1 n, then
n? =n (mod p).

Proof. Apply the multinomial theorem with x; =---=x, =1and k = p:
p k k p
np = ( )1 1... 1 n — ( ).
klkanZO kl’”"kn klkanZO kl/'--/kn
ky+-+ky=p ki 4tk =p

Claim. If (ky,..., k,) # (p,0,...,0) and not a permutation of it, then
p
=0 d p).
(kl,...,kn) (mod p)

Indeed, for such a (ky, ..., k,) we have 0 < k; < p — 1 for every i, so none of the factorials k;! is
divisible by p, while p! is divisible by p. Hence p divides the numerator but not the denominator

of
p __ P
ki,..., ky k! - k!’

so the multinomial coefficient is 0 (mod p).
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The only multi-indices that can give a nonzero term modulo p are therefore those with one
ki = p and all others 0. For each i € {1, ..., n} we have
p 7!

. =—2 -1,
0,...,0,p,0,...,0/ p'Ot---0!

so modulo p the sum reduces to

n=1+---+1=n (mod p),
[ —
n times
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3.6 Ballot Theorem

Theorem 3.9 (Ballot theorem). Let candidates A and B receive a and b votes respectively,
with a > b. Assume that the (a + b) votes are revealed in a uniformly random order. Then
the number of vote sequences in which, after every initial segment, the number of votes for
A is not less than the number of votes for B (i.e. A never trails) is

a+b) (a+b
a a+1)
Strategy: Directly counting "good" paths (those that stay below the diagonal) is hard because

the constraint is global—it applies at every step. Instead, we use the complementary counting
strategy:

1. Count all paths from (0, 0) to (a, b).
2. Count the "bad" paths (those that touch or cross the forbidden line y = x + 1).
3. Subtract bad from all.

The genius of André’s Reflection Principle is a bijection for step 2: if a path hits the forbidden line,
we reflect the remainder of the path across that line. This creates a one-to-one correspondence
between "bad paths to (a,b)" and "all paths to a specific reflected endpoint,” which are easy to
count.

Proof. Represent a vote for A by a right step (1,0) and a vote for B by an up step (0,1). Then
each ordering of the a votes for A and b votes for B corresponds to a lattice path from (0, 0) to

(a,b) using only steps (1,0) and (0, 1).
a+b
a 7

since we must choose which a of the a + b steps are the horizontal ones (the remaining b are
vertical).

* The total number of such paths is

* A ballot path (a good sequence) is one that never goes above the diagonal y = x; equivalently,
for every prefix of the sequence, we have #A > #B.

* A non-ballot path is one for which at some point #B > #A, i.e. the path goes strictly above the
diagonal.

Fix a non-ballot path from (0, 0) to (a,b) with a > b. Let k be the smallest integer such that at
the point (x, y) = (k, k + 1). This is exactly the first time the path has B strictly leads ahead of A,
so such k exists for every non-ballot path).

Up to this time the vote counts are
A-votes = k, B-votes = k + 1.

After this time, along the original path, we must still reach (a,b), so the remaining steps
contribute
A-votes = a — k, B-votes =b — k — 1.

We now reflect the path after (k, k + 1) across the diagonal y = x + 1, which just interchanges the
roles of horizontal and vertical steps in the suffix.

In terms of vote counts this gives a new path with:
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‘ up to (k, k +1) ‘ after (k, k+1) ‘ endpoint
originalpath | Atk B:k+1| A:a-k B:b-k-1 (a,b)
new path A:k B:k+1|A:b—-k-1 B:a-k b-1,a+1)

Thus the image of our non-ballot path ends at
(k+(b-k-1), (k+1D)+(a-k)=0b-1,a+1).
So this construction defines a map

® : {non-ballot paths from (0, 0) to (a,b)} — {all paths from (0,0) to (b —1,a + 1)}.

Claim. @ is a bijection.
Injective: given the image path, the first time it hits the line y = x + 1 is again the point (k, k + 1);
reflecting the suffix back across this line recovers the original path. Thus we can invert ®.

Surjective: every path from (0, 0) to (b — 1,2 + 1) must at some point reach a point with y = x +1
(since b — 1 < a + 1 we end strictly below the diagonal). Let (k, k + 1) be the first such point;
reflecting the suffix across y = x + 1 produces a path from (0, 0) to (a, b) whose first visit to
y = x + 1is exactly (k, k + 1), and hence B leads there and the path is non-ballot. This is the
inverse of ©.

Therefore
b
#{non-ballot paths from (0,0) to (a,b)} = #{paths from (0,0)to (b —1,a+1)} = (Z ::: 1).
Substituting into

#{ballot paths} = (u : b) — #{non-ballot paths}

gives the Ballot theorem:

#{ballot paths} = (a :z_ b) - (Z i Ii)

Lemma 3.10. Let m > 1. Consider lattice paths in Z? that start at (0, 0) and use only steps
(1,0) (right) and (0, 1) (up), and have total length 2m. Then the following three families of
paths all have the same cardinality, namely (2"):

1. paths that end at (m, m);
2. paths that never go strictly above the diagonal y = x;

3. paths that never return to the diagonal y = x after time 0.

Proof. (i) A path of length 2m ends at (m, m) iff it has exactly m right-steps and m up-steps.
Choosing the positions of the m right-steps gives

#{paths ending at (m, m)} = (an;z)
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(ii) Fix integers a > b > 0 and let £ = a + b. By the ballot / reflection argument, the number of
paths from (0, 0) to (a, b) that never go above y = x is

6y [ ¢
a a+1)
(Among all (g) paths to (a,b), exactly ( uﬁl) go above the diagonal; reflect those at the first step

above y = x to obtain a bijection with pathsto (a +1,b —1).)

Now take { = 2m and sum over all admissible endpoints (a,b) witha > band a + b = 2m, i.e.
overa=m,m+1,...,2m:

i[Zm_Zm]_Zm_ 2m |\ _ (2m
a a+1)1 \m 2m+1) \m )
a=m
since the sum telescopes. This is exactly the number of paths of length 2m from (0, 0) that never
go above y = x.
(iii) We count paths of length 2m from (0, 0) that never return to y = x after time 0.
Such a path must leave the diagonal immediately, so its first step is either (1,0) or (0,1). By
symmetry, the numbers of paths with first step (1, 0) and with first step (0, 1) are equal. Hence
#{paths of length 2m never returning toy = x} =2- N,

where N is the number of such paths whose first step is (1, 0).

After the first step (1,0) the path is at (1,0) and has 2m — 1 steps remaining. The condition
“never return to y = x” is equivalent to “never cross the line y = x”, i.e. staying strictly below
y = x. Shifting the coordinate system by (-1, 0), this is the same as a path of length 2m — 1
starting at (0, 0) that never goes above the line y = x — 1, which (after another shift) is equivalent
to a path that never goes above the diagonal.

Thus, by part (ii) with 2m — 1 in place of 2m, we have

)

m
SO
2m —1 2
#{paths of length 2m never returning to y = x} = 2( mm ) = ( 7;”),
using the identity 2(*"~) = (2").
Combining (i)—(iii) shows that all three families have size (27’: ) O

Theorem 3.11. For every integer n > 0,

SRR

k=0

Proof. Interpret the right-hand side combinatorially. A lattice path of length 2n with steps (1, 0)
and (0, 1) is determined by the choice of each step, so there are 22" = 4" such paths starting at
(0,0).

Group these paths according to the last time they are on the diagonal y = x. For a given
k €{0,...,n}, consider those paths whose last visit to the diagonal is at the point (k, k).
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* The prefix from (0, 0) to (k, k) is an arbitrary path of length 2k ending at (k, k), so there are
(%) choices.

e The suffix of length 2n — 2k starts at (k, k) and never returns to y = x. Translating (k, k) to the
origin, the number of such suffixes equals, by the lemma with m = n — k and property (iii),

2(n—k)\ _ (2n -2k
n-k | \n-k)
Thus the number of paths whose last visit to the diagonal is at (k, k) is (3) (*"~2¥). Summing

over all possible k gives
Z”: 2K\ (2n - 2k
kJ\ n—k
k=0

paths in total, which must equal the total number 4" of length-2n paths. This proves the
identity. m|

Definition 3.7 (Ballot path and ballot sequence). A ballot path of length 2n is a lattice path
from (0, 0) to (n, n) using steps (1,0) (east) and (0, 1) (north) that never goes strictly above
the diagonal x = y.

Equivalently, a ballot sequence of length 2n is a word in {0, 1} containing 1 zeros and 7 ones
such that in every initial segment the number of 1’s is at least the number of 0’s.

3.7 Catalan numbers

Definition 3.8 (Catalan numbers). The nth Catalan number C, is the number of ballot paths
(or ballot sequences) of length 2.

Theorem 3.12 (Closed form for Catalan numbers). For every n > 0,

o=zl = () (2}

Definition 3.9.

* A rooted tree is a tree together with a distinguished vertex called the root.

* In arooted tree, the parent of a vertex v # root is the previous vertex on the unique path
from the root to v.

* A leaf is a vertex of degree 1 (except in the trivial tree).

* An ordered rooted tree is a rooted tree in which, for every vertex, the children are linearly
ordered (from “left” to “right”). The vertices themselves are not labeled.

* A rooted ordered binary tree is an ordered rooted tree in which each vertex has either 0 or 2
children. (If there are two children, one is designated “left” and one “right”.)
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Theorem 3.13. 1. The number of rooted ordered binary trees with n + 1 leaves is C,,.

2. The number of triangulations of a convex (1 + 2)-gon is C,.

Proof. (i) Binary trees and ballot sequences. We describe a bijection between rooted ordered
binary trees with n + 1 leaves and ballot sequences of length 2.

Given such a tree T, perform the following depth-first (preorder) traversal, starting at the root:

¢ When a vertex is first visited, mark it visited, write a 1 if it has children (i.e. it is an internal
vertex) or 0 if it is a leaf.

¢ Then recursively visit the left subtree, then the right subtree, returning upwards along edges
as usual. When we return to a visited vertex we do not write anything new.

Let the sequence obtained be b1b; ... by, € {0, 132",

A rooted ordered binary tree with n + 1 leaves has 7 internal vertices, so we write  ones and n
zeros. Thus the sequence has length 2n with n 1’'s and n 0’s.

We claim that this is a ballot sequence. Consider any initial segment of the traversal. Whenever
we write a 1 we “create” two new children; whenever we write a 0 we finish a leaf and effectively
close off one child. A short induction on the steps of the traversal shows that after any initial
segment, the number of 1’s is at least the number of 0’s: otherwise we would have closed more
leaves than the number of child positions created, and there would not be any vertex to continue
the traversal from. Hence the sequence never goes below the line “#1’s = #0’s”, so it is ballot.

Conversely, given a ballot sequence of length 2n with n ones and n zeros, one can reconstruct
a unique rooted ordered binary tree by the reverse procedure: scan the sequence from left to
right, starting with a root whose two child positions are “open”. Whenever a 1 appears, we
replace one open child position by an internal vertex with two new open child positions; when a
0 appears we close one open child position by making it a leaf. The ballot condition guarantees
that we never run out of open child positions, and the total number of zeros ensures we finish
with no open positions left. This reconstructs a unique tree with n + 1 leaves.

Hence we have a bijection, and the number of such trees is C,,.

(ii) Triangulations of a convex polygon. Fix a convex (n + 2)-gon and choose one side as a
distinguished “root side”. Given any triangulation, place a new vertex in the interior of each
triangle and connect it to the midpoints of the three edges of that triangle. The graph formed by
the new vertices and the segments across edges of the triangulation is a rooted ordered binary
tree with n + 1 leaves, rooted at the triangle adjacent to the root side, and with leaves in bijection
with the sides of the polygon.

Thus triangulations of a convex (n + 2)-gon are in bijection with rooted ordered binary trees
with n + 1 leaves; part (i) now gives the result. m|

Theorem 3.14 (Catalan recurrence). For n > 1 we have the recurrence

Proof. We use the interpretation of C,, as the number of rooted ordered full binary trees with n
internal vertices.
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Fix n > 1 and consider such a tree T with 7 internal vertices.

The root is an internal vertex and therefore has exactly two children: a left child and a right
child. Each child is the root of a (possibly empty) full binary subtree.

Let
L = left subtree, R = right subtree.

Suppose L has k internal vertices. Then:
#internal verticesinR =n -1 -k,

since the total is 7, and we have already counted the root and the k internal vertices in L.

Thus every tree T with n internal vertices determines a unique integer k € {0,1,...,n — 1} and
a pair of trees

(L,R) with L having k internal vertices, R having n — 1 — k internal vertices.

® There are C choices for the left subtree L (any full binary tree with k internal vertices).

¢ Independently, there are C,,_1_x choices for the right subtree R (any full binary tree with
n — 1 — k internal vertices).

Once L and R are chosen, attaching them as left and right subtrees of a new root produces a
unique full binary tree with 7 internal vertices. Conversely, any such tree arises in exactly this
way from its left and right subtrees.

Summing over all k,

=
L
T
L

C, = (# trees with k internal vertices in the left subtree) = Cr Ch1-x,

o~
Il
o
>~
I
o

as claimed. O
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4 Recurrences

4.1 Fibonacci recurrences

Example 4.1 (Smarts and Cadillacs). Consider a linear parking lot of size n in a row. We
have Smarts (cars of length 1) and Cadillacs (cars of length 2). Let F,, be the number of ways
to occupy the n spots (every spot is either occupied by a car or empty, with no overlaps).
Can we determine an expression for F,,?

If we look at the leftmost car:

e Either it is occupied by a Smart; remove it and we obtain a configuration of size n — 1.

¢ Or it begins a Cadillac; remove the Cadillac and we obtain a configuration of size n — 2.

Then
Fn:Fn_1+Fn_2 (7’122),

with initial conditions Fo = 1 (empty lot) and F; = 1 (only one Smart). Hence the number
of configurations satisfies the Fibonacci recurrence. Thus F,, is the nth Fibonacci number
(1,1,2,3,5,...).

Lemma 4.1. Forn >0,

n
D F2=F,Fpy1.
i=0

Proof. Consider two parallel lots: the top of length n and the bottom of length n + 1. A pair of
fillings is counted by F; F;11.

Given such a pair, scan from the right and let i be the rightmost position 0 < i < n at which one
may place a vertical barrier without cutting a Cadillac in either lot. This 7 is well-defined and
unique.

Then in both lots the segment to the left of the barrier has length 7, hence each left segment is an
arbitrary filling of length i. These classes fori = 0,1, ..., n partition all F,,F,,+ pairs, so

n
FuFps1= ) F2. 0
i=0

4.2 Derangements

Definition 4.1 (Derangement). A derangement of [n] is a permutation o € S,, with no fixed
point, i.e. 0(i) # i for all i. Let D,, be the number of derangements of [n].

Theorem 4.2 (Derangements). For n > 1 the numbers D,, satisfy:

D, =(n- 1)(Dn_1 + Dn_z), nx2,

with initial values Dy = 1 and D7 = 0.
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Proof of the recurrence. Fix n > 2 and consider a derangement o of [n]. Look at the functional
digraph of n. Since o is a derangement, the functional digraph has no loops (1-cycles)

e Case1: nisina2-cycle {i,n},i.e. o(n) = i and o(i) = n for some i < n. There are n — 1 choices
for i, and after fixing this 2-cycle the remaining n — 2 elements must form a derangement.
Thus we obtain (n — 1)D,,_, derangements.

e Case 2: n is in a cycle of length at least 3. Then o(n) = i for some i < n and o(i) # n. If we
delete n from the cycle and “splice” the edges appropriately, we obtain a derangement of
[n — 1], and conversely we can insert n into any cycle of a derangement of [ — 1] in (n — 1)
different ways. Hence we obtain (n — 1)D,,_; derangements.

Adding the two cases gives

Dn = (Tl - 1)Dn—2 + (1’1 - 1)Dn—l = (n - 1)(Dn—1 + Dn—2)-

4.3 Simple words, set partitions and permutations with cycles

We collect three classical families with similar recurrences.

Example 4.2. Let P(n, k) denote the number of simple k-words on [n], i.e. words of length k
over alphabet [n] with no repeated letters in a word. Clearly P(n, k) =n(n—1)---(n —k +1).
Can we obtain an recurrence relation for P(#n, k)?

In a simple k-word on [n],

1. either the letter n does not appear, giving P(n — 1, k) possibilities

2. n appears in some position 1 < i < k (choose the position for n in k ways) and the remaining
k — 1 positions contain a simple (k — 1)-word on [n — 1], giving kP(n — 1, k — 1) possibilities.

The recurrence (valid forn > 1, k > 1) is
Pn,k)=P(n—-1,k)+kP(n—-1,k-1),
with initial condition P(n,0) = 1 and P(0, k) = 0 for k > 1.

Example 4.3. Let S(n, k) denote the number of ways to partition [n] into k (nonempty,
unlabeled) blocks. These are the Stirling numbers of the second kind. Derive an recurrence
relation for S(n, k).

Consider where the element 1 goes. There are 2 case:

1. It forms a singleton block (contributing S(n — 1, k — 1))

2. It joins one of the existing k blocks of a partition of [n — 1] into k blocks (contributing
kS(n -1, k)).

The recurrence (again forn > 1,k > 1) is
S(n,ky=kSn-1,k)+S(n-1,k-1),
with initial conditions S(0,0) =1, S(n,0) =0forn > 1, 5(0,k) =0 for k > 1.
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Example 4.4. Let C(n, k) denote the number of permutations of [n] with exactly k disjoint
cycles in their cycle decomposition (these are called the “signless” Stirling numbers of the
first kind). Derive an recurrence relation for C(n, k).

Given a permutation of [n] with k cycles, look at n1. There are 2 cases:

1. n is a fixed point, in which case removing n gives a permutation of [n — 1] with k — 1 cycles.

2. n lies in a cycle of length at least 2, in which case deleting n and splicing the cycle gives a
permutation of [n — 1] with k cycles, and conversely n can be inserted into any of the n — 1
positions in any cycle.

The recurrence (forn > 1,k > 1) is
Cn,k)=(n-1)Cn-1,k)+C(n—-1,k-1),
with initial conditions C(0,0) =1, C(n,0) =0forn >1,C(0,k) =0 for k > 1.

4.4 Delannoy recurrences

Example 4.5. With Delannoy numbers, we have dypg = 1 and dy,0 = do,n = 1 forall m,n > 1.
Removing the last step of a path gives the recursion

dm,n = dm—l,n + dm,n—l + dm—l,n—l (m,n = 1)-

Example 4.6. Let a,,, be number of points in the lattice ball of radius m in Z" Derive an
recurrence relation for a,, ;.

Consider a point (x1, ..., x,) with |x1| + - -+ + |x,| < m. Partition these points according to the
last coordinate x,.

e Ifx, =0, then (x1,...,x,-1)is a pointin the (n — 1)-dimensional ball of radius m, contributing
Ay n—1 points.

e If x, > 0, write x;, = x, —1 > 0; then |x1| + - -+ + [x,—1]| + x], < m — 1, so we obtain a point

counted by a,,-1,,.

e If x, <0, write x;, = —x,, — 1 > 0; again we get a point with sum of absolute values at most
m — 1. This gives another a,,_1, points, but the two cases together can be encoded as a
contribution a,,_1,,-1 when we treat the sign separately and focus on the positions of nonzero
coordinates.

Then a,, ,, satisfy
aon = ]-/ am,O =1 (T}’l, n = O)/
and form,n > 1,

Amm = Omn-1t Am—-1n T Am-1,n-1-

Comparing with the recursion and initial conditions for d,, ,, we obtain another proof that the
number of points in the lattice-ball of radius m in Z" equals the number of Delannoy paths from
(0,0) to (m, n).
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5 Solution methods for linear recurrences

5.1 Recurrence relation

Definition 5.1 (Sequence). A (real) sequence is a list

(an)i’lZO = (HOI al/ a2/ LI )/

where g, € R for each integer n > 0.

Definition 5.2 (Recurrence relation, order, linear, homogeneous). Let (a,)x>0 be a sequence.
* A recurrence relation of order k for (a,) is a rule of the form
an =g(n, an-1,8n-2,...,a0k)  (n>k),

where g is some function of n and the previous k terms.

e The recurrence is called linear if it can be written
ap = g1(n)an—1 + (n)ay_p + - + gx(n)an_x + f(n),

for some functions g1, ..., gk, f of n.

e A linear recurrence is called homogeneous if f(n) = 0 for all n; otherwise it is non-
homogeneous.

Example 5.1 (Some recurrences).

¢ Order 1, homogeneous:
a, = 3a,_1.

¢ Order 2, homogeneous:
Ay = Ap-1 + an-2.

¢ Order 2, non-homogeneous:
an = an_l + L'ln_z + 1’12.

¢ General homogeneous linear recurrence of finite order:

m
an = Z cx(n) an—x,
k=1

where ci(n) are given coefficient functions.

Example 5.2 (Catalan numbers). The Catalan numbers (Cy,),>o are defined by

_

n—
Co=1, Cn = Cr Cr1-k (1’[ = 1)
0

=~
Il

Partition by the last time each Catalan lattice path touches the line y = x
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5.2 Linear recurrences with constant coefficients

We now focus on linear recurrences with constant coefficients.

Definition 5.3 (Linear constant-coefficient recurrence). A recurrence of the form
Ay = C1ap-1 + C2p—3 + -+ Crdy—f + f(n), n>k,

where ¢y, ..., cx are fixed real constants and f(n) is a given function, is called a linear
constant-coefficient recurrence of order k. It is homogeneous if f(n) = 0.

Definition 5.4 (Characteristic polynomial and equation). For the homogeneous relation
ap = C1ap-1+ C2ap-—2 + -+ Crxlp—k,
the characteristic polynomial is
k-2

o(x) = xk =gkl — k2 - — ¢y

The equation ¢(x) = 0 is called the characteristic equation; its roots are the characteristic roots.

Example 5.3. Consider
ap =aap-1,  nzl,

with initial value ap = c. The characteristic equation is x = a, so « is the only characteristic root.

It is easy to check by induction that

a, =ca”

foralln > 0.

More generally, any sequence of the form a, = Ca" (with C arbitrary) is a solution of the
recurrence; the initial condition picks out the particular value C = c.

5.3 General homogeneous recurrence with distinct roots

Now consider the homogeneous recurrence of order k:
Ay = C1Ap—1 + C2ly—2 + -+ + CkAy_k, n>k,
and let its characteristic polynomial be

P(x) = xF —cpxF T - — gy

Suppose a is a root of ¢(x). Then the sequence a,, = a" satisfies the recurrence: substituting
a, = a" gives

1 k k k-1

a" ="+t gd"t = at ="+t ok,

which is exactly ¢(a) = 0.

Thus, for any constant C, the sequence a,, = Ca” is a solution. If § is another root, then b, = C’g"
is also a solution. Because the recurrence is linear, any linear combination

ap, = Cla” + CQﬁn
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is again a solution.

More generally, if a1, . . ., ay are k distinct characteristic roots, then each sequence a? is a solution,
and any linear combination

ay = Cra] + Caay + -+ + Cray

is also a solution. Initial conditions ay, ..., ax-; determine the constants Cy, ..., Cx uniquely
(the k sequences a are linearly independent), so this already gives the general solution when
all roots are distinct.

Example 5.4 (Fibonacci sequence). The Fibonacci numbers are defined by

Fn=F,1+F;» (7122)/ Fo=0, L =1

The characteristic polynomial is
dx)=x*—x-1,

with roots
1++5 1-+5
a = , B = .
2 2
Thus every solution of the recurrence has the form

a, = Cla” + Czﬁn.
Imposing ag = Fo = 0 and a1 = F; =1 gives

Ci1+Cr =0, C1a+C2ﬁ=1,

1
soCy = and C,; = ——. Hence
\5

L
V5
the usual closed form (Binet formula).

This example illustrates a more general phenomenon: the set of all solutions of a linear
homogeneous recurrence of order k is a k-dimensional vector space, and suitably many distinct
characteristic roots produce a basis of this space.

5.4 General solution with repeated roots

We now describe what happens when the characteristic polynomial has repeated roots.



Solution methods for linear recurrences 41

Theorem 5.1 (General solution with multiple roots). Let
Ap = C1ap-1 + C20y—2 + -+ + Crln—k

be a linear homogeneous recurrence of order k with constant coefficients, and let its
characteristic polynomial factor as

t
¢px) =xF —erx* - —or = ]_l(x - ap),
j=1

where the @; are distinct and dy +--- + d; = k.

Then the space of all solutions (a,),>0 is spanned by the k sequences
nal (1<j<t, 0<s<d;-1).

Equivalently, every solution can be written in the form

t
a, = Z Pj(n) a]”,
=1

where each Pj(n) is a polynomial in 7 of degree at most d; — 1.

Proof sketch. Write the recurrence as a linear operator equation
Ay —C1an-1 — -+ — Cray_x = 0.

Introduce the shift operator E acting on sequences by (Ea), = a,+1. The recurrence becomes
(EF—ciEF = —c)a =0,

i.e. ¢p(E)a = 0.
Factor ¢(x) = H;zl(x -« j)df ; formally this gives

t
FRE—%WM:O
j=1

For a fixed j, the solutions of (E — aj)a = 0 are exactly the geometric sequences a, = C a;?.

Solutions of (E — « j)dfa = 0 are then obtained by taking derivatives with respect to «;; this
produces the additional factors of 7 and leads to the d; linearly independent sequences n* oz].”
for0<s<d;-1

Taking the product over j shows that the full solution space has dimension d; +--- + d; = k and

is spanned by these sequences. Finally, any choice of initial values ay, ..., ax-1 yields a unique
linear combination of these basis solutions, so every solution has the claimed form. O

Consider a sequence (a,),>0 satisfying a homogeneous linear recurrence of order k with constant
coefficients
Ap = C1Ay-1+ C2Ap—p + -+ CkAn—k (1 >k),

where ¢ # 0. The characteristic polynomial is

x(x) = K=o - = x — k.
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If the roots of x are A4, ..., A, with multiplicities d1, .. ., d,, then every solution has the form

.
ay= Y Pim)AL,
j=1

where P; is a polynomial of degree at most d; — 1. The coefficients of the P;’s are determined
from the k initial values ay, . .., ar_1.

5.5 Tower of Hanoi

Example 5.5 (Tower of Hanoi). Let /i, be the minimum number of moves required to move
a tower of n disks from one peg to another according to the following rules.

Rules of the Tower of Hanoi. We are given three pegs (often called source, auxiliary, and target)
and n disks of distinct sizes. Initially, all n disks are stacked on the source peg in increasing
order of size from top to bottom (i.e., the smallest disk is on top and the largest disk is on the
bottom).

A legal move consists of taking the top disk from one peg and placing it onto the top of another
peg, subject to the following constraints:

1. Only one disk may be moved at a time.
2. You may only move the top disk of any peg.

3. At all times, no disk may be placed on top of a smaller disk. Equivalently, on each peg the
disks must always appear in increasing order of size from top to bottom.

The goal is to start from the initial configuration on the source peg and end with all n disks
stacked in the same order on the target peg, using only legal moves.

¢ We clearly have hp = 0and h; = 1.
¢ To move a tower of size n:

1. move the top n — 1 disks to the spare peg (takes h,_1 moves),
2. move the largest disk (one move),

3. move the tower of n —1 disks from the spare peg onto the largest disk (another /1,,_1 moves).

Therefore
hy, =2h,1+1 (1’1 > 1).

We solve this recurrence.

Homogeneous part:
n =21 = WM =c.2m

For a particular solution we try a constant hﬁf’ )= A

A=2A+1 — A=-1.

Thus the general solution is
h,=C-2"-1.
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Using hp = 0 gives C =1, so
h,=2"-1.
5.6 Non-homogeneous recurrences
We now consider recurrences of the form
Ay = C1ly—1+ -+ + cxay_x + F(n), n >k, (1)

where F(n) is a polynomial in n.

Theorem 5.2. Let F(n) be a polynomial of degree d. Let x(x) be the characteristic polynomial
of the associated homogeneous recurrence (obtained from (1) by deleting F(1)), and suppose
r is a root of x of multiplicity w > 0.

Then there exists a particular solution of the form
a,(f) =n“P(n)r",

where P is a polynomial of degree at most d.

Remark 5.1. In particular, if r = 1 is a root of multiplicity w then there is a particular solution
of the form
a,(f ) = n“P(n)

with deg P < d. The full solution is then

a?l = al(’lh) + aglp)/

where a,gh) is the general solution of the homogeneous recurrence.

Proof. For clarity, consider the non-homogeneous recurrence
Ay —C1ly—1 — -+ — Cxy_x = F(n)r",

where F is a polynomial of degree 4, and let

x(x) = x* =" - g

be the characteristic polynomial. Assume that 7 is a root of x of multiplicity w.

First reduce to the case r = 1. Put

Then (b,,) satisfies

by —c1bp-1 =+ = ckby—k = F(n),
and the characteristic polynomial is still x, but now we are interested only in the root 1
of multiplicity w (corresponding to ). Once a particular solution b,(f Vis found, we obtain
a,(f) =" b,(f ). Hence it suffices to prove the theorem for r = 1.

Let E be the shift operator (Ea), = 4,41 and put

L:i=Ef—qEF1—...— ¢,
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so that the recurrence is L(a), = F(n). Since 1 is a root of x of multiplicity w, we can factor

x(x) =@ -1)%(x),  ¢P1)#0,
and correspondingly

L = (E - 1)°y(E).

Let A := E — 1 be the forward—difference operator. We work on the finite-dimensional vector
spaces
P<m := { polynomials in 1 of degree < m }.

In the basis {1, n, nZ ..., n™}, the matrix of Y(E) is upper—triangular with diagonal entries all
equal to (1) # 0 (the leading term of ¢(E)P is ¢(1) times the leading term of P). Hence ¢(E)
restricts to an invertible linear map

IP(E) :Pam — Pm
for every m.

For any polynomial P, deg AP = deg P — 1, so A” maps P4+ into P<,4. In the binomial basis
{(©): (1) -+ (a2)} onehas A() = (,2), s0

w n _ n
7)) weo

Thus A" sends the (d + 1)-dimensional subspace span{("), ..., (,I,)} C P<i+w onto Py, so it is
surjective from P4y to P<y.

Given F € P4, as shown above, there is a unique G € P4 with
Y(E)G =F.
As shown, there exists Q € P4, such that
A*Q =G.
Hence
LQ = (E-1)"¢(E)Q = A"Y(E)Q = AYG = F.

So b,(f )= Q(n) is a particular solution of the recurrence with r = 1, and Q has degree at most
d+w.
Write Q(n) uniquely as

Q(n) = n"P(n) + R(n),

with deg P < d and deg R < w (polynomial division by n™). Consider the sequence c, := R(n).
Since deg R < w, one checks that
(E-1)%c=0,

so (E — 1)” annihilates ¢, and hence Lc = 0 (because L = (E — 1)*“i(E)). Thus c is a solution of
the homogeneous recurrence.

Now
L(n“P(n))=LQ—-LR=F-0=F,

SO bilp) := n"P(n) is also a particular solution.

Finally, returning to the original sequence a,, = r"b,,, we obtain a particular solution of the form
a,(f) =n“P(n)r"

with deg P < d, as desired. |
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5.7 Regions of the plane

Example 5.6. Let R, denote the maximum number of regions into which n distinct lines can
divide the plane, if no two lines are parallel and no three lines meet in a single point. Derive
a recurrence relation for H,,

When we add the n-th line, it intersects each of the previous n — 1 lines in a distinct point, so it
is chopped into n segments. Each segment lies entirely inside a single region determined by
the first n — 1 lines and splits that region into two new regions. Thus the number of regions

increases by exactly n:
R, =R,,.1+n (71 > 1).

Clearly Ro = 1 (with no lines, the plane is one region).
This is a first-order non-homogeneous recurrence with constant coefficients and polynomial
forcing F(n) = n.
The homogeneous recurrence is
R _ g
u =

n-1’

so the characteristic equation is x — 1 = 0, with root r = 1 of multiplicity 1. Hence
RW=c.1"=cC.

Here F(n) = n has degree d = 1 and r = 1 has multiplicity w = 1, so the theorem tells us to look
for a particular solution of the form

RY = P(n),

where P is a polynomial of degree at most 4 + w = 2. Write
P(n) =an®>+bn+c
and substitute into the recurrence:
an’> +bn+c=an-1%+b(n-1)+c+n.
Expand the right-hand side:
am®>-2n+1)+bn—-1)+c+n=an’+(-2a+b+Dn+(a—-b+c).

Equating coefficients of n%, n, and the constant term gives

a=a,
b=-2a+b+1,
c=a-b+c.
Thus .
2a+1= =—
a 0 = a >
and ,
a-b=0 = bZE

The constant c is not determined by the recurrence; it will be fixed using the initial condition.

So , .
Rn:C+§n2+§n+c.
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Using Rg =1,
1=C+c.

We may absorb C into ¢ and simply write

1 1 n n
Rn:§n2+§n+1:1+( )+( )

Example 5.7. Consider the recurrence

apg =0, a, =2a,1+n (n>1).

The homogeneous part aiﬁ) = 2517(?_)1 has solution a,gh) =C-2"

Here F(n) = n is degree 1, and the characteristic root is r = 2, which is not a root of multiplicity
> 1 at r = 2 for the polynomial x — 2 = 0 besides the obvious single root. Thus w = 0, and we
seek a particular solution of the form

a,(f):an+b.

Substituting into the recurrence:

an+b=2(an-1)+b)+n =2an—2a +2b +n.

a=2a+1,
b=-2a+2b.
Hence —a =1soa = -1, and then b = —-2(-1) + 2b gives b = -2.
)

Equating coefficients:

So a,;’ = —n — 2, and the general solution is
a,=C-2"—n-2.
Using ag = 0,
0=C-1-0-2 = C(C=2,
SO

a, =21 —pn 2.
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6 Generating function methods for recurrences

Definition 6.1 (Ordinary generating function). Let (4,),>0 be a sequence of complex
numbers. The ordinary generating function (OGF) of (a,) is the formal power series

Ax) = Z a,x" € C[[x]].

n>0

For a formal power series F(x) = }},59 fuX" we write

[x"]F(x) = fu

for the coefficient of x" in F(x). Thus a,, = [x"]A(x).

Example 6.1 (Solving a simple recurrence). Let (a,)n>0 be defined by

ap =1, ap=ay—1+n (n=1).

. Determine an expression for a,,.

Let A(x) = 2,50 anx" be its generating function. Multiply the recurrence by x" and sum over

n>1:
Zanx” = Zan_lx” + an”.

nx>1 nx>1 nx1

The left-hand side is A(x) —ag = A(x) — 1. The first sum on the right is xA(x). Using the standard

series
an" -_* 5
n>1 (1 _x)
we get
X
A(X) -1= XA(X) + m
Thus 1
X X
(1—X)A(X)—1+m, A(X)—l_x+(1_x)3.

If we want an explicit formula for a,,, we expand each term:

1 o, 1 o (n+2\ .,
Er RPN (1—x)3_,;0( 2 )x'

n>0

Hence
_ " n+2\ . n+1 "
A(x)—Zx +Z( ) )x —Z(1+( ) ))x
>0 n>0 n>0

Therefore

1 1
an:1+(n;r ):1+_n(n2+ ),

in agreement with solving the recurrence by summation.
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6.1 The negative binomial / “stars and bars” generating function

Proposition 6.1 (Negative binomial generating function). Let k € N and c € C. Then

1 n+k-1\, ,
(1—cx>k‘z( k-1 )”'

n>0

Proof. Consider the product

11 1
(1-cx)k 1-cx 1-cx

k
= |1 +cx+c*x?+-).
j=1

k copies

To obtain a term c"x" in the product, we must choose from the j-th factor a term c%x% for some
nonnegative integers {1, . . ., {, with

bt + b=

Each such k-tuple contributes c”x" to the product, and (??) follows once we count how many
k-tuples ({1, . .., fk) of nonnegative integers have sum #.

By the standard “stars and bars” argument, the number of solutions to & + -+ ¢ = n

in nonnegative integers is (”ZI_‘;l), so the coefficient of x" on the right-hand side is exactly

(" )en 0

Corollary 6.2 (Number of weak compositions). For fixed k, the number of k-tuples of
nonnegative integers (¢1,..., ) with & +---+ { =n is

n+k-1y 1
( k-1 )‘[“u—x)k‘

6.2 Structure theorem for linear recurrences
Let (a,)n>0 satisfy a linear recurrence with constant coefficients of order ¢:
Ap = ClAp—1+ C2anp + -+ Ctapny (M 21),
where ¢; # 0, and let Q(x) be the associated polynomial
Q(x):=1-ci1x —cox? — -+ —¢yxt.

Suppose Q(x) has the factorization
Q) =[ ] - amx)*
i=1

with distinct a; and positive integers d;.
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Theorem 6.3 (Main structure theorem for recurrences). Let A(x) = },50a,x" be the
generating function of (a,),>0. The following are equivalent:

1. The sequence (a,) satisfies the recurrence a, = c1a4,-1 + -+ + can— forall n > t.
2. A(x) is a rational function of the form

_ P(x)

AR =56

for some polynomial P(x) of degree < t.

3. A(x) can be written as a linear combination of the basic generating functions

1

ﬁ, 1SZSS,1S]SCZZ
— ;X

4. The terms a,, admit a closed form

S
an = Zpl(n) ain/
i=1

where each P; is a polynomial of degree < d;.

Remark 6.1. The proof is a systematic version of what we did in the example: writing A(x)

as

a rational function, performing partial fraction decomposition into powers of (1 — a;x)71, and

then reading off coefficients using the negative binomial expansion.

6.3 Example: Catalan numbers

Recall that the Catalan numbers (Cy,),>0 are defined recursively by

n
Co=1, Cu=) CiaCuyg (n21).
k=1

Proposition 6.4. Let

C(x):= Z Cpx"

n>0

be the generating function of the Catalan sequence. Then

1-vV1-4x
CEi=——r

and hence

Proof. Multiply the recurrence C,, = }.;_; Ck-1Cy— by x" and sum over n > 1:

Z Cpx" = Z Z Cr1Cropx™.

n>1 n>1 k=1
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The left-hand side is C(x) — Co = C(x) — 1. On the right-hand side, make the change of variables
i=k-1,j=n—-k. Theni,j>0andi+j=n-1,s0

n
Z Z Ci—1Cpgx" = Z CZ-C]-x”j+1 =x (Z Cz-x") (Z C]-xj) = xC(x)%.
n=1 k=1 i,j0 i~0 =0

Thus
C(x)-1=xC(x)?>, ie. xC(x)*-C(x)+1=0.

This is a quadratic equation for C(x):

1+V1-4x

C =
(x) x
As a formal power series, C(x) has constant term Cy = 1, whereas 1+2— ‘%{‘43{ has a pole at x = 0, so
we must take the minus sign:
1-+vV1-4x
Cx) = ———.
(x) o

To extract the coefficients C,, we expand V1 — 4x using the binomial series with exponent 3:

VI—dx = (1-4x)2 = Z (1/ 2)(—4x)m.

m
m=0

It is more convenient to expand (1 — 4x)~/2

1-V1-4x=1- Z (1/2)(—4x)m = Z(—(l/z)(—z;)M)xm.

m m
m=0 m>1

and then integrate, or directly note that

Dividing by 2x and simplifying the binomial coefficients yields the well-known closed form

1 (2n
= > 0.
Co n+1(n)' nz0

(One standard way is to use the identity (/%) = o Lam) O

m 4m m
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6.4 Main theorem of linear recurrences

Letcq,...,ck € Cwith ¢, #0, and set

t

Q(x)=1-cix — - — cpx* —1_[(1 dix),

i=1

where the d; are distinct complex numbers and the e; > 1 are their multiplicities.

Theorem 6.5 (Main theorem). For a complex sequence ao, a1, . . ., the following are equiva-
lent.

(A) The sequence satisfies the linear recurrence
Ay = C1dpy—1 + -+ Cry_g (n = k).

(B) The ordinary generating function A(x) = }},594,x" is a rational function of the form

P(x)
Q(x)

Ax) =

where P(x) is a polynomial of degree < k.

(C) A(x) can be written as a finite linear combination

Ax) = ZZ ==

zll’l

with complex coefficients «; ;.

(D) There are polynomials P; o(n) with deg P; y < e; — 1 such that

ay, = 2 Z P; ¢(n) dl-” (n>0).

Example 6.2 (Catalan numbers). Let Cp =1 and forn >0,

n
Cu1 = ) CiCooi.
i=0

Let C(x) = 21,50 Cnx". Then
C(x)—1=xC(x)?

so xC(x)? — C(x) + 1 = 0. Solving this quadratic for C(x) gives

1-4x

C(x) = o

where we choose the minus sign so that C(0) = 1. Expand V1 — 4x using the extended binomial

theorem:
(1—4x)1/2:2(1/2)( ~4x)" —Z(Z:)(4n) (4x)" = ) (- 1)”( )

n>0 n>0 n>0
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From

we read off the closed form

6.5 Substitution Method

Recall a derangement of [n] = {1,2,...,n} is a permutation with no fixed points. Let D, denote
the number of derangements of [11]. We proved previously that D,, satisfies

Do=1, Dy=0, D,=(n—-1)(Dyy+Dy2) (n22).

We will obtain a closed form solution for D,,. First, we convert this into a first order recurrence.

Lemma 6.6 (A first-order recurrence). Foralln > 1,

D, = nDy_1 + (-1)".

Proof. We prove the identity by induction on #.
Forn =1,wehave D; =0and 1-Dg + (-1)! =1 -1 =0, so the formula holds.
Assume n > 2 and that the statement holds for n —1,i.e. D, = (1 —1)D,_» + (=1)""1. We have

D, = (i’l - 1)Dn—1 + (Tl - 1)Dn—2-
Now substitute (n — 1)D,_» = D,,_1 — (=1)""! from the induction hypothesis:
D, = (Vl - 1)Dn—1 + (Dn—l - (_1)n—1) =nDy-1 - (_1)n—l =nDy-1 + (_1)11,

as desired. O

We will now demonstrate the substitution method to convert this first order recurrence relation
for D,, into a closed form.

Define b, := D, /n!. Then forall n > 1,

_1\n
b,=b,1+ ( 1) , by =1.
n!
Consequently,
n n
-1 k -1 k
b, = (-1) and hence D, = n! (-1)
k! k!
k=0 k=0
Divide the first-order recurrence from the lemma by n!:
—1)" _1)
&Z%Jrﬂ bn:bn—1+(1)-
n! n! n! n!

Now telescope from 0 to n:

_ S (-DF o (D o (DF
b”_b0+ZT_1+Z i _Z 0
k=1 k=1 k=0

Multiplying by n! gives the closed form for D,,.
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6.6 Stirling’s formula

From the exact closed form

Dy _ - (_1)k
F‘Z ki’
k=0

we immediately see what happens as n — oo: the partial sums converge to the full exponential

series -
Z -k
o e .
k=0 ’
Hence 5 i |
n!
LN and therefore D, ~—.
n! e e

In words: a uniformly random permutation of [n] has probability tending to 1/e of having no fixed
points. Equivalently, D,, is asymptotically n!/e.

This naturally raises the next question: how large is n! itself? The answer is given by Stirling’s
formula, which provides an extremely accurate approximation to factorial growth:

n
n! ~ V2nn (g) .

Remark 6.2. Moreover, one can refine this to an asymptotic expansion (see the book):

n!~\/2n_n(g)n(1+ L ! +)

—_— + .
12n  288n2

Example 6.3. Flip 27 fair coins independently, and let H be the number of heads. Then the
probability of getting exactly n heads is

Cr)

= 22n "

P(H =n)

Stirling’s formula gives an asymptotic approximation for the probability

(Zn) _@mt V2m(2n) (27”)211

n (n!)? ( o (%)n)z '

Therefore

(Zn) 4"

n Vrn .
Dividing by 2" = 4" gives the desired asymptotic for the probability:
G) 1

4n \mn

P(H=mn)=
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7 Ordinary generating functions

7.1 Why generating functions exist
In counting problems, we often have a family of numbers

ap,Aai,az,...

where a4, counts “how many objects of size n” we have. A generating function is a way to
package this entire infinite list into one algebraic object so that:

¢ algebraic operations (like adding or multiplying series) correspond to natural combinatorial
operations (like disjoint union or building composite objects),

* extracting the coefficient of x" recovers the quantity we care about.

The key idea is: instead of storing the number a,, in a sequence indexed by 7, we store it as the
coefficient of x" in a formal series.

7.2 Combinatorial classes and weights

A combinatorial class is just a set S whose
elements we think of as combinatorial objects (strings, subsets, graphs, partitions, etc.). A
weight function on S is a map
w:S — Zsp.

The intended meaning is that w(s) measures the “size” of an object s.

We assume a mild finiteness condition: for every n > 0, there are only finitely many s € S with
w(s) = n.

7.3 Definition of the OGF

Let (S, w) be a weighted combinato-
rial class. Its ordinary generating function is

S(x) := Z xWE),

seS

Define

ay := |{s eS:w(s)= n}l.

Then grouping terms in the sum by weight gives the equivalent form

S(x) = Z apx".

n>0

So the coefficient [x"]S(x) is exactly the number of objects of weight .
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Definition 7.3 (Formal power series). A formal power series over a ring R is an expression
A(x) = Z a,x" (a, € R),
n>0

where we treat x as an indeterminate and manipulate the series purely algebraically (we do
not care about convergence).

We write [x"]A(x) for the coefficient of x".

The set of all formal power series in x with coefficients in R (or C) forms an infinite-
dimensional vector space and a commutative ring under coefficientwise addition and Cauchy
product.

 The multiplicative identity is 1 = 1+ 0x + 0x> + .. ..

* A series A(x) has a multiplicative inverse A(x)™! (i.e., there exists B(x) with A(x)B(x) = 1)
iff its constant term is nonzero:
[x°]A(x) # 0.

7.4 Two fundamental combinatorial operations

The real power of OGFs is that basic constructions on classes correspond to simple algebra on
generating functions.

7.4.1 Disjoint union < addition

Definition 7.4 (Disjoint union of classes). If A and B are weighted classes with the same
weight rule, their disjoint union A LI B consists of objects from either class, tagged by which
class they came from, and the weight is preserved.

Proposition 7.1 (Addition rule). If A(x) and B(x) are the OGFs of A and B, then the OGF
of AU B is
A(x) + B(x).

Proof. By definition,

Z xw(s) — Z xw(a) + Z xw(b).

seAUB a€A beB

7.4.2 Product construction < multiplication (convolution)
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Definition 7.5 (Product of classes). Given weighted classes A, B, define their product
A X B to be the class of ordered pairs (a,b) with a € A, b € B, equipped with the additive
weight

w(a,b) = w(a)+ w(b).

7

Think: “build a composite object by choosing one A-object and one B-object, and size adds.

Proposition 7.2 (Multiplication rule / convolution). If A(x) = >} a,x" and B(x) = 3, b,x"
are the OGFs of A and B, then the OGF of A X B is

n
A(x)B(x) = Z cpx” where Gy = Z arby_x.
k=0

n>0

Equivalently, ¢, counts pairs (a, b) with w(a) + w(b) = n.

Proof. Start from the definition of OGF:

Z xw(a,b) — Z Z xw(u)+w(b) — (Z xw(a)) (Z xw(b)

(a,b)eAxB acA beB aeA beB

= A(x)B(x).

If we now write A(x) = ) a,x" and B(x) = }, b,x" and expand, the coefficient of x" is exactly
ZZ:O arb,—k. O

Example 7.1. Fix n. Let S be the class of all subsets S C [n], and assign weight w(S) = |S|.

Step 1: describe a subset as a product of independent choices. For each element i € [n], we
make an independent binary decision: either we do not include i (weight contribution 0), or we
do include i (weight contribution 1). Thus, for a single element i, the local class is

S; = {exclude i, include i}, Si(x) =1+ x.

Step 2: combine the n choices using the Product Rule. A subset of [1] is exactly a choice from
81 X -+ xS, and weights add under products:

S =81 x---x8,.
Therefore, by the Product Rule,

S(x) = ]—[ Si(x) = (1+ x)".

i=1
Step 3: read off coefficients. Since [x¥]S(x) counts weight-k objects, we get
k _ n
2100 = ;).

the number of k-element subsets of [1].
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Example 7.2. Fix n. Let M be the class of all multisets of elements from [n]. Define the
weight w(M) to be the total size of the multiset (counting multiplicity).

Step 1: describe a multiset as n independent multiplicity choices. For each element type
i € [n], we choose a multiplicity
mi €{0,1,2,...}.

Choosing multiplicity m; contributes weight m;. So the local class for a single type i is

1
- () — E mo_
M;={0,1,2,...}, Ml(x)—m>0x =1

Step 2: combine types using the Product Rule. A multiset is exactly the data of (1, ..., m,),
ie.

M= Mix---xM,,

and the total size is m + - - - + m,,. Hence, by the Product Rule,
n
1 n
Meo = [ [ M= (7=5)"

Step 3: interpret the coefficient (stars and bars). The coefficient [x¥]M(x) counts n-tuples
(my,...,my,) of nonnegative integers with sum k, i.e. the number of k-multisets from [n]. Thus

(K IM(x) = (n+k—1).

n-1
7.5 Restricted multiplicities
Up to now, a multiset on [n] = {1,2, ..., n} can be encoded by an n-tuple of multiplicities
(mq,my, ..., my), m; €{0,1,2,...},
where m; is how many copies of element i appear. We use the weight
w(my, ..., my)=my+---+my

(the total size, counting multiplicity). The ordinary generating function is

Why the “one-type factor” works. If we fix a single type i, and we allow it to appear with
multiplicity in some set B; SN = {0,1,2, ...}, then the contribution of type 7 alone is the series

Ai(x) = Z xb,
beB;

because choosing multiplicity b contributes weight b.
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Now the crucial point: the n choices of multiplicities are independent across types, and the
total weight is the sum of the individual weights. Therefore, by the Product Rule (for weighted
classes),

A(x) = ﬂ Ai(x).
i=1

The coefficient [x¥]A(x) counts the number of allowed multisets of total size k.

Special case: the same restriction for every type. If every element type has the same allowed
multiplicity set B, then A;(x) = Aone(x) for all 7, and

A(x) = (Aone(x))n'
Example 7.3 (Even multiplicities). Suppose each type must appear an even number of times:
B={0,2,4,6,...}.

For one type,
1

1—x2"

Aone(x)=Z:3C21l =1+x2+xt+...=
>0

Hence, by the Product Rule,

Alx) = (1 —1x2)n'

Equivalently, [x¥]A(x) = 0 for odd k, and for even k it counts the number of ways to write k as a
sum of 1 even nonnegative integers.

Example 7.4 (Multiplicity at least 2). Suppose each type must appear at least twice:
B=1{2,3,4,...}.

For one type,

Aone(x)zsz:x2(1+x+x2+---):
b>2

1-—x"

Therefore )

X n
A = (=)
) =\1=%
Here the factor x?" is doing exactly what you think: it forces a baseline of 2 copies of each of the
n types before any “extra” copies are distributed.

Fully general restriction. If each type i has its own allowed multiplicity set B; C N, then the

one-type series is
b
Aix)= Y ",
beB;

and the total OGF for multisets respecting all restrictions is

Ax) = ﬂ Aix).
i=1
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Example 7.5 (Making change (order does not matter)). Fix a finite set of coin denominations
D= {dlleI cee /dT} c Z>O-

We want to count the number of ways to make total value n using these coins, where a way
means: for each denomination d € D, we choose how many coins of value d we use (order is
irrelevant).

Step 1: Define the combinatorial class. A choice of coins is exactly an r-tuple of nonnegative

integers
(mdl, May, .-, mgy,) € Z;O/

where m; means “how many d-coins we take.” So define the class

C = {(mg)aep : mg € Zxo}.

Step 2: Define the weight function. The most natural weight is the fotal value of the chosen
coins:

w((ma)aep) = Z dmg.
deD
For example, if D = {1, 2,5} and we choose (m1, my, ms) = (2,1,1), then

w(2,1,1)=1-2+2-1+5-1=9.
Step 3: Define the OGF from the class and the weight. By definition, the ordinary generating

function of (C, w) is
C(x) = Z X,

ceC
So the coefficient [x"]C(x) counts how many choices of coin multiplicities produce total value
exactly n.

Step 4: Break the class into independent pieces (Product Rule). For each denomination d € D,
define the single-denomination class

Ca = {ma : mg € Zso},
with weight wg(mg) = d my.

Choosing a full coin-multiset is the same as choosing m; independently for each d € D, and
the total value is the sum of the values contributed by each denomination. This is exactly the
condition for the Product Rule.

Step 5: Compute each factor. For a fixed d, the OGF is

1
Ca(x) = wad(’”"’)z Zxd’”d=1+xd+x2d+x3d+---:1_xd.

mg>0 mg>0

Step 6: Multiply the factors (Product Rule). Therefore the total OGF is

c =[] =] 1_1—xd

deD deD

T

deD
equals the number of ways to make value n using denominations D, where order does not
matter.

Conclusion:
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7.6 Bivariate OGFs (tracking two statistics)

Sometimes objects have two natural statistics (say size and number of parts). Then we use two
variables and track both at once.

Definition 7.6 (Bivariate OGFE). Let S be a class with two weight functions w1 : S — Zx
and wy : S — Zs. Its bivariate OGF is

S(x,y) = Z le(S)ym(S).
seS

Equivalently, if a,,  counts objects with w; = n and w; = k, then

S(x,y) = Z an,kx"yk.

n,k>0

Example 7.6 (Pascal’s identity via a bivariate OGF). Let S be the class of pairs (1, S) where
n >0and S C [n]. Define two weights:

ZUl(?l,S) =n, ZU:Z(TI,S) = |S|

Then the bivariate OGEF is

S(x,y) = Z Z x”y|5| = Zx”(l +y)' = m

n20 Sc[n] n=0

Expanding coefficients gives [x"y¥]S(x, y) = (}).
Now the identity
(I-x-xy)S(x,y)=1

implies that the coefficient of x”yk forn, k > 11is zero, i.e.

ny [(n-1} (n-1) _ 0
k k k-1 7
which is Pascal’s identity.

7.7 Extracting coefficients

Definition 7.7. Let

A(x) = Z a,x"

n>0

be an ordinary generating function. The formal derivative of A is defined term-by-term by

Al(x) = Z na,x" L.

n>1

Everything here is purely algebraic: we are differentiating a formal power series, so there are no
convergence assumptions.
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Basic rules. The formal derivative satisfies the usual identities:

(A+BY =A"+PB, (AB)Y = A’B+ AB’.

Multiplying by x shifts the exponents back up:
xA’(x) = Z na,x".
nx1

So for every n > 0,
[x"](xA’(x)) = nay.

In words: x% multiplies the nth coefficient by n.

Example 7.7 (Differentiating the geometric series).

ﬁ = an".

n>1

Start with the geometric series identity

Differentiate formally:

(1ix) = a —1x)2 and (Zx”) =Z>;nx"_l.

Hence

1 -
e =an 1

n>1

Multiplying by x gives the cleaner, more commonly used form
x n
— = ) nx".
(1-x)? ;

(And if you want the sum from n > 0, the n = 0 term is just 0 anyway.)

Example 7.8. For each integer m > 1,
1 _ n+m-1\ ,
1) ‘Z( m—1 )x '
n>0

One way to prove this is by induction on m: the case m = 1 is the geometric series, and
differentiating both sides of the mth case produces the (m + 1)st case after a short coefficient
simplification.
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7.8 Shifting indices

Given an OGF
AE) = ) anx",

n>0

multiplication by a power of x shifts the coefficients:

xFA(x) = Z a,x"tk = Z ap_pxt.

n>0 t>k
Thus
At—f,s t> k/
[x'](x*A(x)) =
0, t<k.
Example 7.9.
Z A xk
k o= 1- )k+1'
=k (1-x
Recall .
— =14x+x%+---,
1—-x
SO 1
k+1
m:(1+x+x2+---) .

When we expand this product, choosing x% from the ith factor produces the monomial

x4k Hence the coefficient of x" counts the number of (k + 1)-tuples (ay, ..., ax) € Zgl with

ag + -+ + ay = n, which is (”Zk) by stars and bars. Therefore

1 n+k\ ,
—_—= x".
(1- x)k+1 ;) ( k )
Multiplying by x* shifts every exponent up by k:

xk n+k\ ek
(1_x)k+1—Z( k )x |

n>0

Writing t = n + k (so t > k) gives ("}¥)

7.9 OGF Vandermonde convolution

Theorem 7.3 (Vandermonde convolution). For all integers m,n,r >0,

ZEI2-0)
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Generating functions as subset-counters. Let A and B be disjoint sets with |A| = m and |B| = n. For
a set A, the polynomial

(1+x)" = ]_[(1 +x)

acA

encodes choosing a subset of A: from each element we either choose it (contributing a factor x)
or do not choose it (contributing 1). Thus [x*](1 + x)" = (/) counts k-subsets of A.

Similarly, [x/](1 +x)" = (']1) counts j-subsets of B. Therefore the product (1+ x)" (1 + x)" encodes
choosing a subset of A U B by choosing independently a subset of A and a subset of B. To obtain
a subset of total size r, we must choose k elements from A and r — k elements from B, which can
be done in () (,”,) ways. Summing over all k gives

(1 + 0" A+ 2)") = ) (’Z)(r " k).
k

On the other hand, A U B has m + n elements, so

A+xmr =[] a+x)

ueAUB

and [x"](1 + x)™*" = (") counts r-subsets of A U B. Since (1 + x)"(1 + x)" = (1 + x)"*", the
coefficients of x" agree, yielding Vandermonde’s identity. O

7.10 Catalan recurrence

Let (Cy)n>0 be the Catalan numbers defined by Cp = 1 and the recurrence

n
Chv1 = Z CkChk-
k=0

Theorem 7.4. The OGF C(x) = 3,59 Cnx" satisfies
C(x) =1+ xC(x)>.

Equivalently, the recurrence above holds for all n > 0.

Proof. Using the product rule for OGFs, we have

C(x)2 = Z(i CkCn_k)x”.

n>0 k=0

Multiplying by x shifts indices:

xC(x)? = Z(Z ckcn_k)x"“ - Z(nil Cka_1_k)xm.

n>0 k=0 m>1 k=0

Now

C(x) = Co + Z Cx™ =1+ Z Crux™.

m>1 m>1
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Hence the functional equation C(x) = 1 + xC(x)? is equivalent (by coefficient comparison) to

3
-

Cm = Ckcm—l—k (m = 1)/
0

ke
I

which is the recurrence. m|

711 How to manipulate OGFs for coefficients?

Theorem 7.5. 1. For all n,

an—r/ n 2 7"/
b, = { = B(x) = x"A(x).

0, n<r,
2. Forall#n,
b, =nay = B(x) = x A’ (x).
3. Forall #n,
S A@)
— B — — 2 RS
C"_Z;Jal = C(x)—l_x—A(x)(1+x+x +-e0).
1=
4. (Even/odd parts.)
a,, neven, _
b, = ! — B(x) = M,
0, nodd, 2
a,, nodd, A(x) - A(-
bp=1{" — B(x) = AX) — 4%
0, neven, 2

b, = {“””’“ min L By =A™,

Example 7.10.
n
k(:) = n2"!

k=0

Let ;
Ax) = Z (Z)xk =(1+x)".
k=0

Then

B(x) =xA'(x) =x-n(l+x)"! = Z k(n)xk.

k=0
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Comparing coefficients of x* gives

Example 7.11.

Recall

Differentiate and multiply by x:

Differentiate once more and multiply by x:

Zkzxk:x( ad ), x4 =: A(x).

- a-27) ~a-»p

Let ax = k2, 50 A(x) = Y0 axx*. Define

C(x) = ffx; = > e,

n>0
then ; .
Cp = Zak = Z k? = [x"] C(x).
k=0 k=0
Since 5
Clx) = (ij—iy& = x(1—x) "+ 221 - 2),
we get
" _(n—-1+3 n-2+3) nmn+1)2n+1)

[x]C(x)—( 3 )+( 3 )— 3 .

Hence

znl 2 = n(n+1)2n +1)
k=0 6

Example 7.12. We will extract the even-index part of (1 + x)", i.e. find a closed form for

and as a consequence compute Y, (5:).
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Let ,
A)=(1+x)" = (Z)xk.

Then the even—index part is
> (o = (@40 + (1 -2
o 2i 2 ’

since the odd-index terms cancel when we add (1 + x)" and (1 — x)".

Setting x = 1 (and assuming n > 1) gives
ny _ 1 n _ 1\ — 1 n _ An-1
Z(Zi) =5+ +(1-1") = s " +0) =2""",
i>0
(For n = 0 the sum is ({) = 1.)

Combinatorial proof. There are 2" subsets of [n] := {1, ..., n}. Pair each subset S C [n] with
Sa{n} (toggle the element 1); in each pair exactly one subset has even cardinality and one has
odd cardinality. Thus exactly half of all subsets are even, so the number of even subsets is on-1

i>0

Example 7.13. Evaluate the sum

S, = an k(n — k)
k=0

in closed form.

Let
ak = bk = k

Then Z X

Ax) = Bx) = ) kak = ‘

k>0 (1 B x)z
SO 2
CO) = AXBX) = T = ,; ( 4-1 )x |

Thus

(n—2)+3): (n+1)

cn:ka—k):[x"JC(x):( 3 3
k=0
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Example 7.14. Prove the identity

k=0
Consider
5 .- - (Zk) (Zn - Zk)
P k n—k
Let
o 2k\ &
A(x).—Z(k)x .
k>0

Let the Catalan generating function be

C(X) = Z Ckxk — Z 1 (zkk)xk — M

k+1 2x
k>0 k>0
Then
xC(x) = 1-vl-4x V;_‘Lx A(x) = (xC(x)) = (1 — 4x)"V2,
Hence
AP =(1-4x)! = [F"]ARP = [x"] 1-14x:4"-
But
2k 27\ - 5 (2k\ (2n - 2k
- (g (EEF)- S
e\ k JZZ(; j ZZ;J ; kI\ n-k
SO

7.12 Snake Oil

Herbert Wilf’s snake oil method is a reliable trick for evaluating sums that involve binomial
coefficients. The slogan is:

If you can sum it, you can generate it.

Concretely, suppose you have a sequence defined by a sum

a, = Z T(n,k),

k>0

where T(n, k) is some expression in n and k (often binomial coefficients). The method is:

1. Form the ordinary generating function (OGF)

A(x) := Z apx".

n>0
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2. Substitute the definition of a4, and (formally) swap the order of summation:
A(x) = Z Z T(n, k)x" = Z Z T(n, k)x".
n>0 k>0 k>0 n>0
This is legal in formal power series.

3. For each fixed k, rewrite },50 T(n, k)x" into a known closed form. This usually requires a
reindexing so that the binomial coefficient becomes something like (" k ), whose OGF we
know.

4. After that, the k—sum typically becomes a geometric series. Finish the algebra, get a closed
form for A(x), and then identify its coefficients using a known generating function (or a
recurrence derived from the denominator).

Consider the following example to illustrate the Snake Oil method.

Example 7.15. Define

where we adopt the usual convention (;) = 0if r < k or r < 0. We will show

ay = Fn+l/

where Fp =0,F1 =1, and F,.0 = Fjyi1 + Fir.

The term (";*) is nonzero only when 1 — k > k, i.e. n > 2k. So for fixed 7, the sum is actually
finite: 0 < k < [n/2]. This is exactly the kind of shape snake oil likes, because the constraint
n > 2k suggests substituting n = m + 2k.

Step 1: build the OGF and swap sums. Let
A(x) = Zanx” = Z Z (n ; k)x”.
n>0 n20 k>0

Swap the order:

A =3 (” B k)x”.

k>0 n>0

Step 2: reindex to remove the constraint n > 2k. For a fixed k, the inner term is nonzero only
when n > 2k. Write
n=m+2k (m >0).

Thenn —k =m + k, so

(Tl - k) — (ml': k)’ X" = xm+2k — kaxm.

Thus

EEYY (mljk) Y (m,jk)xm.

k>0 m>0 k>0 m>0
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Step 3: use a known binomial OGF.
Z (m + k)xm _ 1
— y)k+1°
— k (1 —x)*+
can be proved by stars and bars. Plugging this in gives

1 X2\
A =Y = )k+1: —x;o(m)'

k>O

Step 4: finish with a geometric series. Since Y., 7" = ﬁ in formal power series,

1 11
C1-x 1_196_2_1—x—x2'

Step 5: recognize Fibonacci. The Fibonacci numbers satisfy
1
Z Fﬂ+1'x - 2 7
1-x—x
n>0
so comparing coefficients yields a,, = F;,41 for all n > 0. Equivalently,

Z (n ; k) CFL

k>0

Proposition 7.6 (A Delannoy identity). For all integers m,n >0,

) = Z G

k>0 k>0

Proof. Fix m and let
. m\(n+m—k . m\ (n) .,
w0 = 2R
k>0 k>0

We show that (L) and (R,) have the same generating function in 7.

Left-hand side. Let
L(x) ::ZLnx ZZ( )(n+m k)x”.

n>0 n>0 k>0

Swap sums and use the change of variable N = n + m — k:

SR RSP

k>0 n0 k=0

L= (’Z)x-k(z (Z)xN)

k>0 N>m

Thus
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Using
N x™
2. (m)xN T
Nzm
we get
x™ m\ _ x™ _ 1T+ x)™
L - k 1 1\m — .
(x) (1 - x)m+1 ;) (k)x (1 — x)m+l( tx ) (1 — x)m+l
Right-hand side. Similarly, let
- n _ MY (M) nk 0
R(x) := ZRnx = ZZ (k)(k)Z x".
n>0 n>0 k>0
Swap sums:
_ LA PNS n\ x
R(x) = Z (k)Z Z (k)x .
k>0 n>0
We use the standard generating function
k
n x
x'=——— (k>0),
to get
k k m m
m\.p X 1 m\( 2x 1 2x (1+x)
R = 2 = = 1 = .
() %(k) (1 — x)k+1 1—x;(k)(l—x) 1—x( +1—x) (1—x)m+

Since L(x) = R(x), the sequences (L) and (R ) are identical, and the stated identity follows. O

Proposition 7.7. Let c(n, k) denote the number of permutations of [n] with exactly k cycles
(Stirling numbers of the first kind). Then for integers n > m > 0,

i c(n, k)(i) = cn+1,m+1).

k=m

Proof. Recall the permutation cycle generating function identity

n
Z c(n, k)x* = ¥ = x(x+1)---(x +n-1),
k=0
the rising factorial.
Consider
o k
Z c(n, k)( )xm.
m
k=m

Using the binomial expansion of (1 + x)* we have

£k
(1+x)k = Z (m)xm

m=0
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SO
n n k n
k m _ k m _ k
Z c(n,k)(m)x = Zc(n,k)z (m)x = Zc(n,k)(1+x) .
k=m k=0 m=0 k=0
Now use the generating function with x replaced by (1 + x):

e )1+ x) =1+ 1) = 1+ 1)@+ 1) (n +x).
k=0

But .
(n+1) n+
X 1
1+x)™ = == E +1,m)x™.
(1+x) " . mzoc(n m)x

Taking the coefficient of x™ on both sides,

n

> e, k)(:q) - [x’“]((1 + x)<">) - [xm“](x(”“)) —cn+1,m+1),

k=m

as claimed. O
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8 Permutations statistics

8.1 Inversions

Definition 8.1. The symmetric group Sy, is the set of all permutations of {1, 2, ..., n}, with
composition as the group operation.

Definition 8.2 (One-line notation). A permutation 7 € S;, can be written as the word

(m(1), m(2),...,n(n)).

This is called one—line notation.

Definition 8.3 (Inversion). Let m € S,. An inversion of m is a pair (i, j)with1 <i<j<n
such that 7t(i) > n(j). Denote by inv(m) the number of inversions of 7.

Example 8.1. For m =(3,1,4,2) € S4 (in one-line notation), the inversions are
(1,2),(1,4),(3,4),

so inv(m) = 3.

Definition 8.4 (Inversion generating polynomial). For n > 0 define

An(x) — Z xinv(n)'

TESy,

Theorem 8.1. Foreveryn >1,

An(x) = ]_[(1 +x e+,
i=1

Proof. Goal. We prove a recurrence
Ap(x) = Ay () T+ x + -+ +x™7h),

and then iterate it.

Step 1: insert n into a permutation of [n — 1]. Fix 0 € S,,_1 and write it in one-line form
(0(1)/ 0(2)/ ceey CT(T[ - 1))

We create a permutation 7 € S, by inserting the symbol 7 into this word. There are exactly n
insertion slots: before the first entry, between consecutive entries, or after the last entry.

Step 2: count how many new inversions are created. Since 7 is the largest value, it can only
create inversions where it appears on the left. If we insert n so that there are r elements to its
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right, then n forms an inversion with each of those r elements (because every one of them is
< n). Therefore the number of new inversions created is exactly r.

As we vary the insertion slot from “far right” to “far left”, the number r runs through

0,1,2,...,n-1.

Step 3: translate this into generating functions. For the fixed o, the n resulting permutations
contribute
VO 4oy 4 x"T

to A, (x), because we add 0,1, ..., n — 1 inversions depending on the slot.

Summing over all 0 € S;,_1 gives

An(x) = Z VO] x4+ 2 = Ay ()1 + x4 -+ + X",

aean
Step 4: solve the recurrence. Since A;(x) = 1, iterating yields
n .
Ay = [@+x 442,
i=1

as claimed. O

Definition 8.5 (Two-line and word form). A permutation 7 € S, can be written in fwo-line
form
1 2 ... n

"Zr) =@ ... =)

or in word form as

(n(1), m(2),...,n(n)).

8.2 Permutation Cycles

Definition 8.6 (Cycle decomposition). A permutation 7t € S, decomposes uniquely into
disjoint cycles. For example,
n=(1473)(2)(58)(69)

means 1t(1) = 4, 1(4) =7, n(7) = 3, 1(3) = 1, and so on. Cycles are disjoint, so the order of
writing them does not affect the permutation.

Definition 8.7 (Canonical cycle representation). To make the cycle notation unique as a
written string, we impose conventions:

* within each cycle, write the smallest element first;
e order the cycles by increasing smallest element.

The resulting cycle product is the canonical cycle representation.
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Lemma 8.2 (Uniqueness of canonical cycle form). Every permutation 7t € S, has a unique
canonical cycle representation.

Proof. The disjoint cycle decomposition of 7t is unique up to: (i) rotating the entries within each
cycle, and (ii) permuting the order of the cycles. Putting the smallest element first in each cycle
fixes (i), and ordering cycles by their smallest elements fixes (ii). |

Definition 8.8 (Unsigned Stirling numbers of the first kind). Let c(n, k) be the number
of permutations in S, having exactly k cycles in their (equivalently, any) disjoint cycle
decomposition. These are the unsigned Stirling numbers of the first kind.

Definition 8.9 (Cycle index polynomial). For n > 1, define

n

Cu(x) = Z c(n, k) x*.

k=1

Thus [x¥]C,(x) = c(n, k) counts permutations of [1] with exactly k cycles.

Theorem 8.3 (Product formula for cycle counts). Foralln > 1,
Ch(x)=x(x+1D(x+2)---(x+n—-1).

Equivalently, the coefficient of x* in x(x + 1)+ (x + n — 1) is c(n, k).

Proof. We prove the polynomial identity by counting the same set of objects in two ways.

Objects being counted. Fix a positive integer x. A coloured permutation means: take 7 € S, and
assign to each cycle one of x colours (colours may repeat between cycles).

First count (group by number of cycles). If 7 has k cycles, then there are x* ways to colour
those cycles. Therefore
n
#{coloured permutations of [n]} = Z c(n, k) x* = C,(x).
k=1

Second count (insert m into a coloured permutation on [ — 1]). We build the coloured
permutation by adding elements 1,2, ..., n one at a time.

Start with m = 1. The only permutation is the 1—cycle (1), and we may choose its colour in x
ways. So there are x possibilities.

Now suppose we have already formed a coloured permutation on {1, ..., m — 1}. We insert m
as follows:

e Start a new cycle: create the 1—cycle (m) and choose its colour. This gives x possibilities.

* Insert into an existing cycle: in cycle notation, inserting m means: choose an existing element
t €{1,...,m — 1} and declare that m comes right after t in its cycle. There are exactly m — 1
choices of t. (No new colour choice is needed because we are not creating a new cycle.)
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Hence, at step m, there are exactly x + (m — 1) ways to place m.

Multiplying over m = 1,2,...,n gives

#{coloured permutations of [n]} = x(x + 1)(x +2)---(x + n = 1).
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8.3 Eulerian numbers

This section is about a different permutation statistic than inversions. Instead of counting pairs
out of order, we count the places where a permutation drops when written in one-line notation.

Definition 8.10 (Descents). For 1t € S, the descent set of 7 is
Des(n)={ie{l,...,n—1}:m(i) > n(i + 1)}.

The number of descents of 7 is |Des(m)|.

Example 8.2. If 1 =(3,1,4,2) € Sy, then
3>1=1¢€Dss(n), 1 <4 = 2¢Dss(n), 4 >2 = 3 € Des(n),
so Des(7t) = {1, 3} and Des(n) = 2.

Definition 8.11 (Eulerian numbers and polynomials). For 0 < k <n —11let A(n, k) be the
number of permutations 7 € S, with exactly k descents. The numbers A(#n, k) are the
Eulerian numbers. The associated Eulerian polynomial is Define the Eulerian polynomial

n-1
E,(x) = Z A(n, k) x*.
k=0

8.4 Worpitzky’s Identity

Theorem 8.4 (Worpitzky, 1883). For every integer n > 1 and every positive integer x,
X = ZA(n, k)(x * k),
n
k>0

where we understand A(n, k) =0 fork ¢ {0,...,n —1}.

The identity is best understood as a change of basis: the polynomials (¥), (*/'), (*+?),... form a

very natural “binomial basis” for degree-n polynomials, and Worpitzky says the coefficients of
x" in that basis are the Eulerian numbers.

Proof of Worpitzky’s Theorem. We give a combinatorial proof by double counting.

Fix n and x € N. On the left-hand side, x" counts the number of functions

fin]—[x]={1,2,...,x},
since each of the n elements may be sent independently to one of x values.
We will now classify such functions according to a permutation with k descents and an additional

choice counted by (**F).

Given a function f : [n] — [x], group together elements with the same image and, inside each
fibre, arrange the elements in increasing order. If we then list the fibres in increasing order of
the value in [x], and concatenate these increasing lists, we obtain a word

(1)) ... n(n)
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which is a permutation 7t € S;; written in word form. The places where a new fibre begins are
exactly the positions where the sequence of values f(n(7)) increases. Between two fibres the
function values strictly increase; inside a fibre the values are equal.

The permutation © decomposes uniquely into increasing runs (maximal consecutive segments on
which 7t is increasing). The number of such runs is k + 1 if 7z has k descents, and the boundaries
between runs occur precisely at the positions of descents.

Conversely, given a permutation with k descents, the positions between runs are fixed, but we
are free to assign the function values in [x] to each run, as long as they weakly increase from
run to run.

Fix a permutation nt € S,, with k descents, hence k + 1 increasing runs. To obtain f, we must
assign to each run a value in [x] so that the run values form a weakly increasing sequence of
length k + 1. Let these run values be 1 < v1 < vy < -+ < vk < x. We may think of these as
choosing k + 1 (not necessarily distinct) numbers between 1 and x in weakly increasing order.

By the standard “stars and bars” bijection, such weakly increasing sequences are in bijection
with subsets of size n in a set of size x + k; more concretely, they are counted by

()

(Equivalently, we can encode the k increases between successive run values by inserting k bars
among x positions.)

Thus, for a fixed 7@ with k descents, there are (x +k ) ways to choose f whose sorted word yields 7.

For each k, there are A(n, k) permutations of S, with exactly k descents. Each such permutation
corresponds to exactly (**¥) functions f : [n] — [x]. Therefore

n-1
= #{f :[n] = [x]} = ZA(mk)(x . k),
k=0

which proves the identity. m|

For completeness we record a generating—function reformulation of Worpitzky’s identity.

Fix n > 1 and set

Y T ) L M

k>0 m>0

Proposition 8.5. For everyn > 1,

A (x)
(1 _ x)n+1 Z m "

m=0

Equivalently,
Au(x) =(1-x)"1 Z m'x™,

m=0

and expanding (1 — x)"*! recovers Worpitzky’s identity.
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Proof. Start from Worpitzky’s identity in the form
. m+k
m —ZA(n,k)( " ) (m e N).
k>0
Multiply both sides by x and sum over m > 0. On the right-hand side, interchange the order

of summation and use
Z (m; k)xm = x7*C,(x)

m=0

Z mtx™ = Cn(x)ZA(n, k)xk = An(x)

_ +1°
m>0 k>0 (1 x)n

to obtain

Rearranging gives the desired formula. |
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9 Exponential generating functions

9.1 Why EGFs exist

Ordinary generating functions (OGFs) are the right language when we are counting unlabeled
objects by a size/weight: if an object has weight #, it contributes x".

Exponential generating functions (EGFs) are the right language when our objects are labeled: the
labels matter, and when we build larger objects by combining smaller ones, we must count the
ways to distribute labels among the parts. That label bookkeeping is exactly where the factorials
and binomial coefficients come from.

Definition 9.1 (Labeled object). Fixn > 0and let [n] ={1,2, ..., n} (with [0] = @).
A labeled object of size n is a pair (S, @) where:

* S is an underlying “shape” with exactly n distinguished atoms (the pieces that are being
labeled), and

e ®: At(S) — [n] is a bijection.

In other words, the labels 1,2, ..., n are assigned to the atoms of S in a one-to-one way:
every atom gets exactly one label, no label is repeated, and every label is used exactly once.

Definition 9.2. A labeled combinatorial class A is specified by giving, for each n > 0, a set
A[n] of labeled objects of size n (i.e. pairs (S, ) as above). We define the counting sequence

a, := |Aln]|.

Remark 9.1 (Graphs: labels are vertex names). For graphs, the atoms are the vertices. An
unlabeled graph-shape is S = (V, E) with |V| = n. A labeling is a bijection

O:V —[n],

i.e. each vertex gets a unique name 1,2, ..., n (no repeats, all used). Thus a labeled graph is the
pair (S, D).

Because @ is a bijection, there are exactly n! possible labelings of a fixed n-vertex shape S. This
“n distinct vertices = n! ways to name them” is the basic source of the factorials in EGFs.

Definition 9.3 (Exponential generating function). The exponential generating function (EGF)
of the labeled class A (equivalently, of the sequence (a,),>0) is

n

A(x) := Z an%.

n>0
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Definition 9.4 (Disjoint union of labeled classes). Let A and B be labeled combinatorial
classes, and assume they are disjoint as sets of objects (no object belongs to both classes).
Define their disjoint union (or sum) to be

C=AvYB,

the class consisting of objects that are either an A-object or a 8-object.

For each n > 0, the size-n objects are exactly the union of the size-n objects from each class:
Cln] = A[n] W B[n].
Hence, writing a,, := [A[n]|, b, := |B[n]|, and ¢, := |C[n]|, we have

cp=ay+by, (n >0).

Theorem 9.1 (Addition rule for EGFs). Let A and 8B be disjoint labeled combinatorial

classes, and let ., .,
x x
A=) anr,  BE)= ) bus

n>0 n>0

be their EGFs, where a,, := |A[n]| and b, := |B[n]|. If C = A W B, then the EGF of C is
C(x) = A(x) + B(x),

equivalently c, = a, + b, for all n > 0.

Proof. Since C = A W B and the union is disjoint, for each n > 0 we have C[n] = A[n] W B[n],
hence ¢,, = a,, + b,,. Therefore

C(x) = chjl—r; = Z(an + bn):l—T = Zan% + Zb”% = A(x) + B(x).

n>0 n>0 n>0 n>0

9.2 The labeled product construction

We now define the most important operation.
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Definition 9.5 (Labeled star product). Let A and B be labeled combinatorial classes. Their
(Iabeled) star product C = A * B is defined as follows.

For each n > 0, an object of C[n] is obtained by:
1. choosing an integer k with 0 < k <,
2. choosing a subset U C [n] with [U| = k (these labels go to the A-part),

3. choosing an A-object on the label set U (i.e. a copy of an object of A[k] whose atom-labels
are exactly the elements of U),

4. choosing a B-object on the complementary label set [n] \ U (i.e. a copy of an object of
B[n — k] whose atom-labels are exactly the elements of [n] \ U),

5. and recording the ordered pair (a, ).

Equivalently, C[n] consists of all ordered pairs («, f) where a uses some subset U C [n] of
labels, B uses the remaining labels, and together they use each label in [1] exactly once.

9.3 Product rule for EGFs

Theorem 9.2 (Product rule for EGFs). Let A, B be labeled classes with counts a,, = |A[n]|
and b, = |8[n]|, and EGFs

x" x"
Ax) = Z i, B()= Zb”ﬁ‘
n>0 n>0
Let C = A % B be their labeled product, with ¢, = |C[n]| and EGF
xf’l
C(x) = Z cnm.
n>0

Then
C(x) = A(x) B(x),

and equivalently, for each n > 0,

Combinatorial proof. Fix n and count C[n].

To build an ordered pair («, ) € C[n], we do:

1. Choose how many labels go to the A-part: say j labels.
2. Choose which j labels from [n] go to a: (']1) choices.

3. Build a on those chosen labels: a; choices.

4. Build g on the remaining n — j labels: b,,—; choices.

Thus the number of objects of C[n] with an A-part of size j is (’;)a jbn-j, and summing over j
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gives

= (n
Cp = aib,_;.
(]) e

j=0

Finally, the identity C(x) = A(x)B(x) is just the generating-function way to package that
coefficient formula. |

A tiny sanity-check example

Let A be the class “a labeled set of size n with no extra structure.” Then a,, = 1 for all n and
xn
_ r X
Ax) = Z =
n>0

Now A x A is: split the labels into two groups, and record the ordered pair of groups. For
fixed n, choosing the first group determines the second, so there are 2" such ordered splits, i.e.
cn = 2". The product rule predicts

_ 2 _ ,2x _ 7lfﬁ
Clx) = AR =™ = ) 2",

n>0

9.5 Basic examples

Example 9.1. For each n > 0, define G[n] to be the set of all simple graphs with vertex set
exactly [n] = {1,2,...,n}. Concretely, an element of G[n] is obtained by deciding, for every
pair {7, j} with 1 < i < j < n, whether we include the edge between vertex i and vertex j.

What is the labeled object? A labeled object in G[n] is just a graph where the vertices already
come with unique names 1,2, ..., n.

There are (3) possible edges, and each edge is either present or not. Hence
a, =G [n] = 20).

EGF. Therefore the exponential generating function for labeled graphs is

G =Y a i =3 20X

n>0 n>0

Example 9.2 (Words over an alphabet). Let an alphabet have m letters. The number of words of
length n over this alphabet is a, = m". Hence the EGF is

n
Ax) = Zm”% =",

n>0

For the English alphabet (1 = 26) we get A(x) = e2°*.
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Example 9.3 (Decomposing into vowels and consonants). Let V be the set of vowels (|V| = 5)
and C the set of consonants (|C| = 21). Let A(x) be the EGF for all words over V U C, Ay(x) the
EGF for words over V, and Ac(x) the EGF for words over C.

We have
Ay(x) = e, Ac(x) = e*'*

Every word over V' U C is uniquely determined by:

¢ the set of positions occupied by vowels and by consonants, and

¢ the vowel word and consonant word on those positions.

On the level of EGFs this is just the product construction, so
A(x) = Ay(x)Ac(x) = e 1% = %67,

in agreement with the direct count a,, = 26".

Example 9.4 (Permutations). Leta, = n!be the number of permutations of [n]. The EGF is

Example 9.5 (Placing flags on poles). Let r > 1 be fixed. Consider n distinct flags and r distinct

flagpoles. On each pole the flags are arranged in a linear order; poles may be empty. Let aizr) be
the number of such arrangements on 7 flags.

For a single pole the number of arrangements is n!, so the EGF is

x" 1
A(x) = Zn!m =

1-x"
n>0

Arrangements on r poles are an ordered r-tuple of independent arrangements on one pole, so

the EGF is 1

(1-x)

"X n+r—-1\ ,
Ar(x) = Z ()n! (1—x)7:Z>:4)( r—1 )x’

n+r—1
a,(qr):n!( r1 )

Ar(x) = Ax)" =

Hence

and therefore
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Fix an alphabet of size m. We consider two kinds of objects:

* multisets of letters, counted by ordinary GFs;

* words of length n, counted by EGFs.

For one letter, the ordinary and exponential GFs under various multiplicity conditions are:

condition on multiplicity OGF (one letter) EGF (one letter)
1 I
unrestricted 0,1, 2, ... 14+x+x24---= x—:ex
1-—x n!
n>0
<1 1+x 1+x
>1 Xx4alg= e —1
1_3(5[ X+ —X
eX+e
0,2,4,... 14+x2+x4+... =
even ( ) X2 4+ x T : > :
X e —e”
dd (1,3,5,... +x34+...=
odd( ) e 1- 2 2

For an alphabet of size m we take the m-th power (letters behave independently):

condition on multiplicities oGF (multisets) | EGF (words)
1 m
unrestricted ( T x) (e* )m = M
each letter used at most once (1T+x)™ (T+x)™
X m
each letter used at least once ( T x) (e* — 1)m
1 " e +e ¥ \"
each letter used an even number of times (1 2) ( > )
-x
X m e —ex\"
each letter used an odd number of times (1 2) >
-x

Example 9.6 (Ternary words with parity constraints). Let the alphabet be {0, 1,2}. We count
words in which the number of 0’s is even, the number of 1’s is odd, and the number of 2’s is
arbitrary.

The one-letter EGFs are:

eX+e™* eX —e™*
7 E = 7
5 1(x) >

Hence the EGF of the desired words is

Eo(x) =

Ex(x) = e*.
A(x) = Eo(x)E1(x)Ez(x) = i(ex +e ) (eX —e¥)er =~ (e —e7).

Thus the number a,, of such words of length 7 is

o = }L(sn (1),

9.6 Stirling numbers of the second kind

For integers n, k > 0, the Stirling number of the second kind S(n, k) is the
number of partitions of the set [n] = {1,..., n} into k nonempty unlabeled blocks.
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Theorem 9.3 (EGF for S(n, k)). For fixed k > 0,

n X _ 1)k
}:ﬂmm%T:E——Qﬂ

Proof. Instead of k unlabeled blocks, consider partitions of [#] into k numbered boxes 1,2, ..., k,
each required to be nonempty.

Giving a partition into k unlabeled blocks and then naming the blocks “box 1, box 2, ..., box
k” produces a partition into labeled blocks. Conversely, forgetting the box names turns a
labeled-block partition into an unlabeled-block partition.

For any fixed unlabeled partition into k blocks, there are exactly k! ways to assign the names
1,2,...,k toits k blocks. Therefore,
#{partitions of [n] into k numbered boxes} = k! S(n, k).

So it suffices to compute the EGF for numbered-box partitions; we can divide by k! at the end.
First consider numbered boxes: put the n elements of [#] into k numbered boxes, each nonempty.
A partition of [n] into kK numbered boxes is the same thing as a function

fin]— [k

such that every value 1,2, ..., k is used at least once.
Indeed:
* Given such a function f, define box i to be f~!(i). The blocks are nonempty exactly when

every i € [k]is hitby f.
* Given k labeled nonempty blocks By, ..., B, define f(x) = i whenever x € B;. This is a

well-defined function and it is automatically onto.
So “partition into k labeled nonempty blocks” <= “surjection [n] — [k]".
Thus

#{surjections [n] — [k]} = k! S(n, k).
Given a surjection f : [n] — [k], define
Bi:=fl(i) (1<i<k).

Then (By, ..., Bx) is a k-tuple of nonempty disjoint subsets whose union is [n]. Conversely, any
such k-tuple determines a unique surjection by sending every element of B; to i.
So a surjection is exactly: “split the labels [n] into k nonempty parts, and remember the order

1,2,...,k”

Let S>1 be the class “a nonempty labeled set.” For each r > 1 there is exactly one such object on
[7] (namely the set [r]), and for » = 0 there are none. Hence

.
521(36):2% =e*—1.

r>1

A surjection consists of an ordered k-tuple of nonempty labeled sets (one for By, one for By, .. .,
one for By) whose labels are disjoint and together form [n]. By the labeled product rule, the
EGF for an ordered k-tuple is the product of the EGFs, so the EGF for surjections is

(e® = 1)k,
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By definition of EGF, saying “the EGF for surjections is (e* — 1) means
n
(e¥ — 1)k = Z (#{surjections [n] — [k]})x—'.
n>0 "

Substitute #{surjections [n] — [k]} = k! S(n, k) to get

x?’l
) = Z KIS(n, k).
n=0

Divide by k! and we obtain
X" e _ 1)k
> S,k =

n>0

which is exactly the desired EGF identity.

9.7 Stirling numbers of the first kind

The (signed) Stirling numbers of the first kind s(#, k) are defined by
s(n, k) = (=1)"*c(n, k).

We set s(0,0) =1 and s(0, k) = s(n,0) = 0 for n, k > 0.

Definition 9.7. For integers n, k > 0, the signless Stirling number of the first kind c(n, k) is the
number of permutations of [n] having exactly k cycles in their cycle decomposition.

Theorem 9.4. Foralln e N,

S(n, k) x%,

><
II
-
||
o

x* s(n, k) x*.

T
o

()

©)

Combinatorial proof of (2). Fix n and let x be a positive integer. Interpret x" as the number of

functions f : [n] — [x], i.e. words of length n over the alphabet [x] = {1,...,x

Partition all such functions f according to the size k of the image f([rn]). For a fixed k, we must:

* choose a k—element subset S C [x] to be the image;
¢ choose a surjection [n] - S.

There are ( ) ways to choose S, and S(n, k) k! surjections onto a fixed k-set (as before). Hence

the number of functions with image size k is

(’Iz) k1S(n, k) = xES(n, k).

Summing over k =0, ..., n yields

" S(n, k) xX.

=
Il
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Since both sides are polynomials in x that agree for all sufficiently many integer values of x, the
identity holds as a polynomial identity. |

Algebraic proof of (3). The polynomials x%, ..., x form a basis of the vector space of polynomials
of degree at most 7, so the expansion (2) expresses the monomials x" in that basis with
coefficients S(n, k). The matrix S = (5(n, k)), k>0 is therefore invertible, and its inverse has
entries w(n, k), which gives the inverse expansion (3). (Equivalently, multiply the two identities
and compare the coefficient of x™ on both sides.) O

Corollary 9.5 (Matrix inverse relation). Forall n,m >0,

DS, k) sk, m) = Su,m,
k=0

where 6, is the Kronecker delta. Equivalently, the infinite lower-triangular matrices
(S(n, k))n k=0 and (s(n, k)), k>0 are mutual inverses.

Proof. Start from (2):

n
x" =) S(n,k)xk.
k=0

Now substitute (3) (with n replaced by k) into each xk:

x" = i S(n, k) (i s(k, m) xm) = i (i S(n, k)s(k, m)) x™.
k=0 m

=0 m=0 \k=m
On the other hand,

x" =) Opmx™.
m=0
Since the polynomials 1, x, x%, ... are linearly independent, the coefficient of x must agree for

each m, giving
n

Z S(n, k)s(k,m) = 0nm.

k=m
Finally, extending the sum to k = 0, ..., n does not change anything because s(k,m) = 0 for
k <m,so

n
D" 8(n, k) s(k, m) = 6.
k=0
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9.8 Binomial inversion

Theorem 9.6 (Binomial inversion). Let (a,),>0 and (b,),>0 be sequences, and define EGFs

A(x) = Z a"%' B(x) = an%.

n>0 n>0

Then the following are equivalent:

() unzz(’;)bn_k (n>0),

k=0
(if) by = Z(—l)k(’;) g (n20).

k=0

Proof. (i) = EGF identity. Assume (i). Then for each #,

n n
n n!
fin = ; (k) bk = ; IO

Multiply by x" /n! and sum over n > 0:
x" - x"
A(JC) = Z anm = Z Z bn_k m
n=0 n>0 k=0
Rewrite withm =n — k (som > 0and k > 0):

A@ =3 3 b, g—; _ (Z ’;c—:() (Z bm’%) — e*B(x).

k>0 m>0 k>0 m>0

So (i) implies

A(x) = e*B(x).
EGF identity = (ii). From A(x) = e*B(x) we get

B(x) = e *A(x).
Expand e = ¥ 5o(—1)kx*/k! and multiply:

k m
_ kX X
B(x) = (Z(—n F) (Z amﬁ) .
k>0 m=0

By the product rule for EGFs, the coefficient of x” /n! in this product is

n

by, = Z (Z)(_l)kan—k/

k=0

which is exactly (ii).

(ii) = (@). The same argument with x replaced by —x reverses the steps, or equivalently: (ii)
gives B(x) = e ¥ A(x), hence A(x) = e*B(x), and extracting coefficients yields (i). O
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Example 9.7 (Derangements). Let D, be the number of derangements of [n]. Using the
binomial inversion formula, obtain the EGF of D(x)

Every permutation of [n] can be obtained by first choosing the set of fixed points and then

deranging the rest, so
n
n
I =

By binomial inversion,

n n _ k
D, = Z(—l)k(Z)(n —k=ny %
=0 Py

The EGF of the derangement numbers is therefore

x" e
D(x) = Z Dy = .

1-—x
n>0
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9.9 Exponential formula and connected structures

We now look at labelled combinatorial structures that decompose into connected components. The
exponential formula describes their EGFs.

Let ¢, be the number of structures of size n (on label set [n]), and define the exponential
generating function
x?’l
C(x) = Z Cn 7

n>1

We call C connected if its elements are taken to be connected objects in some sense (graphs,
permutations as products of cycles, set partitions as blocks, etc.).

Definition 9.8. Given a connected class C, let G be the class of finite sets of components
from C, taken on disjoint label sets. Equivalently, G consists of all finite (possibly empty)
structures obtained by taking a finite collection of connected components from C and
relabelling them with the same label set.

Let g, be the number of G-structures on [#], and let
xn
G(x)= ) gy

n>0

be its EGF (note that the empty structure is allowed, so go = 1).

Theorem 9.7 (Exponential formula). With notation as above, the EGFs satisfy

G(x) = exp(C(x)).

Proof. Fix n and consider a G-structure on [n]. It consists of a set {Cy,...,C,} of connected
components, where the label sets form a partition of [n] into r (unordered) blocks of sizes
ni,...,n, summing to n, and C; is a C—structure on the ith block.

If we temporarily regard the components as labelled 1, . . ., r, then the EGF for an ordered r—tuple
of components is C(x)"/r!, by the product and set constructions for EGFs. Summing over all
r > 0, we obtain
_ C(.X)r _ Cx)
G(x) = Z — =¢ Y.
r>0

The factor 1/r! exactly compensates for the ordering of the components, so this counts unordered
sets of components. |

Example 9.8 (Bell numbers). The nth Bell number B, is the number of ways to partition the
labeled set [n] = {1, 2, ..., n} into nonempty blocks (i.e. a set partition of [1]).

Goal. Find the exponential generating function

n

B(x) := ZBH%.

n>0
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A block is a nonempty set of labels. If a structure consists of exactly one block on [#], there is
only one possibility: the block is [n] itself. So ¢, =1 for n > 1 (and cg = 0), hence

n
C(x)zZ%:ex—l.
n>1

A set partition is an unordered set of blocks. By the exponential formula for labeled classes, “a set
of C-objects” has EGF exp(C(x)). Therefore

x" x
Z Bnm =exp(e* - 1).

n>0

Example 9.9 (Permutations and cycles). A cycle on [n] means a single cyclic ordering of
the labels 1,2, ...,n. Let C be the labeled class of single cycles, and let G be the labeled
class of permutations (i.e. disjoint unions of cycles). Compute C(x) for cycles, then use the
exponential formula (permutations = union of cycle components) to recover the EGF for
permutations.

Fix 1 as the start; then the remaining n — 1 labels can be arranged in any order, so there are
(n —1)! cycles. Hence

C(x) = Z(n - 1)!:1—1: = Z J;—n = —log(1l — x).

n>1 n>1

A permutation is a set of disjoint cycles. By the exponential formula,

G(x) = exp(C(x)) = exp(=log(1l - x)) = %

Since there are n! permutations of [n], this matches

Example 9.10 (Involutions). An involution is a permutation 7 of [n] such that 7% = id,
equivalently: every cycle has length 1 or 2. Use the exponential formula (involutions = union
of 1-cycles and 2-cycle components) to find the EGF

xn
OEDN A=

n>0

where I, is the number of involutions on [7].

There is exactly 1 labeled 1-cycle on [1] (a fixed point), and exactly 1 labeled 2-cycle on [2] (a
transposition). Thus the “allowed cycle” class has EGF

2
x
C(x)—x+7.
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By the exponential formula (set of allowed cycles),

I(x) = exp(C(x)) = exp(x + %2) .

Example 9.11 (Connected graphs). Let G, be the number of labeled simple graphs on vertex
set [n], and let C;, be the number of connected labeled simple graphs on vertex set [n].

Compute
xl’l
C(.X') = E Cnm

nx1

using the exponential formula (a graph is a set of connected components).

A labeled graph on [#] is determined by choosing which of the (}) possible edges are present, so
G, =20).

Define EGFs ; ;
x X
G(x):ZGnm, C(x):ZCnm.
n>0 n>1

Every graph decomposes uniquely into a set of connected components. By the exponential
formula,

G(x) = exp(C(x)).

Hence
C(x) =1og G(x),

which determines the connected counts C,, by extracting coefficients of log(znzo 2(3) ’7‘1—:’)
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9.10 Lagrange Inversion Formula

We state the version we will use.

Theorem 9.8 (Lagrange inversion). Let ¢(z) be a formal power series with ¢(0) # 0.
Suppose y = y(x) is defined implicitly as the unique formal power series with y(0) = 0
satisfying

Then for all integers n > 1and m > 1,

"]y ()" = = 2" p(z)".

n

Proof. Substitute x = y/¢(y) and regard y as an indeterminate. Using formal differentiation
and the identity

Ly = my ()" (),

one can write
m

Y@ = 2 (o))

n

and then compare coefficients of x" on both sides (or use Cauchy’s integral formula on formal
Laurent series). Rearranging gives the stated coefficient identity. For the full proof, see the
textbook. O

9.11 Cayley’s Formula from Lagrange Inversion

Let R, be the number of rooted labelled trees on vertex set [#], and let 7, := R, for brevity. Let

n

R(x) := Z rn%

n>1

be the EGF for rooted trees.

Functional equation for rooted trees

Consider a rooted tree on a labelled vertex set. From the root, remove the edges from the root to
its neighbours; each neighbour then becomes the root of a rooted subtree. Thus a rooted tree is:

(a distinguished root vertex) + a set of rooted trees.

By the exponential formula this structure translates to the functional equation
R(x) = xexp(R(x)).

Equivalently,
R(x)

T exp(R()
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Counting rooted trees via Lagrange inversion

Here ¢(z) = e* and y(x) = R(x) satisfies x = y/¢(y), so by Lagrange inversion with m = 1 we

obtain . .
n— n—
wz 1 om n

Tnm-1) nl’

[x"]R(x) = —[z""]e

S| =

Therefore
rooted labelled trees on [n].

Unrooted trees

Every labelled tree on [n] has exactly n possible choices of root, so r, = n - t,, where t, is the
number of (unrooted) labelled trees on [n]. Hence

Theorem 9.9 (Cayley’s formula). The number of labelled trees on vertex set [#] is

th, =n




Integer Partitions 95

10 Integer Partitions

Definition 10.1. A partition of a nonnegative integer n is a sequence A = (A1, A2,...,Ay) of
positive integers with

AM2Ar 22421, AM+--+ Ay =mn.

The A; are the parts of the partition.

Let p(n) be the number of partitions of n. We encode these in an ordinary generating function.

Example 10.1 (OGF for integer partitions). Let p(n) be the number of (integer) partitions of
n. Find the ordinary generating function

P(x) := Z p(n)x".

n>0

Idea: “unlimited coin change”: A partition of # is the same thing as choosing how many 1’s
you use, how many 2’s you use, how many 3’s you use, and so on, with the total sum coming
out to n. So a partition is determined by a sequence of multiplicities

(my,my,ms,...) wherem;€{0,1,2,...}

and
1-mi+2-my+3-mg+---=n.

(Only finitely many m; are nonzero for a given partition.)
What does 1 + x/ + x2/ + --- mean? Fix a part size j. You are allowed to use j:
0 times, 1 time, 2 times, ...

If you use j exactly m times, it contributes mj to the total sum. In an OGF, contributing mj
corresponds to multiplying by x™/. So the “menu of choices” for part size j is exactly

1T+ x + 2% + 2%

+ cee,
where:
¢ the term 1 means “use j zero times”,
e the term x/ means “use j once”,
e the term x% means “use j twice”, etc.
This is a geometric series, so
Lo 4x¥ oz —
1—-x/

Why do we multiply over all j? Now we make all the choices at once: choose how many 1’s,
how many 2’s, how many 3’s, etc. These choices are independent (picking the number of 5’s
does not restrict how many 2’s you pick), so we multiply the choice series:

P(x):l_[(1+xj+x2j+---):1_[1_1xj.

j=1 j>1
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Why does the coefficient equal p(1)? When you expand the product, you pick one term from
each factor. Picking x™/ from the jth factor means “use j exactly m; times.” The product of all

chosen terms is

my-l mp2 ,m33 . 1my+2my+3mz+--

X X X =X

So you get a contribution to x” precisely when the chosen multiplicities satisfy
1mq +2my +3mz+---=mn,

which is exactly the condition for a partition of n. Moreover, each partition corresponds to
exactly one such choice of terms. Therefore the coefficient of x" in P(x) is p(n), i.e.

P(x) = Zp(n)x” = l_[ 1—1x]"

n>0 j=1

[Bounded largest part]

Example 10.2. Let pr(n) be the number of partitions of n in which every part is at most k.
Find the ordinary generating function

Pi(x) = ) piln)x".

n>0

In the full partition OGF

P(x):l_ll_lx],,

j>1
the factor ﬁ =1+x/ +x% +--- is the “menu” for how many j’s you use. If we require all parts
<k, thenpartsk +1,k+2,... are forbidden, meaning their multiplicities must be 0.

In OGF language, “must use 0 of size j” means the only allowed term is 1, so we simply omit
those factors. Equivalently, we keep only the factors for j =1,2,..., k:

k k

Zpsk(”)xn:1_[(1+xj+x2j+"') :nl_lxj'

n>0 j=1 j=1

Example 10.3 (Partitions into distinct parts). Let g(n) be the number of partitions of # into
distinct parts (no part size is repeated). Find the ordinary generating function

Q(x) = ) qn)x".

n>0

Use the same “one factor per part size” idea as for P(x), but now each part size j can be used at
most once. So for each j > 1 the only allowed choices are:

use j zero times = 1, use j once = x/.

Thus the jth factor becomes 1 + x/. Multiplying over all j gives
Q) =[ [a+x),
j>1

and by construction the coefficient of x" counts exactly the partitions of n into distinct parts.
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Partitions with restricted part sizes

More generally, fix a set S € N of allowed part sizes. Let ps(1n) be the number of partitions of n

whose parts all belong to S. The OGF is

> pstnnt = [ [

n=0 j€s

These generating functions are the starting point for many further identities and asymptotic

results about p(n) and its variants.

10.2 Hardy-Ramanujan asymptotics and a simple upper bound

The famous Hardy—Ramanujan formula (1918) gives the asymptotic

! exp|m n
4nV3 P 3]
A much simpler inequality (due to Lint, 1971) says that for all n,

p(n) < L e VE
6n

p(n) ~

Let

P(x):= Zp(n)x” = l_[ n —1xk

n=0 k>1
be the ordinary generating function of the partition numbers.

Taking logarithms,
lo P(x)——Zlo (1-xF) = x—kj— e k|x™
g = g = /17 = -
k>1 k>1 j>1 m>1 k|m
From the estimate
Z k <m(1+logm)
klm
one obtains, after some calculus, the bound
log P(x) < LSS P +0(1)
& “6(1-x) 2 81«

as x T 1; extracting coefficients yields (4).

10.3 Ferrers diagrams and conjugation

A partition of n is a sequence

M-~

A=A, A, ..., ) with Ay >2A>--->A;>1, Ai =n.

i=1

The Ferrers diagram of A is the left-justified array of dots with A; dots in row i.



Integer Partitions 98

Definition 10.3 (Conjugate partition). The conjugate A’ of a partition A is obtained by
reflecting its Ferrers diagram across the main diagonal. Equivalently, A;. is the number of
parts of A of size at least j.

A=(4,2,1) A =(3,2,1,1)

[

u=(5,33,1) W =(4,3,3,1,1)

[ |

Conjugation is an involution: (A")" = A.

Proposition 10.1. For each k > 1, the number of partitions of n whose largest part is k
equals the number of partitions of n with exactly k parts.

Proof. If A has largest part k, then in A’ the number of parts equals k (there are k columns in the
Ferrers diagram). Thus conjugation is a bijection between the two classes of partitions. |

10.4 Distinct parts versus odd parts (Frobenius 1882)

Theorem 10.2 (Euler—Frobenius).

]1a+fp{1Ti%j.

i>1 j>1

The left-hand side is the generating function for partitions into distinct parts; the right-hand side
is the generating function for partitions into odd parts. Hence:

Corollary 10.3. For every 1, the number of partitions of n into distinct parts equals the
number of partitions of n into odd parts.

Proof. Let O, be the set of partitions of n into odd parts and D,, the set of partitions of n into
distinct parts. We construct a bijection @ : 0, — D,,.

Every odd integer can be written uniquely as m = 2/(2u + 1) with t > 0 and u > 0. Take A € O,
and fix one odd number m = 2u + 1. Suppose m occurs in A with multiplicity g > 0. Write g in
binary:

g =020+ el +--- 4 e525, ¢ €40, 1}.

For this odd part m we replace the g copies of m by the (at most s + 1) parts

2im =2/2u +1) forall j with e =1
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Do this independently for each distinct odd number m that occurs in A.

The resulting multiset of parts has the following properties.

¢ All parts are distinct: for fixed m, the powers 2im are distinct because the &j ‘'sare O or 1, and
for different odd m we cannot have 2!1m; = 222m, since that would force m; and m, to have
the same odd part.

* The sum of all parts is preserved: we simply regrouped g copies of m into };; ¢; copies of 2im
whose total is still gm.

Thus ®(A) is a partition of n into distinct parts, so @ : O, — D, is well-defined.

Conversely, given p € D,,, write each part of u in the form 2! (2u + 1) with t > 0 and 2u + 1 odd.
For each fixed odd integer m = 2u + 1, consider all parts of u whose odd component is m: they
have the form 2/m with distinct exponents t, because the parts of u are distinct. Replace each
such part 2tm by 2t copies of m. Summing over all m we obtain a partition of n into odd parts;
this is the inverse map ¥ : O,, — O,,.

It is immediate from the definitions that W is inverse to ®. Hence @ is a bijection and
10ul = |Dal. O
10.5 Integer triangles and partitions

Let a, be the number of integer-sided triangles (a,b, c) with perimeter n, counted up to
permutation of the side lengths and satisfying the triangle inequalities.

Theorem 10.4. The ordinary generating function of (a,),>0 is

3

no_ X
2" = A

n>0

Proof. Since we count triangles up to permutation of the side lengths, every triangle can be
written uniquely with

azb>c>1, a<b+e, a+b+c=n.

Introduce new nonnegative integers
t:=c—-1>0, u:=b-c>0, w:=a-b>0.

Then
c=t+1, b=c+u=t+u+1, a=b+w=t+u+w+1.

The perimeter is therefore

n=a+b+c=0Ct+u+w+1)+t+u+1)+(t+1)=3t+2u+w +3.

The only remaining condition is the triangle inequality a < b + c:
a<b+c = t+ut+tw+l<(t+u+)+(t+1)=2t+u+2 & w<t+1.

Since w and t are integers, this is equivalent to 0 < w < t.
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Now write t as t = s +w with s > 0; this parametrises all pairs (¢, w) with 0 < w < t. Substituting
into the expression for 1, we obtain

n=3(+w)+2u+w+3=3s+2u+4w +3.

Thus each triangle corresponds uniquely to a triple (s, #, w) of nonnegative integers, and the
perimeter of the triangle is
n=3s+2u +4w + 3.

Hence the ordinary generating function is

3
g S s

s,u,w>0 5>0 u>0 w>0

This is the claimed rational function. m]

10.6 Euler’s identity for self-conjugate partitions

Theorem 10.5 (Euler). The generating function for self-conjugate partitions (those equal to
their conjugates) is

2
xk

[Ja+==1+ ) g —a =

i>1 k>1

Proof. We prove both equalities combinatorially.

Step 1: Decomposition by Durfee square. Let A be a self-conjugate partition and draw its
Ferrers diagram. Let k be the size of its Durfee square, i.e. the largest integer such that the
Young diagram contains a k X k square in the top left corner. Because A is self-conjugate, this
square is symmetric with respect to the main diagonal, and all cells outside this square come in
symmetric pairs: if a cell appears to the right of the square in row i, a matching cell appears
below the square in column i.

Foreachi =1,...,k, let r; be the number of cells to the right of the Durfee square in row i;
self-conjugacy implies that there are also r; cells below the square in column i. Since the row
lengths are weakly decreasing, we have

ri=rp>- 21 20.

Thus (rq, ..., r¢) is a partition (possibly with zero parts) with at most k parts.

The size of A is )
A=k 42> 7,
i=1

the k2 cells of the Durfee square plus r; cells in row i and r; cells in column i for each i.

Fix k. The contribution to the generating function from all self-conjugate partitions with Durfee
square of size k is therefore
xkz Z xZ(r1+~~-+rk)

r1=-2r =0

But the inner sum is exactly the generating function for partitions with at most k parts, with
weight x2™ for a total of m cells. It is well known (and easy to check by the usual Ferrers-diagram
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bijection) that the generating function for partitions with at most k parts is Hi-‘zl(l - x),
Replacing x by x? gives
k

Z 2 20rtre) = l_[ ] _1x21_.

122120 i=1

Thus the total generating function for self-conjugate partitions is

k2

k
K2 1 _ X
Zx | |1_x2i_1+k221(1_x2)(1_x4)...(1_x2k)’

k>0 i=1

proving the second equality.

Step 2: Bijection with partitions into distinct odd parts. Let S be the set of self-conjugate
partitions and D,q4 the set of partitions into distinct odd parts. We construct a bijection

0] 31)0dd — S.

Given u € D,qq, Write its parts in decreasing order and denote them by
p1 > g > - > Uy, each y; odd.

Write y; = 2a; + 1 with a; > 0. We now build a Ferrers diagram for a self-conjugate partition by
successively adding hooks centered on the main diagonal.

Start with a single cell on the diagonal. For the largest part u; = 2a; + 1, attach a hook of arm
length a1 to the right and a leg length a1 downward from this central cell; this gives a symmetric
“cross” of 2a1 + 1 cells. For up = 2a; + 1, place a similar hook strictly inside the previous one (one
step closer to the diagonal), and so on. Because the parts are strictly decreasing, these hooks
nest properly and produce a Ferrers diagram that is symmetric about the diagonal. The total
number of cells equals the sum of the parts 11}, so we have obtained a self-conjugate partition
®(u) of the same integer.

Conversely, given a self-conjugate partition A, examine its Ferrers diagram and look at the cells
lying on the main diagonal. Around each diagonal cell there is a maximal symmetric hook:
move right until the diagram ends, and move down until the diagram ends; by self-conjugacy
these two legs have the same length, say 4. This hook contains 2a + 1 cells. Remove all these
hooks, starting with the outermost and proceeding inward; what remains is again a (possibly
empty) self-conjugate Ferrers diagram, and the lengths of the hooks removed form a strictly
decreasing sequence of odd integers 2a; +1 > 2a5+1 > ---. This sequence is precisely a partition
into distinct odd parts. This defines the inverse map W : S — Doqq.

It is straightforward to check that W is the inverse of @, so @ is a bijection. Therefore the
generating function of self-conjugate partitions equals the generating function of partitions into
distinct odd parts, which is

l_l(l + x50,

i>1
since each odd part 2i — 1 can be chosen at most once.

Combining Step 1 and Step 2 gives both equalities in the statement of the theorem. m|
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11 Inclusion-Exclusion Principle (PIE)

11.1 Basic statement

Let U be a finite universal set and let A;,..., A, C U.

Theorem 11.1 (Inclusion—-Exclusion Principle).
[Aru-UA= D (DAl
0+TC[n] ieT

Equivalently,

U\ Ao uA= 3 DT Al
|

T<[n i€T

Proof. Fix x € U and let t be the number of sets A; that contain x. On the right-hand side, x is
counted in exactly (;) intersections of size j, with sign (—1)/. Thus its total contribution is

f (t) ¢ 1, t=0,
Seof)-o-v-{ 0

Hence x is counted once iff it lies in none of the A;, and not counted otherwise. Summing over
all x € U gives the formula for |U \ |J; Ai|; the formula for || J; A;| follows. O

11.2 Derangements

Example 11.1 (Derangements). Let U = S, be the set of all permutations of [n]. For eachi € [n],
let A; be the set of permutations with i as a fixed point. Then |A;| = (n — 1)! and

() Ail = (n =T

i€T

The number D, of derangements (permutations with no fixed points) is therefore
n
Dy = (1) (Z)(n — K.
k=0

11.3 Euler’s totient function

Definition 11.1. For m > 1, Euler’s totient function
p(m)={1<i<m:ged(i,m)=1}

counts integers mod m that are relatively prime to m.

Let p1, ..., ps be the distinct prime divisors of m.

Theorem 11.2.

- 1 1
(P(m) - !:1[ (1 - E) - Z (_1)|T|HieTpl‘.

TC[s]
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Proof. Let U = [m]. Fori =1,...,s, let A; be the set of integers in [m] divisible by p;. Then
@(m) = U\ U; Ai|. For anonempty T C [s],

[

i€T

- i) =
[Tier pi HieTPi,

since [];cr pi divides m. PIE gives the stated formula. O

11.4 A PIE formula for Stirling numbers

Let S(n, k) be the Stirling number of the second kind, the number of set partitions of [n] into k
nonempty blocks.

Theorem 11.3. For integers n, k > 0,

1<k
S(n, k) = Z(—l)f( .)<k -
g ]
Equivalently,
Sk
k!'S(n, k) = -1 [(k=7)".
(n, k)= ( )(})( )

j=0

Proof. Fix n and k. Let U be the set of all functions f : [n] — [k], so |U| = k. For i € [k], let A;
be the set of functions that miss the value i (no element is mapped to i). Then functions that hit
all k values are precisely U \ J; A;.

Moreover,

N4

ieT

k
unUJad= e (e
i j=0

Each surjection [n] = [k] corresponds to a partition of [n] into k labelled blocks; forgetting
labels yields a factor of k!. Hence

= (k= T]".

By PIE,

k
kIS(n, k) = Z(—l)f(l;)(k — )
=0

11.5 Multisets via inclusion—-exclusion

Let a,,,,» be the number of multisets of size m drawn from an n-element type set, where each
type may appear at most r times. Equivalently, a,, , , counts integer solutions of

X1+ +x, =m, 0<x;<r.
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Proposition 11.4.
S n\(m-k(r+1)+n-1
= E B
Am,n,r k:o( ) (k)( -1 ),

where the binomial coefficient is interpreted as 0 if the top is < n — 1.

Proof. Let U be the set of all solutions in nonnegative integers of x1 + --- + x,, = m; then

m+n-—1
Ul =
) ( o )

by the stars-and-bars argument. For i € [n], let A; be the set of solutions with x; > r + 1. Then
A, = U\ U; Ail.

ForT C [n],|T| = k, wehave x; > r + 1 forall i € T. Writing x} = x; — (r +1) fori € T and x; = X;

otherwise,
n

Zx;:m—k(wrl),

=1
and the number of such solutions is

m—k(r+1)+n-1
AT

provided m — k(r + 1) > 0, and 0 otherwise. PIE now yields the claimed formula. |

11.6 PIE as an evaluation tool for sums

Many alternating binomial sums can be interpreted using PIE. For instance:

Example 11.2.

n

Z(—1)k(2)2n—k - 1.

k=0

Interpret 2% as the number of subsets of [1] that avoid a fixed k-element set and apply PIE
with U the power set of [1] and A; the family of subsets containing element i.

Example 11.3. For integers m,n >0,

S z)-(0)

Let U be the family of r-subsets of [m + n] and let A; be the subsets containing element i for
i € [n]. Then the right-hand side counts r-subsets disjoint from [#], while the left-hand side is
the PIE expansion for [U \ |; Ail.

Example 11.4 (Derangements again).

o (—1)F

D, =n! x

k=0

Apply PIE with U = S,, and A; the permutations fixing i, as in the previous section.
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Generalization of derangements

Definition 11.2 (Permutation matrix). Let G be a permutationof {1, ..., n}. The permutation
matrix of G is the n X n matrix A = (a;;) with entries in {0, 1} defined by

1, ifj = G(i),
a,-]- =
0, otherwise.

Equivalently, every row and every column of A contains exactly one entry equal to 1.

This point of view lets us extend the notion of derangements: instead of forbidding the diagonal
entries (i, i), one may forbid an arbitrary set of matrix positions for the 1’s.

Definition 11.3 (Derangement as a forbidden—positions problem). A classical derangement
of {1,...,n}is a permutation G such that G(i) # i for all i, i.e. in the permutation matrix of
G no 1 is allowed on the diagonal squares (i, 7).

Definition 11.4 (Forbidden squares and sets A;). Let s be a square (matrix position) s = (i, j)
in an n X n matrix.

e Let A be the set of permutations G of {1, ..., n} such that the permutation matrix of G
has a 1 in position s; equivalently, G(i) = j. Then

|As| = (n = L.

* For a set I of squares, write
(4
sel

for the set of permutations whose permutation matrix has 1’s in all positions in I. We call
the squares in I independent if no two of them lie in the same row or in the same column.
In that case, the conditions G(i) = j for (i, j) € I fix |I| values of the permutation, and

N~

sel

= (n — I

11.8 Rook polynomials

Definition 11.5 (Boards and rook numbers). Let B be a board (a subset of squares of an
n x n grid). A subset B’ C B is called independent if no two squares of B’ lie in the same row
or the same column.

For k > 0 define r¢(B) to be the number of independent k-subsets of B. By convention
ro(B) = 1 (the empty set).
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Definition 11.6 (Rook polynomial). The rook polynomial of a board B is

Rp(x) := Z r¢(B) x*.

k>0

Example 11.5. For the 4 X 4 board B indicated in the figure in the notes (with certain forbidden
squares), one finds

7"O(B) = 1/ Tl(B) = 5/ VZ(B) = 7/ Tg(B) = 2/ 1’4(B) = 0/

SO
Rp(x) =1+ 5x + 7x? + 2x°.

Proposition 11.5 (Product rule). Suppose B = By U B, where B; and B, lie in disjoint sets
of rows and columns (no row or column of B contains squares from both By and B,). Then

Rp(x) = Rp, (x) Rp, (x).

Proof. Anindependent k-subset of B is obtained by choosing, for some 7, an independent i-subset
of B1 and an independent (k — i)-subset of B,. Thus

k
rk(B) = Z ri(B1) rk-i(B2),

i=0

and the stated identity is exactly the Cauchy product for the series Rp, and Rp,. |

Proposition 11.6 (Recursion). Let s be a square of B. Let B \ s be the board obtained from
B by deleting s, and let B — s be the board obtained by deleting s together with its entire
row and column. Then

Rp(x) = RB\s(x) +x Rp—s(x).

Proof. Independent rook sets on B either avoid s or contain s. Those avoiding s are precisely the
independent sets of B \ s. Those containing s correspond to independent sets on B — s (place
one rook at s, delete its row and column, and choose the remaining rooks). In the generating
polynomial this gives

Rp(x) = ) r(B)x* = 3 n(B\s)x + ) ria(B = 9)x¥ = Rpys(x) + xRp-s(x).

k>0 k>0 k>1

11.9 Polynomial Inclusion-Exclusion

Let U be a finite setand A4, ..., A, C U.
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Definition 11.7. For p > 0let
ap := |{u € U : u lies in exactly p of the Ai}|.

For k > 0 let

(with the convention that for k = 0 the sum has one term |U]).

Theorem 11.7 (Polynomial form of PI.E.). For an indeterminate x we have the identity of

polynomials
Z apxf = Z bi(x — ¥,
p=0 k>0

Proof. Fix u € U and suppose u lies in exactly p of the sets A;. Then u contributes x” to the
left-hand side. On the right-hand side, u belongs to ();; A; precisely when I is a subset of the p
indices of sets containing u. For each k < p there are (¢) such subsets I, so the contribution of u

k
to the right-hand side is
p

> (Z)(x SR = (14 (x =) =

k=0
by the binomial theorem. Since every u € U contributes the same amount to both sides, the
polynomials are equal. i

11.10 Fixed points of a random permutation
Let U = S, be the set of all permutations of [n], and for each i € [n] let A; be the set of

permutations that fix i.

For o € S, let p(0) be the number of fixed points of o; then a, is the number of permutations
with exactly p fixed points. Define

N(x) := Z xP) = Z apx”.

0€S, p=0

The polynomial P.LE. gives an alternative expression for N (x).
First compute by: for a fixed k and a subset I C [n] with |I| = k,
Al ==k,
i€l

since the k points in I must be fixed and the remaining n — k points can be permuted arbitrarily.
There are (}) choices of I, so

by = (Z)(n — L.

Therefore ;

N =y (Z)(n — k)l(x = DE.

k=0
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The expected number of fixed points of a random permutation is
_ N
- ol

E[p(o)]

Differentiate: ;

’ _ n _ _1)\k-1
N (x)—;(k)(n k) k(x — 1)FL,
Evaluating at x = 1 only the k = 1 term survives, giving

N'(1) = (111)(71 ~ 1) = nl.

Hence N'(1
Elp(o)] = 1

So a random permutation of [#] has on average one fixed point.

=1.

Many permutation-avoidance problems can be converted to rook polynomials by interpreting
forbidden positions of the permutation matrix as the squares of a board B: a rook in (7, j) means
that o(i) = j.

Independent sets of k squares in B correspond to permutations that violate exactly k of the
forbidden positions. Combining rook polynomials with PLE. yields formulas for the number of
permutations avoiding all forbidden positions (e.g. derangements as the special case where the
forbidden squares are the diagonal).

12 Symmetric counting

12.1 Signed permutations, parity, and determinants

Definition 12.1 (Involution). A permutation 7t € S, is an involution if 7> = id. Equivalently,
every cycle of 7t has length 1 or 2.

Definition 12.2 (Parity and sign of a permutation). A permutation ¢ € Sy, is even if it can be
written as a product of an even number of transpositions; otherwise it is odd. The sign of ¢ is

+1, o even,
sign(o) =
-1, o odd.

Equivalent characterisations of parity include:

¢ parity of the number of inversions of o;

* parity of the number of cycles of even length, etc.

Definition 12.3 (Determinant). For an n X n matrix A = (a; ;) over a commutative ring, the

determinant is .
detA = Z sign(o) I_I i 6(i)-
i=1

0€S,
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Example 12.1. If A is the n X n all-1 matrix, then det A = 0 for n > 2. Indeed,

detA = Z sign(o) = #{even permutations} — #{odd permutations},

0€S,

and these two numbers are equal, so the sum vanishes.

Consider lattice paths in Z? that use only unit steps (1,0) (right) and (0,1) (up). For points
P = (p1,p2) and Q = (g1, q2) with g1 > p1, g2 > p2, the number of such paths from P to Q is

((ql —p1) +(q2 - p2)
q1 — p1 )

Given sources x1, ..., X;; and sinks y1, ..., yu, let a; j be the number of lattice paths from x; to
y;j and form the m x m matrix A = (a; ).

In the 2 X 2 example from the notes (two sources and two sinks), there are 12 ordered pairs of
paths in total, but only 8 ordered pairs of vertex-disjoint paths. The path—-count matrix is

006 )

detA=2-20-4-4=40-16 = 24.

and

After dividing by appropriate symmetries (depending on how we count ordered vs. unordered
systems), this matches the number of vertex-disjoint path systems. This is a special case of the
Lindstrom-Gessel-Viennot lemma.

Theorem 12.1 (LGV lemma). For suitable acyclic directed graphs with sources x1, ..., X,
and sinks y1, . .., Ym, the determinant of the matrix A = (a; ;) of single-path counts equals a
signed sum over all m-tuples of vertex-disjoint paths from the x; to the y;.

Consider a regular hexagon of side length 7, subdivided into equilateral triangles of unit side
length. A rhombus tiling of this hexagon is a tiling by rhombi consisting of two unit triangles.

Theorem 12.2 (MacMahon, 1916). The number of rhombic tilings of a regular hexagon
of side length 7 is equal to the determinant of the n X n matrix whose (i, j)—entry counts
certain lattice walks (equivalently, non-intersecting paths) associated with the tiling, as
illustrated in the notes. In particular this leads to MacMahon’s famous product formula for
plane partitions fitting in an n X n X n box.
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12.2 Burnside’s Lemma

Let G be a finite group acting on a finite set C. For = € G let

gb(n)::|{c€C:n~c=c}|

be the number of elements of C fixed by 7.

& 2 H.

neG

Lemma 12.3 (Burnside). The number of orbits of G on C equals

Proof. Let

S:={(m,c)eGXC:m-

We count |S| in two ways.

¢ =c}.

Fix mt. For a given 1 € G, there are exactly ¢(nr) elements ¢ € C with - ¢ = c. Hence

SI= > ¥(m).

neG

Fix c. Foragivenc € C, let G, := {m € G : m - ¢ = c} be the stabilizer of c. Then |G| is the

number of T € G with (7, ¢) € S, so

SI= > IGd.

ceC
The orbit-stabilizer theorem says that

(€]
| Orb(c)]’

|Gc| =

where Orb(c) = {m - ¢ : m € G} is the orbit of c.
Let O be the set of orbits. Then

Y-, Yied- ¥, 3

ceC 0€e0 ce0 0€e0 c€0

Equating the two expressions for |S| gives

neG

as claimed.

12.3 Colorings and cycle structure

Let X be a finite set and fix an integer k > 1. A k-coloring of X is a function f : X — {1, ..

= > l6l=[al-[ol.
0Oe0

Y m=I61-10] = 10l= 1 > v,

neG

Suppose G acts on X; the induced action on colorings is given by

(- f)(x) = f(r tx) (meG, xeX).

k).



Symmetric counting 111

Lemma 12.4. Let © be a permutation of X with ¢ cycles in its cycle decomposition. Then
the number of k-colorings f : X — [k] fixed by 7 is

Y(r) = k'

Proof. Write the cycles of 7 as
Ci,...,Ce.

If f is fixed by 7 then f must be constant on each cycle: for x € C; we have " x = x for some
m >1,and

fl) = f(n"x) = f(n"x) =+ = f(ma),
so all vertices in C; have the same color. Conversely any coloring that is constant on each cycle
is fixed by 7.

Thus to specify a fixed coloring we may choose an arbitrary color in [k] for each cycle C;,
independently. There are k choices per cycle, so in total k! fixed colorings. O

Example 12.2 (Vertices of a square). Let X be the set of four vertices of a square, and let G = Dy
be the dihedral group of order 8 (all rotations and reflections of the square). We want the
number of different k-colorings of the vertices up to symmetry.

We list the cycle structure of each type of symmetry on the vertex set:

type # elements cycle structure on vertices

identity 1 4 cycles of length 1

rot. by £90° 2 1 cycle of length 4

rot. by 180° 1 2 cycles of length 2

reflection in a diagonal 2 1 fixed vertex, 1 2-cycle, 1 fixed vertex (i.e. 2 1-cycles ar
reflection in a vertical /horizontal axis 2 2 fixed vertices and 1 2-cycle

Using the lemma, we get
P(id) = k*,  ¥(90°) = ¥(270°) = k, ¥ (180°) = k%, (each reflection) = k> or k2,

and summing over types gives

1
#orbits of colorings = ¢ (k* + 2k + 3k? + 2k%).

12.4 Cycle index

Let G be a permutation group acting on a finite set X of size n. For € G, let cj(n) be the
number of cycles of length j in the cycle decomposition of 7.

Definition 12.4 (Cycle index). The cycle index of G is the polynomial

1
Zo(x1,...,x,) = Ci Z xil(n)x?(n) oy

neG
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Example 12.3 (Vertices of a square). For the action of D4 on the 4 vertices, the cycle structures
above yield

(vertices) _ 1 4 2 2
ZD4 (x1,x2,x4) = 3 X7 +2x4 + x5 +3x7x2).

Example 12.4 (Edges of a square). Let G = Dy act on the 4 edges of a square. One checks that
the cycle index for this action is

1oa, 2 2
=(x] + x5 + 224 + 4x7x2).

d
Z& 89 (x1, x2, X4) = 3

12.5 Pdlya-Redfield counting

Let G act on X and consider colorings f : X — {1,..., k}. Give color i a weight y;, and define
the weight of a coloring by
w(f) = l_[ Y-

xeX
For each orbit of colorings, the weight of all colorings in that orbit is the same; let Pg(y1, ..., yk)
be the sum of these orbit weights.

Theorem 12.5 (P6lya—Redfield). With notation as above,

Pc(y1, -, yk) = Za(ya + - + vk, y%+---+y,%,...,y’f+---+yl’2).

1
—_

In particular, the number of orbits of k-colorings is obtained by substituting y1 = --- = yi

#{inequivalent k-colorings} = Zg(k, k, ..., k).

Proof. For a fixed € G with cycle structure c1(m), . . ., c,(7), the colorings fixed by 7 are exactly
those that are constant on each cycle. For a cycle of length j, the possible weights it contributes
are yi, cey y]k, so the generating polynomial of colorings on that cycle is y{ + -t yi. Since
different cycles are independent, the total weight of all colorings fixed by 7 is

n

n(y{ +- +yk)C](n)

j=1
By Burnside’s lemma, the sum of weights per orbit equals
C](n)
Pe(y1, ..., yx) = |G|Zl—[ - +y))
neG j=1
This is exactly the cycle index Z¢ with the substitution x; « y{ +-o 4 yi, proving the formula. O

Example 12.5 (Edges of a square in two colors). Consider 2-colorings of the 4 edges of a square
with colors {red, blue}, under the action of Djy.

Take y; = r (for red) and y, = b (for blue). Substituting into the cycle index above gives
Po,(r,0) = 5 (D) + (2 + 17 420 + 1) + 4G + DY (2 + 7).
Setting r = b = 1 we get the number of inequivalent 2-colorings:
Pp,(1,1) = %(24+22+2-22+4-23) =6

So there are 6 distinct edge colorings up to symmetry.
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12.6 Cube rotation group

Let G be the rotation group of a cube in R3. It has |G| = 24 elements.

Action on vertices, faces, and edges

The group G acts transitively on the 8 vertices, the 6 faces, and the 12 edges. One can classify
rotations by their axes and compute cycle structures in each action. The resulting cycle indices
are:
e Vertices (|X]| = 8):
1
Zv(G) = (xl + 9x1x2 + 8x3 + 6x4)

e Faces (|X]| = 6):
1
Zr(G) = (xl + 6x1x4 + 3x + 8x§ + 6x§).

e Edges (|X]| = 12):
1
Zr(G) = ﬂ(xiz + 3x + 6x1x2 + 8x3 + 6x2)
where the individual terms arise from rotations about face-centres, edge-centres and body
diagonals.
Example 12.6. Using Zy(G) we can count colorings of cube vertices with k colors up to rotation:

#{inequivalent k-colorings of vertices} = Zv(G)(k, k, k, k, k, k, k, k) = 21—4 (k% + 9Kk + 8k? + 6k2).

Similar formulas hold for faces and edges.

12.8 Graphs up to isomorphism

Fixn > 1and let X = ([g]) be the set of unordered pairs of vertices, i.e. the edge set of the
complete graph K,,. Any simple graph on vertex set [#] is a subset E C X, so we can think of
graphs as {0, 1}-colorings of X, where color 1 means “edge present” and color 0 means “edge
absent”.

The symmetric group S, acts on X and hence on graphs by relabelling vertices. Orbits under
this action are exactly isomorphism classes of graphs on n vertices.

Let Z @ denote the cycle index of the S,,-action on the set of 2-subsets X. Pélya—Redfield with
colors {0 1} then gives

#{non-isomorphic graphs on n vertices} = Z(Szn)(Z, 2,...,2).

Example 12.7 (n = 4). For n = 4, one computes

1
Z(si)(xl' X2, X3, X4, Xg) = (xl +3x7x5 +8x3 + 6x7x4 + 6x2)

24
Setting x; = 2 for all j gives
: : : L 6 4 2 3 3
#{non-isomorphic graphs on 4 vertices} = ﬂ(z +3-2*+8:2°46-2°+6-2°) = 11.

This matches the well-known fact that there are 11 unlabeled graphs on 4 vertices.
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13 Basics of Graph Theory

Definition 13.1. A graph is a pair G = (V, E) where V = V(G) is a finite set of vertices and
E = E(G) is a set of 2—element subsets of V, called edges. If uv € E(G) we say that # and v
are adjacent.

For a vertex v € V(G) the degree of v is

dc(v) :={u € V(G) : uv € E(G) }|.

Definition 13.2. A graph G is
o k-reqular if dg(v) = k for every v € V(G).
e of order n if |V(G)| = n, and of size m if |E(G)| = m.

Clearly |E(G)| < (|V(2G)|)'

Remark 13.1 (Conventions). Unless I explicitly say otherwise, graphs are finite, undirected, and
simple (no loops, no parallel edges). When we later allow multigraphs, I will say so out loud.

Definition 13.3 (Path and cycle). Letn > 1.

* A path of length n — 1 is a graph P,, with distinct vertices vy, ..., v, and edges v;v;4; for
i=1,...,n—-1.

* A cycle of length n is a graph C,, with distinct vertices vy, ..., v, and edges v;v;41 for
i=1,...,n -1, together with v,v;.

A “path of length k” means k edges (not k vertices). So P, has n vertices but length n — 1.

13.1 Subgraphs and basic operations

Definition 13.4 (Subgraph). A graph H is a subgraph of G (written H C G) if V(H) C V(G)
and E(H) € E(G). If V(H) = V(G) we call H a spanning subgraph of G.

Definition 13.5 (Induced subgraph). Given G and X C V(G), the induced subgraph G[X] is
the graph with vertex set X and edge set

E(G[X]) ={uv € E(G):u,veX}.

A subgraph H of G is induced if H = G[V (H)].
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Remark 13.2. A subgraph allows deleting some vertices and/or edges, however you like. An
induced subgraph G[X] is: you choose the vertex set X, and then you are forced to keep every
edge of G whose endpoints both lie in X.

Definition 13.6 (Spanning subgraph). A subgraph H of G is spanning if it keeps all the
vertices:
V(H) =V(G) and E(H) C E(G).

In other words: you're allowed to delete edges, but you're not allowed to delete vertices.

Definition 13.7 (Vertex and edge deletion). For e € E(G) let G — e be the graph obtained by
deleting e but keeping all vertices. For v € V(G) let G — v be the graph obtained by deleting
v and all edges incident with v.

Definition 13.8 (Neighborhood, isolated vertex). For v € V(G) the neighborhood of v is
Ng(©) :={u e V(G):uv € E(G) }.

If Ng(v) = @ (equivalently, dg(v) = 0) we call v an isolated vertex.

13.2 Complements, cliques and independent sets

Definition 13.9 (Complement). The complement G of a graph G is the graph with
V(G) = V(G), E(G)={uv:u#v, uv ¢ E(G)}.

Equivalently,
@)= () - o

Definition 13.10 (Complete and empty graphs, cliques). The complete graph K,, is the graph
on n vertices with all possible edges.

A clique in G is a set X C V(G) such that G[X] = Kx|.

The empty graph on n vertices is the graph with vertex set of size n and no edges.

Definition 13.11 (Independent set). A set C V(G) is an independent set if G[I] has no edges
(equivalently, no two vertices of I are adjacent).
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Lemma 13.1 (Handshake Lemma). For any finite (undirected) graph G = (V,E),

) deg(v) = 2[E|.

veV

In particular, the number of vertices of odd degree is even.

Proof. Count the set of incidences
I:={(v,e) € VXE:eisincident to v}.
Fixing v, there are exactly deg(v) edges incident to v, so

| = Z deg(v).

veV
Fixing e = {u, v}, it is incident to exactly two vertices, so it contributes exactly 2 incidences;
hence |I| = 2|E|. Therefore ),y deg(v) = 2|E|.
For the parity claim, reduce mod 2:
Z deg(v) =0 (mod 2).
veV

Even-degree vertices contribute 0 mod 2 and odd-degree vertices contribute 1, so the number of
odd-degree vertices is even. |

13.3 Bipartite and multipartite graphs

Definition 13.12 (Bipartite graphs). A graph G is bipartite if its vertex set can be written as
a disjoint union V(G) = A U B such that both A and B are independent sets. In this case we
also say that G is (A, B)-bipartite and write G[A, B].

The complete bipartite graph K, , has a bipartition A, B with |A| = a, |B| = b, and all possible
edges between A and B.

Definition 13.13 (Complete k-partite graphs). Let Uj, ..., U be a partition of a finite set V.
The complete k-partite graph with parts Uy, . .., Uy is the graph G with vertex set V and edge
set

E(G)={uv:uel;,velj i#j}

Each U; is independent, and every pair of vertices in different parts are adjacent.

13.4 Matrices associated to a graph

Let G be a graph of order n with vertices v1,...,v, and edges ey, ..., ex.

Definition 13.14 (Adjacency matrix). Theadjacency matrix of G is the nXn matrix A(G) = (a;;)
where

1, vivj € E(G),
a;; =
K 0, otherwise.

For a simple graph A(G) is a symmetric {0, 1}-matrix with zeros on the diagonal.
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Definition 13.15 (Incidence matrix). The incidence matrix of G is the n X m matrix M(G) =
(mye) with rows indexed by vertices and columns by edges, where

0, otherwise.

1, visanendpoint of edgee,
Mye =

13.5 Isomorphisms and automorphisms

Definition 13.16 (Graph isomorphism). Graphs G and H are isomorphic (written G = H) if
there is a bijection f : V(G) — V(H) such that for all u, v € V(G)

uv € E(G) & f(u)f(v) € E(H).

Such a map f is called an isomorphism.

Isomorphic graphs have the same order and size, and every isomorphism preserves degrees,
paths, cycles, cliques, independent sets, etc.

Definition 13.17 (Automorphisms). An automorphism of a graph G is an isomorphism
f:V(G) = V(G) from G to itself. The set of all automorphisms, with composition, forms a
group Aut(G).

Definition 13.18 (Vertex- and edge-transitive). A graph G is
e vertex-transitive if for all u, v € V(G) there exists ¢ € Aut(G) with p(u) = v.
e edge-transitive if for all e, f € E(G) there exists ¢ € Aut(G) with ¢(e) = f.

Let C,, be the n-cycle with vertex set {1,...,n} and edges 12,23, ..., (n — 1)n, nl.

Every automorphism of C, is determined by the image of a single edge (or of the ordered pair
(1,2)), s0
Aut(ci’l) = Dan

the dihedral group of order 21, generated by a rotation ¢ of order 1 and a reflection  with 6% =1,
606 =071,

13.6 The Petersen graph

Let[5]:=11,2,3,4,5} and let
V(P) = ([g]) —{i,jy:1<i<j<5)

be the set of 2-element subsets of [5]. Two vertices A, B € V(P) are adjacent if and only if they
are disjoint as sets:

E(P)={AB:A,Be(3), AnB=0}.
The resulting graph P is the Petersen graph.
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Proposition 13.2. The Petersen graph P is 3-regular of order 10 and size 15.

Proof. There are (3) = 10 vertices (all 2-subsets of [5]). Fix a vertex A C [5] with |A| = 2. A vertex
B is adjacent to A exactly when BN A = @, i.e. B is a 2-subset of [5] \ A, which has size 3. Thus

na = [3) =3
so P is 3-regular. By the Handshake Lemma,
2/E(P)| = Z dp(v) =10 - 3,
veV(P)
so |[E(P)| = 15. O

Remark 13.3. The automorphism group of P contains all permutations of the ground set [5]; in
fact
Aut(P) = Ss.

Indeed, each 7 € S5 induces a permutation of the 2-subsets, preserving disjointness.

Remark 13.4. The Petersen graph is the smallest, most famous “counterexample graph”: it is
highly symmetric and 3-regular, yet it breaks many tempting conjectures (e.g. about Hamilton
cycles and edge-colourings).

13.7 Girth and circumference

Definition 13.19. The girth g(G) of a graph G is the length of a shortest cycle of G (or +oo if
G is acyclic). The circumference c(G) is the length of a longest cycle of G.

Proposition 13.3. The Petersen graph P has girth g(P) = 5.

Proof. First we show that P has no 3- or 4-cycles.

No triangles: Suppose A, B, C form a 3-cycle in P. Then A, B, C € ([g]) are pairwise disjoint
(since adjacent vertices correspond to disjoint subsets). Hence

|JAUBUC| =|A|+|B|+|C| =6,

so AU B U C would be a 6-element subset of [5], which is impossible. Thus P is triangle-free.
No 4-cycles. Suppose A, B, C, D form a 4-cycle

A~B~C~D~A.
Then ANB=BNC=CND =DnNA =@. Because P has no triangles, A and C cannot be

adjacent, so AN C # @; similarly BN D # @.

Relabel the ground set so that A = {1, 2}. Then any neighbor of A is a 2-subset of {3, 4, 5}, so we
may take B = {3, 4} (the other choices are symmetric). Since B ~ C, the set C must be a 2-subset
of {1,2,5} disjoint from B, so C € {{1,5}, {2, 5}} (it cannot be {1,2} = A).
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Assume C = {1, 5}; the other case is analogous. Because C ~ D and D ~ A, the set D must be
disjoint from both {1, 5} and {1, 2}, so

D c[5]\{1,5} ={2,3,4}, D c [5]\{1,2} = {3,4,5}.

Thus D € {3,4} and |D| = 2, so D = {3, 4} = B, contradicting that the four vertices on the cycle
are distinct. Hence P has no 4-cycle.

We have shown that g(P) > 5. On the other hand, P contains the 5-cycle
12 ~34 ~ 15~ 23 ~ 45 ~ 12,

so g(P) = 5. o

13.8 Kneser Graph

Fix integers n > 1and 1 < k < n. The Kneser graph K(n, k)
has

V(K(n, k) = ([’;])

(the set of all k-subsets of [n] = {1,2,...,n}), and two vertices A, B € ([Z]) are adjacent iff
they are disjoint:
A~B & ANB=0.

(Note: if n < 2k, then there are no disjoint k-subsets, so K(#, k) has no edges.)

Immediate observations.

e If n < 2k, then no two k-subsets are disjoint, hence E(K(n, k)) = @.

e If n =2k, theneach A € ([Z]) has a unique disjoint partner [n] \ A, so K(2k, k) is a 1-regular
graph.

Basic parameters (for n > 2k).

Number of vertices:

V(K(n, k)| = (’;)

Regular degree: for any A € ([Z])’

n—k
degK(n,k)(A) = ( k )

since a neighbor of A is a k-subset chosen from the remaining n — k elements.

Number of edges:

ECK0n, ) = 1V Km0 degtion 10 = 51 )

Vertex-transitivity: the symmetric group S, acts on ([z]) by permuting [#], and preserves
disjointness, so K(n, k) is vertex-transitive.
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The Petersen graph as a special case. Letn =5and k = 2. Then

5

vikis 2= 5

) =10,  deg(K(5,2)) = (5 ; 2) - (;) =3, |E(K(5,2)=1-10-3=15.

Thus K(5, 2) is a 3-regular graph on 10 vertices with 15 edges; this graph is the Petersen graph.

13.9 The k-dimensional hypercube.

Definition 13.21 (Hypercube Oy). Fix k > 1. The k-dimensional hypercube Qy is the graph
with
V(Qs) = {0,1},

and for x = (x1,...,xx)and y = (y1,..., Yk),

x~y <= xand y differ in exactly one coordinate.

Identify each vertex x € {0, 1}¥ with the subset
Ay:={ielk]:xi=1}C[k],
so that V(Qy) = 2% via characteristic vectors. Under this identification, for A, B C [k],
A~B & |AaB|=1 < (ACBorBCA)and|Al-|B||=1

Remark 13.5. Any permutation of coordinates is an automorphism of Qy, and any independent
bit-flip
(X1, x0) P (@er,... i @e), {01},

is also an automorphism. In particular,

|Aut(Qx)| = 2 k1.

Definition 13.22 (Cartesian product GOH). Let G and H be graphs. The Cartesian product
GOH is the graph with
V(GOH) = V(G) x V(H),

and

(u,v) ~W',v') & (u=u'"andvv’ € E(H)) or (v="0v"and uu’ € E(G)).

The hypercube is an iterated Cartesian product:

Qr = KyoKpo---0OK; .
—————
k factors

Forevery k > 1,
Qk+1 = QrOKy.

Definition 13.23 (Union of (labeled) graphs). Let G and H be graphs (think: their vertex
sets are actual labels, not “up to isomorphism”). The union G U H is the graph with

V(GUH)=V(G)UV(H), E(GUH)=E(G)UE(H).
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Remark 13.6. If V(G) and V(H) overlap, then G U H identifies those common vertices (same
labels). If you want two separate copies with no identification, use disjoint union.

Definition 13.24 (Disjoint union). If V(G)NV(H) = @, the disjoint union (also written G + H)
is just the union:
G+H:=GUH (whenV(G)NV(H) = 2).

Equivalently, G + H consists of two connected components isomorphic to G and H.

Definition 13.25 (Join). If V(G) N V(H) = @, the join of G and H, denoted G V H, is the
graph with
V(G V H) = V(G)UV(H),

and
E(GVH)=E(G) U E(H) U E[V(G), V(H)],

where
E[V(G),V(H)| :=={uv: ueV(G), ve V(H)}

is the set of all cross-edges between V(G) and V (H).

Definition 13.26 (m copies of a graph). For an integer m > 1, define

m-G:=G+G+---+G,
N~——— —
m times

i.e. the disjoint union of m vertex-disjoint copies of G.




Vertex Degrees 122

14 Vertex Degrees

Recall the Handshake Lemma:
Z deg(v) = 2|E|.

veV
As a result, the sum of all vertex degrees is even, and therefore the number of vertices of odd
degree is even.

Here is a geometric problem that looks like it should involve coordinates and area, but actually
collapses under a simple parity argument.

Theorem 14.1 (Integer side forced by an axis-parallel tiling). Let R be a rectangle in the
plane whose sides are parallel to the coordinate axes. Suppose R is partitioned (tiled) into
rectangles Ry, ..., R, whose interiors are disjoint, whose union is R, and whose sides are
also parallel to the axes. Assume that for every i, the rectangle R; has at least one side of
integer length. Then R has at least one side of integer length.

We are going to build a bipartite graph whose degrees encode “how many integer lattice corners”
each tile has. All tile-vertices will have even degree. The Handshake Lemma then forces the
lattice-point side to have an even sum of degrees. Since one specific lattice point has odd degree,
some other lattice point must also have odd degree. Finally, we show that the only lattice points
that can have odd degree are the corners of R, which forces one of those corners to be an integer
lattice point, and therefore forces W or H to be an integer.

Proof. Write the big rectangle as
R =1[0,W]x[0,H] for some W, H > 0,
so (0, 0) is its lower-left corner.
Build a bipartite graph. Let A = {Ry,...,R,,}. Let
B:=RnNZ?

be the set of integer grid points inside (or on the boundary of) R. Define a bipartite graph
G = (A, B;E) by joining R; € A to p € Biff p is a corner of R;.

Every rectangle vertex has even degree. Every tile has even degree. Fix a tile R;. Its corners
have the form

(x1,y1), (x2,y1), (x1,y2), (x2,¥2),

with x1 < xp and y1 < y2. The hypothesis says that at least one of the side lengths x, — x; or
Y2 — y1 is an integer.

If R; has any integer lattice corner, say (x1, y1) € 72, then:
e if xp — x1 € Z, then (x2, y1) = (x1 + (x2 — x1), 1) € Z%
o if yo —y1 € Z, then (x1,12) = (x1, y1 + (2 — 1)) € Z2.

So an integer corner forces a second integer corner. In particular, a tile cannot have exactly 1 or 3
integer corners. Therefore

deg-(R;) € {0,2,4} for every R; € A,
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and so }.g.c4 deg(R;) is even.

Because G is bipartite, the handshake lemma gives

Z deg(Ri) = Zdegc(P)-

Ri€A peB
The left-hand sum is even, hence the right-hand sum is even as well.

Claim: (0, 0) has odd degree. Exactly one tile R; contains the corner (0, 0) of the big rectangle R,
so (0,0) is a corner of exactly one R; and thus

deg((0,0)) = 1.

Since )’ ep degg(p) is even but includes the odd term deg;((0,0)) = 1, there must exist another
grid point g € B with odd degree.

Claim: Any grid point that is not a corner of R has even degree. Let p € B be a grid point
that is not a corner of R. Looking in a small neighborhood of p, the tiling is by axis-parallel
rectangles, so rectangles can meet at p as corners in 0, 2, or 4 local quadrants only; in particular,

deg.(p) € {0,2,4}.

Thus every non-corner grid point has even degree.

Therefore the odd-degree point 4 must be a corner of R. So one of (W, 0), (0, H), (W, H) lies in
Z2. In particular, either W € Z or H € Z (or both), so R has an integer-length side. m]

14.1 Graphic Sequences

A degree sequence is what you get when you forget everything about a graph except how many
neighbors each vertex has. The natural inverse problem is: given a list of degrees, does any simple
graph realize it?

Let G be a graph, V(G) = {v1,...,v,}. The degree
sequence of G is the list

(deg(v1), deg(v2), . .., deg(vn)).

Usually we sort it in nonincreasing order and write
di>dy>--->dy,

and call (dy, ..., d,) the degree sequence.

Two immediate sanity checks. If (dy,...,d,) is the degree sequence of a simple graph, then:
e Bounds: 0<d; <n—1foralli.
e Handshake parity: Y}, d; = 2|E| is even, so the number of odd d; is even.

These are necessary conditions. They are not sufficient.
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Example 14.1. (3,3, 3, 1) passes the parity test (sum is 10 even) and the bounds (< 3), but it is
impossible: the vertex of degree 1 can only connect to one of the three degree-3 vertices, and
then the remaining two degree-3 vertices can’t both reach degree 3.

Given a nonincreasing integer sequence
di>2dy>--->d, >0,

when does there exist a simple graph G on 7 vertices whose degrees are exactly these numbers?

Definition 14.2 (Graphic sequence). A sequence (dy, ..., d,) of nonnegative integers is
graphic if there exists a simple graph G with degree sequence (dy, ..., d,). Such a graph G
is called a realization of the sequence.

Definition 14.3 (2-switch). A 2-switch in G is the following operation: pick four distinct
vertices x, i, z, w such that

xy, zw € E(G) and xz, yw ¢ E(G).
Form a new graph G’ by deleting the edges xy and zw and adding the edges xz and yw:
E(G) = (E(G)\{xy,zw}) U {xz,yw}.

We say G’ is obtained from G by a 2-switch on (x, y, z, w).

G (before 2-switch) G’ (after 2-switch)
x y x y
o 0
xy,zw € E(G) 2-switch xz,yw € E(G")
—_—
xz,yw ¢ E(G) xy,zw ¢ E(G")
o 0
b4 w z w
edgein G x: loses y, gains z
non-edge (faint dashed) y: loses x, gains w

z: loses w, gains x
w: loses z, gains y

all other vertices and degrees unchanged

Remark 14.1 (Degrees do not change). A 2-switch preserves degrees:

deg,(v) = deg(v) for all vertices v.
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We reduce the problem “is d = (dy, ..., d,) graphic?” to a smaller instance. The obvious move
is: take a vertex of degree d1, connect it to d; other vertices, then delete it and decrease those d;
degrees by 1. The Havel-Hakimi theorem says this greedy step is both necessary and sufficient:
d is graphic exactly when the resulting shorter sequence is graphic.

14.2 Havel-Hakimi Theorem for graphic sequences

Theorem 14.2 (Havel-Hakimi). Letd = (dy,...,d,) be a nonincreasing sequence of non-
negative integers:
diy>dy>--->d, >0.

Define the reduced sequence d’ = (d7,...,d ;) by
d = sort(dz -1,d3-1, ..., dd]+1 -1, dd]+2, - ,dn),

i.e. subtract 1 from the next d; entries and then re-sort into nonincreasing order. (If dq > n—1
or some d; — 1 < 0, then d’ is declared invalid.)

Then d is graphic if and only if 4’ is graphic.

The problem is that the degree sequence only tells us how many neighbors each vertex has, not
which ones, so in an arbitrary realization the vertex of degree d; might be joined to some other
set T of d; vertices, not necessarily {vy, ..., V4 41}

The following lemma says we can always rearrange edges by 2-switches so that this is true,
without changing any degrees (and hence, the degree sequence).

Lemma 14.3. Let G be a simple graph on vertices vy, ..., v, with degree sequence
di>dry>--->4d,, where deg(v;) = d;.

Let w := v1 and let
S:={v2,v3,..., 0441}

Then there exists a graph G obtained from G by a finite sequence of 2-switches such that

degz(v;) = d,; forall i and Ngz(w) = S.

Proof. Among all graphs obtainable from G by 2-switches (hence with the same degree sequence),
choose one (call it again G) that maximizes the quantity

t:= [Ng(w)N S|.

We show t = dy,i.e. S = Ng(w).

Assume for contradiction that f < d;. Then there exist
x €S\ Ng(w) and y € Ng(w) \ S.

Indeed, [Ng(w)| = |S| = dy, so if S # Ng(w), some neighbor of w must lie outside S.

Since x € S and y ¢ S and the degree sequence is nonincreasing, we have

deg;(x) > deg(y).
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Now consider the set difference Ng(x) \ Ng(y). If Ng(x) € Ng(y), then deg(x) < deg;(y),
contradicting deg-(x) > deg(y) unless deg;(x) = deg.(y) and Ng(x) = Ng(y). But even in
that equality case we still get a contradiction as follows: because y € Ng(w) and x ¢ Ng(w), the
vertex w is in Ng(y) but not in Ng(x), hence

w € Ng(y) \ Ng(x),
so Ng(x) # Ng(y) and therefore Ng(x) € Ng(y). Thus in all cases,

Ng(x) \ Ng(y) # @.
Choose z € Ng(x) \ Ng(y). Then
xz € E(G), yz ¢ E(G).
Also by construction,
wy € E(G), wx ¢ E(G).

The four vertices w, x, y, z are distinct: z # x (since xz is an edge), z # y (since yz is a non-edge),
and z # w because w € Ng(y) but z ¢ N¢(y).

Therefore we may perform the 2-switch that deletes wy and xz and adds wx and yz:
G =G —{wy, xz} +{wx, yz}.
This is a valid 2-switch because the added edges were non-edges in G. Moreover G’ has the
same degree sequence as G. Moreover, w loses neighbor y and gains neighbor x, so
INg/(w) N'S| = [Ng(w)NS[+1=t+1,
because x € S and y ¢ S. This contradicts the maximality of ¢.

Hence our assumption t < d; was false, so t = d; and Ng(w) = S. Set G:=G. O
Proof of Havel-Hakimi Theorem

Proof. (<) Suppose d’ is graphic. Realize the unsorted sequence d by a simple graph H on
vertices vy, ..., v, with

di—1, 2<i<dy+1,

di, di+2<i<n.

degH(vi) = {

Add a new vertex v and connect it to v2,v3, ..., v4,+1. Thendeg(vi) =dj, and for2 <i < d; +1
we increase deg(v;) by 1, restoring deg(v;) = d;, while other degrees stay d;. Hence the
resulting graph realizes d.

(=) Suppose d is graphic and let G be a realization on vertices vy, ..., v, with deg.(v;) = d;.

Apply the previous lemma with w = v1 and S = {v,, ..., 4,41} to obtain a graph G (with the
same degree sequence) such that

Nz(v1) ={v2, ..., 0441}

Now delete v1 to form G- 1. In G- v1, each vertex v; for 2 < i < dq + 1 loses exactly the edge
v10;, S0 its degree becomes d; — 1, and every vertex v; for i > dy + 2 keeps degree d;. Therefore

G — v realizes d (hence also realizes its sorted version d’). Thus d’ is graphic. O

The 2-switch operation lets us change adjacencies without changing the degree sequence. A
natural question is whether all realizations of a fixed degree sequence (on the same labeled
vertex set) can be connected by a sequence of 2-switches. The answer is yes.
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Theorem 14.4. Fix a degree sequence on labeled vertices vy, ..., vy:
deg(v;) =d; (1<i<n).

If G and H are two simple graphs on {vy,...,v,} with these degrees, then G can be
transformed into H by a finite sequence of 2-switches.

Proof. By induction on n. The cases n < 3 can be verified easily.

Assume n > 4. Letw = vy and S = {v, ..., v4,41}. By the lemma, there exist graphs G* and H*
obtainable from G and H (respectively) by 2-switches such that

Ng-(w) = S and Npg+(w) =S,

and all degrees remain d;.

Now delete w from both graphs. The resulting graphs G* — w and H* — w are simple graphs on
{v2,...,v,} with the same degree sequence

(dz - 1/' . ~/dd1+1 - 1/dd1+2/' . ~/dn)

(up to sorting). By the induction hypothesis, there is a sequence of 2-switches that transforms
G* — w into H* — w. Perform the same 2-switches in G* (none of them needs to involve w, since
w is absent from the smaller graphs). This transforms G* into H* while keeping N(w) = S
throughout.

Finally, concatenate the 2-switch sequence from G to G*, then from G* to H", then reverse the
sequence from H to H" to go from H* to H. This yields a 2-switch sequence from G to H. O

The theorem is constructive: it gives a simple decision procedure (and, when it succeeds, a way
to build a realization).

Havel-Hakimi algorithm. Given a nonincreasing sequence d = (dy, ..., d,):

1. If all entries are 0, return GRAPHIC.
2. If d1 > n — 1 or some entry is negative, return Not GRAPHIC.

3. Subtract 1 from each of do, ..., dg,4+1 and leave dg, 42, . . ., d, unchanged. Sort the resulting
sequence and set it to 4 in nonincreasing order.

4. Go back to Step 1.
If the process halts in Step 1, the original sequence is graphic; if it halts in Step 2, it is not.

14.3 Extremal problems

In extremal graph theory, you fix some parameter (like |[E(G)|, 6(G), a(G), x(G), etc.) and you ask
for the minimum or maximum possible value among all graphs satisfying some constraint (e.g.

A s

“triangle-free”, “bipartite”, “no K,”, “given order n”, etc.).
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Example 14.2. Among all triangle-free graphs on n vertices, what is the maximum possible
number of edges?

Mantel’s theorem answers this: any triangle-free graph on n vertices has at most

5]

edges, with equality for the complete bipartite graph K|, /2| [1/2]-

14.4 Existence of large bipartite subgraph

Theorem 14.5. Every graph G with m edges contains a bipartite subgraph with at least
m/2 edges.

Proof 1 (probabilistic). Choose a random partition (A, B) of V(G) by putting each vertex indepen-
dently into A with probability 1/2 (and into B otherwise). For an edge xy € E(G), let iy, be the
indicator of the event “xy is a cross-edge”:

. {1, ifxeA, yeBorx€B, ycA,

0, otherwise.

For any fixed edge xy, exactly two of the four equally-likely placements of (x, y) make it a

cross-edge, so

. 1 ) 1
P(ny = 1) = E — E[ny] = E

Let X be the number of cross-edges under the random partition:
X= Y iy
xy€E(G)
By linearity of expectation,
. 1 m
E[X] = Z Eliy,] = Z 555
xy€E(G) xy€E(G)

Therefore there exists some partition (A, B) for which X > m /2. The subgraph consisting of all
cross-edges for that partition is bipartite (with parts A, B) and has > m/2 edges. m|

Remark 14.2. This proof is pure existence: it guarantees a good partition exists, but it does not
explicitly tell you how to find it. (We fix that next.)

Proof 2 (algorithmic). Start with any partition (A, B) of V(G). For a vertex x, write

da(x) = [{xy € E(G) : y € A}

,  dp(x):=[{xy € E(G): y € B}|.
So da(x) counts neighbors of x on the A-side, and dg(x) counts neighbors on the B-side.
Improvement rule.

o If x € Aand d4(x) > dp(x), move x from A to B.

e If x € Band dg(x) > da(x), move x from B to A.
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Why this increases cross-edges. Assume x € A and we move it to B. Before the move, edges
from x to B were cross-edges (count dg(x)) and edges from x to A were inside-edges (count
da(x)). After the move, these roles swap: x has da(x) cross-edges and dp(x) inside-edges. So
the number of cross-edges changes by

A=da(x)—dg(x) > 0.
Thus every move strictly increases the number of cross-edges.

Termination. The number of cross-edges is an integer between 0 and m, and it strictly increases
each move, so the process must stop.

At a local optimum. When the process stops, we have for every x € A that d4(x) < dg(x), and
for every x € B that dp(x) < da(x).

Sum these inequalities over each side:

D da@) < Y ds(), Y ds(x) < ) da(q).

x€A x€A X€EB X€B
Add them:
D da()+ ) dp(x) < D dp(x) + ) da(x).
X€EA x€B xeA x€B

Now interpret each side:

® > eada(x) =2e(A) where e(A) is the number of edges inside A.

* > e dp(x) = 2¢e(B) where e(B) is the number of edges inside B.

* Y eadp(x) =2 cpda(x) = e(A, B) where e(A, B) is the number of cross-edges.

So the inequality becomes
2¢(A) +2e(B) <2e(A,B) < e(A)+e(B)<e(A, B).

But
m =e(A) +e(B) +e(A, B),

hence m
m<2(A,B) < ¢e(AB)> 5

Therefore the final partition (A, B) produced by the algorithm has at least 11/2 cross-edges, so
the bipartite subgraph induced by these cross-edges has at least /2 edges. |

14.5 Turan’s Theorem

Turan’s theorem is the natural generalization of Mantel’s theorem: instead of forbidding triangles,
we forbid K1 subgraphs for some fixed r > 2. The question is the same:

What is the maximum number of edges in an n-vertex graph that does not contain K, 1 as a subgraph?

Turdn’s theorem says that the extremal graphs are exactly the complete r-partite graphs with
parts as equal in size as possible (the Turin graphs), and it gives an explicit formula for the
maximum number of edges.
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Definition 14.4 (Turén graph T, ;). Fixintegersn > 1 and r > 1. The Turdn graph T, , is the
complete r-partite graph on n vertices whose part sizes differ by at most 1. Equivalently,
write n = qr +s with 0 < s < r; then T, , has s parts of size ¢ + 1 and r — s parts of size g.

Definition 14.5. Let f(n, r) denote the maximum number of edges in a simple n-vertex
graph with no K, subgraph.

Theorem 14.6 (Turan’s Theorem). Foralln,r > 1,

B s(r—s)

_ C L I R
f(”,V)—|E(Tn,r)|—2(1 r)n om where s = n rLJ

In particular, among all K,,1-free graphs on n vertices, T;,  has the most edges.

Lemma 14.7. If n > r + 1, then

[ET )l = [Ty )l = (r = 1) = 1) + (;)

Proof of lemma. We want to obtain T, , from T,,_, , by adding one new vertex to each part. Then
the difference in edge counts is exactly the number of edges incident to these new vertices.
Start with a copy G of T,,—, » whose parts are Vi, ..., V, (so X.7_; Vil = n — r). Form a graph H
on n vertices by adding, for each i € [r], one new vertex v; and placing v; into part V;. Join v; to
every vertex outside V; (i.e. to all n — r — |V;| old vertices in G — V;) and to all other new vertices
vj for j # i. Then H is exactly T, ,.

(a) Edges among the new vertices. The vertex set {v1,...,v,} spans a complete graph K, so this
contributes (5) new edges.

(b) Edges from new vertices to old vertices. Fix i € [r]. The new vertex v; is adjacent to every old
vertex not in V;, so it has n — r — |V;| neighbors among the old vertices. Summing over all i gives

2 m=r=lVi =3 =)=} Vil =r(n=r)=(n=r)=(~1n-r),
i=1 i=1 i=1
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using X7, |Vil=n —r.
Hence
r
|E(Tn,r)| - |E(Tn—r,r)| = (2) + (7’ - 1)(” - 7’),

as claimed. O

Proof of Turan’s Theorem

Proof. First note that T, , is K,+1-free (an (r + 1)-clique would require two vertices from the same
part, but there are no edges inside a part). Therefore f(n,r) > |E(Ty,)|.

It remains to prove the reverse inequality

f(n, 1) < [E(Ty ). (5)

Fixing r, we prove (5) by induction on 7.

Base case: n < r. Any n-vertex graph is automatically K, ,i-free, because a copy of K,1 would
need r + 1 distinct vertices, but we only have n < r. So there is no restriction at all, and the
maximum number of edges is attained by the complete graph:

o, = () = e

Then every n-vertex graph is automatically K,i-free, so f(n,r) = (g), attained by K;;. On the
other hand, when n < r, the Turdn graph T, , is also just K,;: we have r parts and at most one
vertex per part, so every pair of vertices lies in different parts and hence every edge is present.
Thus |[E(T;,,+)| = (5), and (5) holds in this case.

Induction step: n > r + 1. Assume (5) holds for all smaller values n” < n. Let G be a K,,1-free
simple graph on n vertices with

[E(G) = f(n,7).

Let Q be the vertex set of a largest clique in G; then |Q| < r. Choose any set Q" € V(G) \ Q of size
r —|Q| and define

F:=QuUQ"
So|F|=rand Q CF.

Because Q is a maximum clique, every vertex z € V(G) \ Q is adjacent to at most |Q| — 1 vertices
of Q; otherwise Q U {z} would be a larger clique. Now for any z € V(G) \ F we have

degp(z) = INg(z) N F| =Ng(z) N Q| +[Ng(z) N Q|-

The first term is at most |Q| — 1 by maximality of Q, and the second term is at most |Q’| = v —|Q)|.
Thus
degp(z) < (IQI-1)+(r—1Q|)=r-1 forallz € V(G) \ F.

Summing over all n — r vertices in V(G) \ F gives

e(F, V(GI\F) < r=1(n—r). (@)
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Inside F there are at most (;) edges, since |F| =T
6( ) < zr ( )

Let
G =G-F

be the induced subgraph on V(G) \ F. Then G’ has n — r vertices and is still K, 1-free, so by the
induction hypothesis,

|E(G,)| < f(i’l —-r, 1’) = |E(Tn—r,r)|- (C)
Every edge of G lies either inside G’, between F and V(G) \ F, or inside F, so
|E(G)| = [E(G")| + e(F, V(G) \ F) + e(F).

Using (a), (b), and (c), we get

wmnﬂanﬁM+w—nm—n+C)

By the lemma,
r
ECT,0)+ = 00 =)+ () < BT ).

Hence
|E(G)| < |E(Ty,r)l,

which proves (5). Therefore f(n,r) = |[E(T, ;)| O
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15 Directed Graphs

Definition 15.1 (Directed graph). A directed graph (digraph) is a pair G = (V, E) where
V = V(G) is a vertex set and
E=EG)CVXV

is a set of ordered pairs. An edge (x,y) € E is written x — y. We say x is the tail and y is the
head for the edge x — .

Definition 15.2 (In-/out-degree). Let G be a digraph and let x € V(G). The out-degree is
the number of outgoing edges from x.

7

dt(x) = d*(x) = [{y € V(G) : x > y € E(G)}

The indegree is the number of incoming edges to x.

do(x)=d (x):=[{y € V(G): y > x € E(G)}-

Definition 15.3 (In-/out-neighborhood). Let G be a digraph and x € V(G). The out-
neighborhood of x is

Ni(x)=N"(x):={y € V(G) : x = y € E(G)},
and the in-neighborhood of x is
Ng(x) =N~ (x):={y € V(G) : y — x € E(G)}.

Thus
d*(x) = [N (x)], d(x) =|N"(x)].

Definition 15.4 (Adjacency matrix of a digraph). If V(G) = {v1, ..., vs}, the adjacency matrix
A(G) = (a;j) € {0, 1})™" is defined by

)L if v; — vj € E(G),
v 0, otherwise.

Equivalently, a;; = 1 iff there is an edge from row-vertex v; to column-vertex v;.

Definition 15.5 (Oriented incidence matrix). Let G be a digraph with V(G) = {v1,...,v,}
and E(G) = {e1,...,en}. The (oriented) incidence matrix M(G) = (mjg) € {-1,0,1}"™ is
defined by
—1, if v; is the tail of ¢y,
mig =4 1, if v; is the head of ¢y,

0, otherwise.

So each column (one directed edge) has exactly one —1 at its tail and one +1 at its head.
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Definition 15.6 (Directed path). A directed path in a digraph is a sequence of vertices
V] > Uy = - > U

such that v; — v;41 € E(G) foreachi =1,...,k — 1. The length of this pathis k — 1.

Definition 15.7 (Symmetric digraph). A digraph G is symmetric if whenever x — y is an
edge, the reverse edge ¥ — x is also an edge. Equivalently,

(x,y) € E(G) = (y,x) € E(G).
In matrix terms (with respect to any ordering of V(G)), this is equivalent to

A(G) = AG)".

Definition 15.8 (Antisymmetric digraph). A digraph G is antisymmetric if it has no two-way
pairs of edges: for all distinct vertices x # y,

(x,y) € E(G) = (y,x) ¢ E(G).

Equivalently, between any unordered pair {x, y} there is at most one directed edge.

Definition 15.9 (Underlying graph). Given a digraph G = (V, E), its underlying (undirected)
graph U(G) is obtained by forgetting directions:

V(U(G)) =V(G),
and for distinct x, y € V(G),

{x,y} eE(U(G)) < (x,y)€E(G) or (y,x)€ E(G).

Definition 15.10 (Orientation / oriented graph). Let H be a simple undirected graph. An
orientation of H is a digraph G obtained by replacing each undirected edge {x, y} € E(H)
by exactly one of the two directed edges x — y or y — x. A digraph obtained this way is
called an oriented graph or an orientation of H.

Remark 15.1. An oriented graph is antisymmetric and has no loops, and its underlying graph
is exactly the original H.
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15.1 Tournaments and Landau’s Theorem

Motivation: = Imagine a round-robin competition with n teams: every pair of teams plays
exactly one game. We build a directed graph T  to record the outcome:

e Vertices are the teams.

¢ For distinct teams x and y, we draw a directed edge x — y if x beats y.

Between any two teams, exactly one of them wins, so between any two vertices we get exactly
one directed edge. This directed complete graph is what we call a tournament.

Definition 15.11 (Tournament). A tournament is an orientation of a complete graph.
Equivalently, a digraph T is a tournament if for every pair of distinct vertices x # v,
exactly one of x — y or y — x is an edge.

Definition 15.12 (King in a tournament). Let T be a tournament. A vertex v is a king if
every other vertex can be reached from v by a directed path of length at most 2; i.e. for all
u#+v,

v—u or Jwwitho - w — u.

Remark 15.2 (Historical motivation for kings). Landau introduced kings in the 1950s while
modeling dominance in animal societies: vertices are animals, and an edge x — y means “x
defeats (or pecks) y” in a round-robin dominance graph. A “perfect boss” would be a vertex that
beats everyone directly (a source), but tournaments do not always have such a vertex. Landau’s
observation was that you can still guarantee a weaker leader: a vertex k such that for every other
v either k — v or there is some u with k — u — v, i.e. k reaches everyone within two steps.
This is exactly the definition of a king, and it matches the idea of an individual that may not
dominate everyone personally, but dominates the whole group through its allies.

Theorem 15.1 (Landau, 1953). Every tournament has a king. Moreover, every vertex of
maximum out-degree in a tournament is a king.

Proof. Let x be a vertex of maximum out-degree in a tournament T. Write
V(T) ={x} UN"(x) UN"(x).

Assume for contradiction that x is not a king. Then there exists a vertex y that is not reachable
from x by a directed path of length < 2. In particular x — y ¢ E(T), hence y — x € E(T), i.e.
y € N™(x).

Now fix any z € N*(x),i.e. x = z € E(T). If wehad z — y € E(T), then x — z — y would be a
directed path of length 2, contradicting the choice of y. Therefore for every z € N*(x) we must
have y — z € E(T), so z € N*(y). Thus

N*(x) S N*(y),
and moreover x € N*(y) (since y € N™(x) means y — x € E(T)). Hence
d*(y) = INT(0)[+1 = d*(x) +1,

contradicting that x has maximum out-degree. Therefore x is a king, and the theorem follows. O
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Definition 15.13 (Transmitter). A vertex t in a tournament is a transmitter if it has in-degree
0 (equivalently, t beats everyone: d*(t) = |V(T)| - 1).

Lemma 15.2. Let T be a tournament with no transmitter (i.e. d~(v) > 1 for all v). Then for
every vertex v € V(T) there exists a king u such that u — v.

Proof. Fix v € V(T). Since T has no transmitter, N™(v) # @. Consider the subtournament
T[N~ (v)] induced by N~(v), and choose u € N~ (v) of maximum out-degree within T[N~ (v)].
By Landau’s theorem applied to T[N~ (v)], the vertex u is a king of T[N~ (v)].

We claim u is a king of the whole tournament T. Let w € V(T).
e If w € N™(v), then w is reachable from u within 2 steps inside T[N ~(v)], hence also inside T.

e If w ¢ N™(v), then v — w (because in a tournament exactly one of wv or vw holds). Since
u € N™(v) we have u — v, and therefore 1 — v — w is a directed path of length 2 from u to
w.

Thus distr(u, w) < 2 for all w, so u is a king. Finally, u — v holds by u € N~ (v). O

Proposition 15.3 (At least three kings when there is no transmitter). If a tournament T has
no transmitter, then T has at least 3 kings.

Proof. By Landau’s theorem, T has at least one king.

Assume for contradiction that T" has at most two kings.

Not exactly one king: If T had exactly one king k, apply the previous lemma to the vertex v = k.
It yields a king u with u — k. Since k is the only king, we must have u = k, impossible (no
loops).

Not exactly two kings: If T had exactly two kings a, b, apply the lemma to v = a to get a king u
with u — a. Then u € {a,b}, but u # a (again no loops), so u = b and hence b — a. Similarly,
applying the lemma to v = b forces a — b. This contradicts that exactly one of ab or ba can be
an arc in a tournament.

Therefore T cannot have 1 or 2 kings, and hence it has at least 3 kings. O
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16 Connection and Decomposition

Definition 16.1 (1, v-path). A path in a graph G is a sequence of vertices
P = (vo,v1,...,0k)

such that v;v;41 € E(G) foralli =0,1,...,k — 1, and no vertex is repeated. Its length is k
(the number of edges).

If v9 = u and vy = v, we call P a (1, v)-path. The vertices u and v are the endpoints, and the
vertices v1, ..., vx—1 (if any) are the internal vertices.

Definition 16.2 (Connected graph). An undirected graph G is connected if for every pair of
vertices u,v € V(G), there exists a (4, v)-path in G.

Definition 16.3 (Reachability relation). For an undirected graph G, define a relation ~ on
V(G) by
u~v <= thereexistsa (u,v)-pathin G.

The relation ~ is an equivalence relation on V(G).

Definition 16.4 (Connected component). A connected component of an undirected graph G
is an equivalence class of V(G) under ~. Equivalently, a component is a maximal connected
subgraph of G.

Remark 16.1. Thus G is connected iff it has exactly one connected component.

Strong connectivity in digraphs.

Definition 16.5 (Strongly connected digraph). A digraph D is strongly connected if for every
pair u,v € V(D) there exists a directed path from u to v and a directed path from v to u.

Definition 16.6 (Strong component). Define a relation ~ on V(D) by
u~v <= ureachesvand v reaches u by directed paths.

The equivalence classes of ~ are called the strongly connected components (or strong components)
of D.

16.1 Walks and Paths
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Definition 16.7 (Walk). A walk in a graph G is a sequence of vertices
W= (00101/-- .,Uk)

such that v;v;11 € E(G) foralli =0,1,...,k — 1. Unlike a path, vertices (and edges) are
allowed to repeat. The length of the walk is k (the number of edges).

Definition 16.8 (Closed walk). A walk (v, ..., vx) is closed if vg = vg.

Definition 16.9 (Odd /even walk). A walk is odd (resp. even) if its length is odd (resp. even).

Lemma 16.1. Every (u, v)-walk contains a (1, v)-path.

Idea: Given any (1, v)-walk, whenever a vertex is visited twice, the segment between the
two visits forms a cycle that can be deleted without breaking the connection between u and
v. Repeating this process until no vertex is repeated yields a (1, v)-path.

Proof. We induct on the length ¢ of the (1, v)-walk W = (vo, v1,...,v¢), where vy = u and vy = v.

Base case: £ = 0. Then W has no edges, so u = v and the walk repeats no vertices. Hence W itself
isa (u, v)-path.

Induction step. Assume { > 0 and that every (u, v)-walk of length < ¢ contains a (1, v)-path. Let
W be any (u, v)-walk of length ¢.

If W has no repeated vertices, then it is already a path and we are done. Otherwise, some vertex
appears at least twice along the walk. Choose indices 0 < k1 < k2 < £ such that

UV, = Uk, =1 W.

Now delete the closed “detour” from the first occurrence of w to the next occurrence of w.
Define the shorter vertex sequence

W, = (UO/ V1« s 0kyr Okotls - -+ /ve)'

This is still a (u, v)-walk: consecutive vertices in W’ are consecutive in W except at the splice,
where we go directly from vy, = w to vk,+1, and wvy,41 is an edge because it occurs in W.

Moreover the length strictly decreases:
v :e—(kz—k1)<€.

By the induction hypothesis, W’ contains a (1, v)-path. Since W’ is obtained from W by deleting
vertices, any (1, v)-path contained in W’ is also contained in W.

Therefore W contains a (u, v)-path. This completes the induction. O
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Lemma 16.2. Let G be a graph and let u,v, w € V(G). If G contains a (1, v)-path and a
(v, w)-path, then G contains a (1, w)-path. In particular, the relation

u~w &= thereexistsa (u, w)-pathin G

is transitive.

Proof. Let
P=(w=uvy,v1,...,0.=v) and Q= (v =wgy,w1,..., Wy = W)
be a (1, v)-path and a (v, w)-path, respectively.

Concatenate them to get the (u, w)-walk
W= (u=0vy,01,...,00 =0 =Wy, W1,..., W =W).

This is a walk because consecutive vertices along P and along Q are adjacent, and we glue at the
common vertex v.
By the lemma, the walk W contains a (1, w)-path. Hence G contains a (u, w)-path, as claimed.

Therefore, if u ~ v and v ~ w, then u ~ w, so ~ is transitive. O

Lemma 16.3. Every odd closed walk contains an odd cycle.

Idea: Traverse the closed walk and whenever you first revisit a vertex, you've found a cycle;
remove that cycle and continue. This decomposes the walk into edge-disjoint cycles whose
lengths add up to the (odd) length of the walk. A sum of integers is odd only if at least one
of them is odd, so one of these cycles must have odd length.

Proof. Let W = (vg,v1,...,v¢) be a closed walk with vy = v, and odd length . Among all odd
closed subwalks of W, choose one of minimum length and call it

*
W* = (ug, u1,...,un), Uy = Uy, m odd.

We claim that W* has no repeated vertices other than 1y = u,,; hence it is a cycle, and since m is
odd, it is an odd cycle.

Suppose for contradiction that some vertex repeats inside W*. Then there exist indices
0 <i < j < mwithu; = u;. Consider the two closed walks obtained by splitting at this
repetition:

C1 = (uj, uiy1,...,uj) (closed since u; = u;),

and
Co = (uj, Ujs1, ..., Um = o, u1,...,u;) (also closed).
Their lengths are
ICil=j—1, |Ca| =m —(j —1).

Because m is odd, exactly one of j — i and m — (j — i) is odd. Moreover 0 < j —i < m, so both
|C1] and |Cy| are strictly smaller than m. Therefore whichever of C; or C; has odd length is a
shorter odd closed walk than W*, contradicting the minimality of W*.

Hence W™ has no repeated vertices except its start/end, so it is a cycle. Since its length m is odd,
W~ is an odd cycle contained in W. |



Connection and Decomposition 140

16.2 Kénig's Theorem characterizing bipartite graphs

It is obvious that an odd cycle prevents a graph from being bipartite: you cannot 2-color its
vertices so that every edge goes between the two colors. Kénig’s theorem says this is the only
obstruction: if a graph fails to be bipartite, it must already contain an odd cycle.

Theorem 16.4 (K6nig). A graph G is bipartite if and only if G contains no odd cycle.

Idea: Start from any vertex, color it red, its neighbors blue, their uncolored neighbors red,
and so on. This forces all vertices at even distance to be one color and odd distance the
other. An odd cycle would force some vertex to be both colors at once, which is impossible.
Conversely, if no odd cycle exists, this coloring never breaks, so the graph is bipartite.

Proof. (=) Suppose G is bipartite with bipartition (X, Y), so every edge has one endpoint in
X and the otherin Y. Let C = (vg, v1, ..., vk = vg) be any cycle in G. Starting at vy € X (wlog),
each step across an edge forces us to alternate sides:

WeEX>D>meY>meX=---

After k steps we return to vy, which is in X. Thus k must be even (otherwise we would land in
Y). So every cycle has even length, hence there is no odd cycle.

(<) Suppose G has no odd cycle. It suffices to show each connected component is bipartite. So
assume G is connected and fix a root vertex r.

For any vertex v, let dist(r, v) be the length of a shortest (7, v)-path. Define
X :={v € V(G) : dist(r, v) is even}, Y :={v € V(G) : dist(r, v) is odd}.

Clearly X UY =V(G)and X NY = @.

We claim there is no edge with both endpoints in X (and similarly none with both endpoints
in Y). Assume for contradiction that uv € E(G) with u, v € X. Let P, and P, be shortest paths
from r to u and from r to v. Then |P,| and |P;| are both even.

Let z be the last common vertex of P, and P, (their paths from r coincide up to z and then
diverge). Write P, = z ~ u and P, = z ~» v for the suffixes beyond z. The closed walk formed
by
(z~>u)U(u—o0)U (v~ 2)

has length

|z~ ul+1+]|z~ o
Now dist(r, u) = dist(r, z) + |z ~ u| and dist(r, v) = dist(r, z) + |z ~ v|. Since both dist(r, 1)
and dist(r, v) are even, |z ~ u| and |z ~> v| have the same parity, so |z ~ u| + |z ~> v| is even,
and therefore

|z ~ ul+1+|z ~ 0|
is odd. Thus we have an odd closed walk, which contains an odd cycle, contradiction.

Hence no edge lies inside X or inside Y, so every edge goes between X and Y. Therefore G is
bipartite.

Applying the same construction to each connected component finishes the proof for general
G. m|
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16.3 Cut vertices and edges

Definition 16.10 (Cut-vertex, cut-edge). Let G be a graph and let ¢(G) denote the number
of connected components of G.

e Avertex v € V(G) is a cut-vertex if c(G — v) > ¢(G).
* Anedge ¢ € E(G) is a cut-edge (or bridge) if c(G —e) > ¢(G).

Proposition 16.5. Assume G is connected and let e € E(G). Then
G —eisconnected <= e liesona cycleof G.

Equivalently, e is a cut-edge iff e is not contained in any cycle.

Proof. Write e = xy.

(=) If G — e is connected, then there is an (x, y)-path P in G —e. Adding the edge xy to P creates
a cycle in G containing e.

(&) If e lies on a cycle C, then C — e contains an (x, y)-path P in G — e. Now take any vertices
u,v € V(G). Since G is connected, there is a (1, v)-path in G. If that path does not use e we are
done; if it uses e = xy, replace the subedge xy by the x—y path P in G — e. Thus u and v are still
connected in G — ¢, so G — ¢ is connected. O

Remark 16.2. Adding an edge ¢ = xy to a graph merges two components iff x and y were in
different components. In that case the new edge e is a bridge in the new graph, so it lies on no
cycle.

Proposition 16.6 (Few edges = many components). Every n-vertex graph G with e(G) < k
has at least n — k connected components. Moreover this is best possible: for every n > k
there exists an n-vertex graph with k edges and exactly n — k components.

Proof. Start from the empty graph E, on n vertices, which has ¢(E,;) = n components. Adding
one edge can reduce the number of components by at most 1 (it either joins two components, or
stays inside one). After adding e(G) < k edges, we therefore have

c(G) = n—k.

For sharpness, take a path on k + 1 vertices (which has k edges and 1 component) and add
n — (k + 1) isolated vertices. The resulting graph has k edgesand 1+ (n -k -1) = n -k
components. O

Proposition 16.7 (At least two non-cut vertices). Every graph G with |[V(G)| > 2 has at least
two vertices that are not cut-vertices.

Proof. 1t suffices to prove this for a connected component of G, so assume G is connected. Let

P = (vg,v1,...,0¢)
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be a longest path in G (maximal length ¢). We claim that vy and v, are not cut-vertices.

Suppose for contradiction that v is a cut-vertex. Then G — vj has at least two components.
All vertices v1, ..., v lie in a single component of G — vy (because they are connected by the
subpath v — -+ — vy). So there exists some vertex x ¢ {v1,...,v,} adjacent to vy in a different
component of G — vg. Thus vox € E(G) and x ¢ V(P), so

(x/ 00,01, - /’U[)

is a path longer than P, contradiction. Hence vy is not a cut-vertex. The same argument applies
to vy. O

Path P = (vg, ..., vy) colored in blue
vg is a cut-vertex = P is not a longest path

x ¢ V(P), adjacent to vg

16.4 Eulerian circuits

Lemma 16.8. If 6(G) > 2, then G contains a cycle.

Proof. Let P = (v, v1,...,v¢) be a longest path in G. Because deg(vp) > 2, the vertex v has a
neighbor x # v1. By maximality of P, this neighbor x must already lie on the path, say x = v;
for some i > 2. Otherwise, (x,vg,v1, ..., ) is a path: the edge xvg exists by choice of x, and no
vertex repeats because x is new. This path has length ¢ + 1, contradicting that P was chosen to
be a longest path. Hence

V001000

is a cycle. m|

Definition 16.11 (Edge-decomposition). An (edge-)decomposition of a graph G is a partition
of the edge set:
E(G)=E1UE,U --- UE,,

often with the intent that each (V(G), E;) has some nice structure (cycles, paths, stars, . ..).

Definition 16.12 (Even graph / Eulerian graph). A graph G is even if every vertex has even
degree.
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Lemma 16.9. If G is even, then E(G) can be partitioned into edge-disjoint cycles.

Proof. If E(G) = @ there is nothing to prove. Otherwise, consider the subgraph H spanned by
the non-isolated vertices of G. Since G is even, every non-isolated vertex has degree at least 2,
so 6(H) > 2. By Lemma 16.8, H contains a cycle C.

Remove the edges of C to form G := G — E(C). Every vertex on C loses exactly 2 incident edges,
so degrees remain even in Gi. Repeat the argument on Gy: if it still has edges, it contains a
cycle, remove its edges, and so on. This process terminates because each step removes at least
one edge. The removed cycles are pairwise edge-disjoint and their edges cover E(G), giving the
desired decomposition. m|

Conjecture 16.10 (Hajos). Every even (Eulerian) graph on n vertices can be decomposed
into at most | 1/2] cycles.

Conjecture 16.11 (Gallai). Every n-vertex graph can be decomposed into at most [%] paths.

Proposition 16.12 (A K; x-decomposition characterizes bipartite regular graphs). Let G
be a k-regular graph. Then G has an edge-decomposition into copies of K; i (stars with k
leaves) if and only if G is bipartite.

Proof. (<) If G is bipartite with bipartition (A, B), then for each a € A the set of all k edges
incident to a forms a star Kj ; centered at a. Because every edge has exactly one endpoint in A,
these stars are edge-disjoint and their union is E(G). So they give a K; x-decomposition.

(=) Suppose E(G) is partitioned into stars Sy, ..., S;, each isomorphic to Kj ;. Let A be the set
of star-centers (the unique degree-k vertex in each star), and let B := V(G) \ A. We claim (A, B)
is a bipartition.

First, no vertex can be both a center and a leaf: if v is a leaf in some star, then the incident edge
used there is already assigned to that star; but if v were also a center, all k edges incident to v
would have to lie in the star centered at v, contradicting that at least one of those edges was
assigned elsewhere. Hence AN B = @.

Now take any edge uv € E(G). It lies in exactly one star, and in that star exactly one endpoint is
the center. Thus exactly one of {u, v} lies in A, and the other lies in B. Therefore every edge
goes between A and B, so G is bipartite. |

Definition 16.13 (Multigraph, simple graph). A multigraph is a graph in which edges may
have multiplicity (i.e. multiple edges between the same pair of vertices are allowed), and
loops are also allowed. A simple graph is a graph with no loops and no multiple edges.
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Definition 16.14 (Trail, circuit, Eulerian circuit). Let G be a (multi)graph.
* A trail is a walk that uses each edge at most once.
* A circuit is a closed trail.

* An Eulerian circuit is a circuit that uses every edge of G exactly once.

Seven Bridges of Konigsberg: In 1736, the city of Konigsberg (now Kaliningrad) presented a
well-known walking puzzle. The Pregel River split the city into four landmasses connected by
seven bridges. The question was whether one can take a walk that crosses each bridge exactly
once and returns to the starting point.

Abstract the situation by forming a multigraph G whose vertices are the landmasses and whose
edges are the bridges (allowing multiple edges if two landmasses are connected by several
bridges). The question is then:

Does G contain a closed walk that traverses each edge exactly once?

That is exactly what we now call an Eulerian circuit.

The Seven Bridges of Konigsberg: can one cross each bridge exactly once and return to the start?

Suppose you are walking an Eulerian circuit. Every time you enter a vertex along some edge,
you must also leave along a different unused edge (except that you start and end at the same
vertex, which still matches up in pairs because you return). So the incident edges at each vertex
get used in enter/exit pairs. That forces the degree of every vertex to be even.

A single walk cannot jump between disconnected pieces of the graph. So if two different
components both contain edges, there is no way one closed walk can cover them all. Equivalently,
among the components of G, at most one can be nontrivial (contain an edge).

In the Konigsberg graph, vertices have odd degree, so an Eulerian circuit cannot exist. Euler’s
theorem below states that these two obstructions are not merely necessary but also sufficient: if
G has at most one nontrivial component and every vertex has even degree, then G does have an
Eulerian circuit.

Theorem 16.13 (Euler’s Theorem (for multigraphs)). A multigraph G has an Eulerian
circuit if and only if

1. G has at most one nontrivial component (i.e. among its connected components, at most
one contains an edge), and

2. every vertex has even degree.
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Proof. (=) If G has an Eulerian circuit, then every vertex has even degree: each time the circuit
enters a vertex along some edge, it must leave along a distinct unused edge, so incident edges
are paired. Also, an Eulerian circuit lives inside a single connected component containing edges,
so there can be at most one nontrivial component.

(<) Assume G has at most one nontrivial component and every vertex has even degree. Discard
isolated vertices; we may assume G is connected and has at least one edge.

Because all degrees are even, G is an even graph. Hence E(G) decomposes into edge-disjoint
cycles
E(G) = E(C1) U --- UE(Cy).

If two circuits share a vertex, they can be spliced into one bigger circuit that uses exactly the
union of their edges: start walking along the first circuit; upon first reaching a shared vertex,
traverse the entire second circuit and return to the same vertex; then continue along the first
circuit. The result is still a closed trail (no edge is repeated) and it uses all edges of both circuits.

Aslongast > 2, we claim there exist i # j with C; and C; sharing a vertex. Indeed, let H be the
subgraph formed by the union of the cycles. Then H is connected (because H contains all edges
of G, and G is connected). If all cycles were vertex-disjoint, then H would be a disjoint union of
those cycles and hence disconnected, contradiction. So some two cycles intersect, and we can
merge them.

Repeatedly merge intersecting circuits. Each merge reduces the number of circuits by 1, and the
process must stop. When it stops, we have a single circuit using all edges of G, i.e. an Eulerian
circuit. O

Remark 16.3 (Why Konigsberg is often called the “birth” of graph theory). The Konigsberg
bridges puzzle is remembered as the birth of graph theory because Euler solved it by discarding
almost all geometric information. He did not use distances, angles, or coordinates; he kept only
which landmasses are connected by which bridges, i.e. the adjacency structure of a graph. That
shift created a new kind of mathematics: studying properties that depend only on connectivity
(and are invariant under any redrawings of the picture). Euler’s parity argument (odd vs. even
degrees) is a first example of a purely graph-theoretic argument, and the resulting theorem is
not about Konigsberg in particular but about a general class of graphs.
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17 Trees

17.1 Basic properties of trees

Definition 17.1. A graph is acyclic if it contains no cycle. An acyclic graph is also called a
forest. A tree is a connected forest (equivalently: a connected acyclic graph).

Definition 17.2 (Spanning tree). Let G be a graph. A subgraph H C G is a spanning tree of
G if
H is a tree and V(H) = V(G).

Definition 17.3 (Leaf). A leaf of a forest is a vertex of degree 1 (in that forest).

Proposition 17.1. Let T be a tree.
(i) If|V(T)| = 2, then T has at least two leaves.
(ii)) Ifvisaleafof T, then T — v is a tree.

(iii) If |V(T)| = n, then |[E(T)| = n — 1.

Proof. (i) Let P be a longest path in T, with endpoints a, b. We claim a is a leaf. If deg(a) > 2,
then a has a neighbor x # the next vertex of P. Because T is acyclic, x cannot lie on P (otherwise
we would create a cycle by going from a into P and back to a via x), so we could extend P
to a longer path starting x —a — -+, contradicting maximality. Thus deg;(a) = 1. Similarly
deg,(b) = 1. Hence T has at least two leaves.

(ii) Let v be a leaf of T, and let u be its unique neighbor. SetT” := T — v.

T’ is connected: Take any two vertices x, y € V(T”). Since T is connected, there is an x—y path
Pin T. If P contains v, then P must use the edge uv to enter v; but to reach y # v it would
have to leave v again, and the only way out is along uv once more, repeating an edge. This is
impossible for a path, so P avoids v and is therefore contained in T’. Hence T’ is connected.
T’ is acyclic: If T’ had a cycle, that same cycle must have been in T (we only deleted v and its
incident edge, and deleting vertices and edges does not introduce a cycle). But T is acyclic, a
contradiction.

Since T” is connected and acyclic, so T’ is a tree.

(iii)) We induct on n = |V(T)|. If n = 1, then T has 0 edges and the statement |[E(T)| = n — 1 holds.
Assume n > 2 and the statement holds for all smaller trees. By (i), T has a leaf v. Removing v
produces a tree T’ := T — v with n — 1 vertices by (ii). By induction,

E(T)=(m—-1)-1=n-2.

Since v was a leaf, deleting v removed exactly one edge, so |[E(T)| = |E(T")|+1=(n—-2)+1=
n—1. O

17.2 Characterization of trees
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Proposition 17.2 (Characterizations of trees). Letn > 1 and let G be a graph on n vertices.
The following are equivalent:

(A) G is a tree (connected and has no cycles).

(B) G is connected and has n — 1 edges.

(C) G hasno cycles and has n — 1 edges.

(D) For any u, v € V(G), there is exactly one u—v path in G.

(E) Adding any edge e ¢ E(G) creates a graph with exactly one cycle.

© (D)

Proof. (A) = (D). Fix u # v. Since G is connected, there exists a u—v path. For uniqueness,
suppose P, Q are two distinct u—v paths. Let x be the first vertex where they diverge and let y
be the next vertex where they meet again. Then the subpath of P from x to y together with the
subpath of Q from x to y forms a cycle, contradicting that G is acyclic. Hence the u—v path is
unique.

(D) = (A). Condition (D) implies G is connected (there is a path between every pair). Now if
G had a cycle, pick two distinct vertices u, v on that cycle; going around the cycle in the two
directions gives two different u—v paths, contradicting (D). Thus G has no cycles.

(A) = (B). Follows from (iii) of previous proposition

(B) = (C). Assume G is connected and |[E(G)| = n — 1. If G contains a cycle, delete an edge from
that cycle. This does not disconnect the graph, since the remaining edges of the cycle still give a
route between the endpoints. Repeat this until no cycles remain, obtaining a graph G’ that is
connected and acyclic.

Thus G’ satisfies (A), and since (A) = (B) we have
|[E(G")|=n—-1.

But each deletion reduces the number of edges by 1, so starting from |[E(G)| = n — 1 we can only
end with |[E(G’)| = n — 1 if we deleted zero edges. Therefore no cycle edge was ever available to
delete, i.e. G had no cycles to begin with. Hence G is acyclic, which is (C).

(C) = (B). Assume G has no cycles and [E(G)| = n — 1. Let Gy, ..., G be the connected
components of G, and write n; := |V(G;)| and e; := |E(G;)|. Each G; is connected and acyclic,
hence satisfies (A), so by (A) = (B) applied to G; we have ¢; = n; — 1 for all i. Summing over
components gives

n—lzlE(G)lsz:ei:Zk:(m—l):(Zk:ni)—k:n—k,

=1 i=1 i=1
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so k = 1. Hence G is connected, i.e. (B) holds.

(C) = (A). By (C) = (B) the graph G is connected, and (C) also says G is acyclic; hence G is a
tree.

(A) = (E). Assume G is a tree, and let e = uv ¢ E(G). By (A) = (D), there is a unique u-v path
Pin G. In G + ¢, the subgraph P U {e} is a cycle. Moreover, since G had no cycles, any cycle in
G + e must use the new edge ¢, and then the rest of that cycle is a u—v path in G, which must be
P by uniqueness. Thus G + e has exactly one cycle.

(E) = (D). Assume (E). Fix distinct ,v € V(G) and add the edge ¢ = uv. By (E), the graph
G + e contains exactly one cycle, and this cycle must use e (otherwise it would already be a cycle
in G). Removing e from that cycle leaves a u—v path in G, so at least one such path exists.

For uniqueness, if G had two distinct u—v paths P # Q, then P U {e¢} and Q U {e} would be two
distinct cycles in G + e, contradicting that G + e has exactly one cycle. Hence G has exactly one
u—o path.

O

Corollary 17.3. Let T be a tree.
(i) Every edge of T is a cut-edge (bridge).

(iii) Every connected graph has a spanning tree.

Proof. (i) Fix e = uv € E(T). In a tree there is a unique (1, v)-path, namely the single edge uv.
Deleting e destroys the only (1, v)-path, so T — e is disconnected. Hence e is a cut-edge.

(iii) Let G be connected. If G is already acyclic, it is a tree and we are done. Otherwise, repeatedly
delete an edge that lies on a cycle. This keeps the graph connected and strictly decreases the
number of edges. The process must stop, and it stops exactly when no cycle remains, i.e. at a tree.
Because we only deleted edges and never removed vertices, the resulting tree spans V(G). O

Theorem 17.4 (Spanning tree exchange). Let G be a connected graph and let T, T’ be
spanning trees of G. If e € E(T) \ E(T’), then there exist edges e’, ¢”” € E(T’) \ E(T) such that

Th:=T—-e+e¢ and Th:=T +e—-e"

are both spanning trees of G. (In fact one can take e’ = ¢’, so a single edge swap works in
both directions.)

Proof. Lete = uv € E(T) \ E(T”). Since T is a tree, e is a cut-edge of T. Let the two components
of T — e have vertex sets U and U’ withu e U and v € U".

Because T’ is connected, there is a (1, v)-path in T”. That path starts in U and ends in U’, so at
some point it must cross from U to U’. Therefore there exists an edge

e/ =xyeE(T’') with xel, yel’.

Necessarily e’ ¢ E(T), because T has no edges between U and U’ after removing e. So
e’ € E(T") \ E(T).
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Now add e’ to T — e. It reconnects the two components, and since T — e is acyclic and we added
exactly one edge between components, T := T —e + ¢’ is connected and acyclic, hence a spanning
tree.

Next consider T’ + e. Since T’ is a tree, adding e creates a unique cycle C. This cycle must
cross the cut (U, U’) at least once (it uses e itself), so it contains some edge e’” of T’ that crosses
between U and U’. Choose such an edge e¢”” on C with e” # e. Then e” € E(T’) \ E(T) (same
reason as above), and removing e’’ breaks the unique cycle while keeping the graph connected.
Thus

=T +e—-e¢”

is a spanning tree.

Finally, note we may simply take e” = ¢’, because e’ lies on the (1, v)-path in T’, hence lies on
the unique cyclein T’ +e. |

left side = U right side = U’

Top: Tree T. Removing e = uv splits the vertices into U and U’
Bottom: Tree T’ + uv. In T’, the u—v path crosses via e’ = xy; in T’ + e this creates one cycle

17.3 Distance in graphs

Definition 17.4 (Distance). For vertices x, y € V(G), define the distance
dg(x,y) := length of a shortest (x, y)-path.

If x and y lie in different components, set dg(x, y) = oo.
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Remark 17.1 (Basic properties). Forall x,y,z € V(G):
® d(x,x)=0.

e d(x,y) = d(y, x) (undirected graphs).

* (Triangle inequality) d(x,z) < d(x,y) + d(y, z).

On a connected graph (so distances are finite), d is a metric on V(G).

Definition 17.5 (Eccentricity, diameter, radius). Assume G is connected.

* The eccentricity of a vertex u is

e(u) := max d(u,v).

veV(G)
e The diameter of G is
diam(G) := max d(u,v) = max &(u).
u,veV(G) ueV(G)

¢ The radius of G is
d(G) := min e(u).
rad(G) urer‘l/l(ré)é(u)

Definition 17.6 (Center of a graph). Assume G is connected. The center of G is the set of
vertices with minimum eccentricity:

Center(G) := {u € V(G) : ¢(u) = rad(G)}.

(So Center(G) is the set of vertices that are “as close as possible” to everyone else.)

Theorem 17.5 (Jordan, 1869). If T is a tree, then Center(T) is either

* asingle vertex, or

* two adjacent vertices.

Proof. If [V(T)| < 2 the statement is immediate, so assume |V (T)| > 3.

Let L be the set of leaves of T, and let
T':=T-L

be the graph obtained by deleting all leaves (simultaneously). By Proposition 17.1(ii), deleting a
leaf from a tree yields a tree; repeating over all leaves shows T" is either empty or still a tree.

Key claim: For every vertex x € V(T”),
er(x) = e (x) + 1.

Why? Take a farthest vertex y from x in T. In a tree, any farthest vertex must be a leaf: if y
were not a leaf, it has a neighbor further away from x along the unique x—y path, contradicting
maximality. Thus a farthest vertex is in L, so when we delete all leaves, every farthest vertex



Trees 151

disappears and the maximum distance drops by 1. Conversely, any farthest vertex in T’ is at
distance one less than a farthest leaf in T (just extend the path one step to a leaf), so the drop is
exactly 1.

In particular, all eccentricities in the surviving tree drop by exactly 1, so the set of vertices
minimizing eccentricity does not change when passing from T to T":

Center(T) = Center(T").

Now iterate the leaf-pruning process:
T=Twy>oThoTh>---, Ti+1 := T; — {leaves of T;}.

Each step removes at least two vertices as long as |V (T;)| > 3 (trees have > 2 leaves), so the
process must stop, and it stops exactly when T;, has either 1 vertex or 2 vertices. If T, has 2
vertices, they must be adjacent (otherwise it would not be connected).

Since centers are preserved at every pruning step, we get
Center(T) = Center(T},),

and Center(T,) is either a single vertex or two adjacent vertices. |
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18 Matchings in bipartite graphs

A matching in a graph G is a set of edges no two of which share
an endpoint. Equivalently, each vertex is incident to at most one edge of the matching.

A matching saturates a vertex set S C V(G) if every vertex in S is incident to some edge of the
matching.

Motivation: SDR /jobs and applicants. Suppose there are jobs labeled 1,2, ..., n, and for
each job i we are given a set A; of applicants who are qualified for that job. We ask:

Can we assign a distinct qualified applicant to every job?

Model this question as a bipartite graph G = (X, Y):

e X ={1,2,...,n} represents the jobs.

e Y =J, A represents all applicants who appear in at least one list.
* Put an edge i-a if applicant a is qualified for job i (i.e., a € A;).

Then for each job i € X, its neighborhood is exactly
N(i) = A;.

An X-saturating matching is a matching that touches every job vertex i € X exactly once.

* “touches i” means we pick some edge i-a, i.e. we assign job i to applicant a; € A;;

* “matching edges are disjoint” means no applicant vertex a € Y is used twice for two jobs.

Thus an X-saturating matching is the same thing as a set of distinct representatives (SDR) for {A;}:

choose a; € A, for each i, with all a; distinct.

Necessary condition: Fix a subset of jobs | C X. The only applicants who could possibly fill
jobs in | are those adjacent to at least one job in |, namely the pool

NO) =4

ie]

Any X-saturating matching assigns distinct applicants to the jobs in J. So it would have to choose
|J| different vertices from the set N(J). That is an injection

J = N()),

which is impossible if N ()| < |[J|. Equivalently: if a group of |J| jobs has access to fewer than [J]|
applicants in total, then some job in that group must be left unmatched no matter what you do.

Therefore a necessary condition for an X-saturating matching is
vieX: INDIz I

No subset of jobs is competing for too small a common applicant pool
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It turns out that there are no other obstructions. In 1935, Philip Hall proved that this same
inequality condition already guarantees an SDR exists. In graph language:

18.1 Hall’s Marriage Theorem

Theorem 18.1 (Hall's Marriage Theorem). In an (X, Y)-bigraph G, there exists an X-
saturating matching iff for every S C X,

S| < IN(S)I.

(This is Hall’s condition.)

Proof. Necessity of Hall’s Condition was shown previously. To prove that Hall’s Condition is
sufficient, we induct on the size of X.

Base cases. |X| = 0 is trivial. If |X| = 1, Hall’s condition implies the unique vertex of X has a
neighbor, giving a matching of size 1.

Induction step. Let |X| > 2 and assume the theorem holds for all smaller X.

Case 1: Every nonempty proper subset S C X satisfies [N(S)| > |S|.

Every proper set of jobs has at least one extra available applicant:
IN(S)| = |S| + 1.

So we can safely commit to one job—applicant pair without creating a shortage for the rest.

Pick any job x € X and any neighbor y € N(x), and delete them:
X=X\ {x}, Y =Y \{y},

letting G’ be the induced bipartite graph on (X', Y”).

Hall still holds in G’: Forany S € X’, we have S C X, hence |[N¢(S)| > |S| + 1. Removing y can
delete at most one neighbor, so

INe/(S)] = ING(S)| -1 = 1.

By induction, G” has an X’-saturating matching M’. Since x and y are gone from G’, adding xy
causes no conflicts, and M := M’ U {xy} saturates all of X.

Case 2: There exists a nonempty proper S € X with |S| = [N(S)|.

The jobs in S have exactly |S| available applicants total, so in any full assignment they must
use all of N(S). Hence jobs outside S cannot rely on applicants in N(S), so we solve S and the
remainder separately.

Let
G1:= G[SUN(9)] and Gy = G[(X\S)U(Y\N(9))].

Step 1: Match S inside G;. For any R € S, Hall in G gives |R| < [Ng(R)|, and N¢(R) € N(S), so
Ng,(R) = N¢(R) and Hall holds on the left side S in G;. By induction (since |S| < |X]), G1 has
an S-saturating matching Mj.
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Step 2: Match X \ S inside Gy. Take T C X \ S. In G we removed the applicants N(S), so
Ng,(T) = Ng(T) \ N(S).
Also Ng(T U S) = Ng(T) U N(S), hence
ING,(T)| = [N6(T U S)| = IN(S)|.
By Hallin G, [T U S| < |Ng(T U S)|, and using |[N(S)| = |S| we get
ING,(T)| = [T U S| =S| = T].
So Hall holds on X \ S in G,. By induction, G, has an (X \ S)-saturating matching M.

Step 3: Glue. M uses only vertices in SUN(S), while M, uses only vertices in (X \ S)U(Y'\ N(S)).
These sets are disjoint, so
M = M UM,

is a matching that saturates all of X.

18.2 Hakimi’s Theorem on orientations with given outdegrees

Theorem 18.2 (Hakimi (1965)). Let e(G) = m and let d; be nonnegative integers assigned to
vertices v;. Then G has an orientation with outdegree d; at each v; iff

Zdi =m and YUCV(G): Z d; > e(G[U)).

viel

Proof. (=) In any orientation, each edge contributes 1 to exactly one outdegree, hence }}; d; = m.
If some U violated ., ¢; di > e(G[U]), then applying the handshake lemma in the induced
subgraph G[U] would contradict that all its edges must be oriented out of some endpoint in U.

(<) Build an auxiliary bipartite graph H = (X, Y):

X ={x.:e € E(G)}, Y = U{di copies of v;}.

If e = v;v;, connect x, to every copy of v; and every copy of v;.

A perfect matching in H chooses for each edge e exactly one of its endpoints; orient e out of that
chosen endpoint. Then the outdegree of v; equals the number of its copies matched, namely d;.

So it suffices to prove Hall for H with respect to X. Let S C X be an edge set; let F be the set of
vertices incident to edges in S. Then N(S) consists of all copies of vertices in F, and thus

IN@S)I = > di = e(GIF]) = ISl.

v;eF

Hence Hall holds and H has a perfect matching, giving the desired orientation. O

Corollary 18.3. 1. Every k-regular bipartite multigraph has a perfect matching.

2. Every k-regular bipartite multigraph can be decomposed into k edge-disjoint perfect
matchings.
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Proof. (i) Let G = (X, Y) be k-regular. For any S C X, count edges between S and N(S):
S| - k =e(S,N(S)) < IN(S)|- k,

so |S| < |N(S)|. Hall gives a perfect matching.
(il) Remove one perfect matching; the remaining graph is (k—1)-regular. Apply (i) repeatedly. O

18.3 Birkhoff-von Neumann Theorem

Definition 18.2 (Doubly stochastic matrix). An n X n matrix M is doubly stochastic if all
entries are nonnegative and every row sum and every column sum equals 1.

Definition 18.3 (Convex combination). A convex combination of matrices is a linear combi-
nation with nonnegative coefficients that sum to 1.

Theorem 18.4 (Birkhoff (1946), von Neumann (1953)). Every doubly stochastic matrix is a
convex combination of permutation matrices.

Proof. Induct on the number of nonzero entries of M.

Base case (m = n). If M has exactly n positive entries, then each of the n rows has row-sum
1 so each row contains at least one positive entry, hence exactly one; likewise each column
contains exactly one positive entry. Thus every row and column contains a single 1, so M is a
permutation matrix.

Induction step. Assume m > n and the claim holds for all doubly stochastic matrices with fewer
than m positive entries.

Step 1: Build the support graph and verify Hall. Let G = (X, Y; E) be the bipartite graph with
X ={1,...,n} (columns), Y =A{1,...,n} (rows),

and
(j,i)eE < M; >0.

(So arow-vertex i € Y is adjacent exactly to those columns j € X where M;; is positive.)
We claim G satisfies Hall’s condition on the left side Y: for every S C Y,

IN(S) = |S].

Indeed, if N(S) C X is the set of columns that have a positive entry in some row of S, then rows
in S have no positive entries outside N(S), hence

IDIRLEDHNLED RS

i€S jeN(S) i€S j=1 i€S

On the other hand, for each fixed column j, the column sum is 1, so

n

:E]‘A4U < :E:‘A4ﬁ =1.

ieS i=1
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Summing this over j € N(S) gives

DU My < 1= ING)L

i€S jeN(S) jeN(S)

Combining with the previous equality yields |S| < [N(S)|, proving Hall.
Therefore G has a perfect matching P.

Step 2: Subtract a scaled permutation matrix and keep nonnegativity. Let 7 be the permuta-
tion corresponding to the matching P, i.e. (n(i), i) € E for all rows i, and let P also denote the
associated permutation matrix:

ij = :
! 0 otherwise.

{1 if j = (i),

Since (7t(i), i) € E, we have M; ;) > 0 for all i. Define

€:= min M; »; > 0.
1<i<n !

Now set

M’ :=M — ¢P.
Then M’” > 0 entrywise, because we subtract ¢ only from the matched entries M; ,(;), and ¢ was
chosen to be at most each of them.

Also, in every row and every column, exactly one entry of P equals 1, hence
n n n n n n
PIVED VIS IRTEISD SV SIS IR
j=1 j=1 j=1 i=1 i=1 i=1

Finally, M’ has strictly fewer positive entries than M: at least one matched entry achieves the
minimum ¢, so for some ip we have M ;o,ﬂ(io) = M (i) — € = 0, and no previously-zero entry
becomes positive.

Step 3: Renormalize and apply induction. Define

1
1-¢

M =

Then M" is doubly stochastic and has fewer than m positive entries. By the induction hypothesis,
M"" is a convex combination of permutation matrices:

r r
M7 =3 4Q%,  Acz0, Y A=1,
k=1 k=1

where each Q) is a permutation matrix.
Multiply by 1 — ¢ and substitute M" = M — ¢P:

r
M-¢P=(1-c¢) Z A,Q®),
k=1
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Hence
s

M=eP+ > ((1-e)A) QY.

k=1

The coefficients are nonnegative and sum to

T
8+Z(1—£)/\k:e+(1—e)-1:1,
k=1

so this is a convex combination of permutation matrices. This completes the induction. O

18.4 Defect formula in bipartite graphs

Definition 18.4 (Matching number). Let a’(G) denote the maximum size of a matching in
G.

Assume G is bipartite with bipartition (X, Y).

Definition 18.5 (Defect). For S C X, the defect of S is
d(S) := |S| - IN(S)|.

(So d(S) = 0 is exactly Hall’s equality case.)

Theorem 18.5 (Defect Formula). For a bipartite graph G = (X, Y),

& (G) = rSni)rg(|X| - d(S)) = |X| - max(S).

c

Proof. Let S € X achieve the minimum in the formula. Form G’ by adding d(S) new vertices to
Y, each adjacent to every vertex of X.

We claim G’ satisfies Hall’s condition. Let S’ € X. Then in G’
ING/(S)| = ING(S')| +d(S) 2 |S| = d(S) +d(S) > |S'],

since d(S) > d(S’) by maximality of S among defects.

Hence G’ has an X-saturating matching. Restricting to G yields a matching covering |X| — d(S)
vertices of X, so a’(G) > |X]| - d(S).

Conversely, any matching in G covers at most |[N(S)| vertices of S, so leaves at least d(S) vertices
of X unmatched. Thus a’(G) < |X]| - d(S). O

18.5 Vertex covers and Konig-Egervary

Definition 18.6 (Vertex cover). A setS C V(G) is a vertex cover if every edge has at least one
endpoint in S. Let f(G) be the minimum size of a vertex cover.
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Lemma 18.6 (Vertex covers vs. independent sets). A setS C V(G) is a vertex cover of G if
and only if V(G) \ S is an independent set.

Proof. (=) Assume S is a vertex cover and let I := V(G) \ S. If I were not independent, there
would be an edge uv with u,v € I. But then u,v ¢ S, so the edge uv has no endpoint in S,
contradicting that S is a vertex cover. Hence I is independent.

(&) Assume [ := V(G) \ S is independent. Let uv be any edge of G. If neither endpoint were in
S, then both endpoints would lie in I, contradicting that I is independent. Thus every edge has
at least one endpoint in S, so S is a vertex cover. O

Lemma 18.7. For every n-vertex graph G,
a(G) + B(G) =n,

where a(G) is the maximum size of an independent set and f(G) is the minimum size of a
vertex cover.

Proof. By Lemma 18.6, S is a vertex cover iff V(G) \ S is independent. So for any vertex cover S
we have

[V(G)\ S| < a(G) = n—|S| < a(G) - S| > n — a(G).

Taking the minimum over all vertex covers gives f(G) > n — a(G).

Conversely, let I be a maximum independent set with |I| = a(G). Then V(G) \ I is a vertex cover
by Lemma 18.6, hence
B(G) <V(G)\I| =n - a(G).

Combining both inequalities yields f(G) = n — a(G), i.e. a(G) + B(G) = n. O

Lemma 18.8. For every graph G,
a'(G) < B(G) < 22(G),

where a’(G) is the size of a maximum matching and B(G) is the size of a minimum vertex
cover.

Proof. Lower bound a’(G) < (G). Let M be a matching. Any vertex cover must contain at least
one endpoint of each edge in M, and the edges in M are disjoint, so covering them requires at
least |M| vertices. Thus B(G) > |[M]| for every matching M, hence B(G) > a’(G).

Upper bound B(G) < 2a’(G). Let M be a maximal matching (cannot be extended by adding an
edge). Let S be the set of endpoints of edges in M; then |S| = 2|M|. We claim S is a vertex cover:
if there were an edge uv with u,v ¢ S, then u and v are unmatched by M, so the edge uv could
be added to M, contradicting maximality. Hence every edge meets S.

Therefore f(G) < |S| = 2|M)|. Finally, since |[M| < a’(G) (a maximum matching is at least as large
as any matching), we get 5(G) < 2a/(G). |
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Warning: maximal vs. maximum.

A maximum matching is one with the largest possible size (globally optimal). A maximal
matching is one that cannot be extended by adding another edge (locally stuck everywhere).
Maximal # maximum: a maximal matching can be far from optimal.

Proposition 18.9. Let M be a maximal matching in a graph G, and let M* be a maximum
matching. Then
M| > 3 M.

Equivalently, any maximal matching is a 2-approximation to a maximum matching.

Proof. Let S be the set of endpoints of edges in M, so |S| = 2|M]|. Since M is maximal, S is a vertex
cover: if an edge had both endpoints outside S, we could add it to M, contradicting maximality.

Now every edge of the maximum matching M* must meet this vertex cover S. Because edges in
a matching are disjoint, each vertex of S can cover at most one edge of M*. Hence

M| < IS| = 2IM].

Rearranging gives |[M| > %lM*l. m|

Theorem 18.10 (Konig-Egervary, 1931). In every bipartite graph G,
o'(G) = B(G).

Equivalently: maximum matching size equals minimum vertex cover size.

Proof. First, every edge of a matching must be covered by a different vertex, hence f(G) > a’(G).
For the reverse inequality, apply the Defect Formula. Choose T € X such that

a'(G) = X[ = |T| + IN(T)I.

Consider the set

C:=(X\T) U N(T).
We claim C is a vertex cover. Indeed, any edge not incident to X \ T must meet T, hence meets
N(T) on the other side. So no edge is uncovered.

Therefore
B(G) < C| = [X| = |T| + N(T)| = &’(G).

18.6 Edge covers and Gallai’s Theorem

Definition 18.7 (Edge cover). An edge cover is a set of edges that covers all vertices. Let
B’(G) be the minimum size of an edge cover.
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Theorem 18.11 (Gallai). If G has no isolated vertices and |V (G)| = n, then

o/ (G) +B'(G) = n.

Proof. Let M be a maximum matching.

Upper bound. Build an edge cover by taking all edges of M and for each vertex not covered by M,
add one incident edge. This yields an edge cover of size n — |M]|, so

B(G)<n-a(G) = a(G)+p(G)<n.

Lower bound. Let L be a minimum edge cover. In L, each edge has an endpoint not covered by
any other edge of L; otherwise we could delete it and still cover all vertices. Hence L is a forest
with no P4, so every component is a star. Say L has k star components. Then

IL| =n — k.
Taking one edge from each star gives a matching of size k, so a’(G) > k. Therefore

a(G)+p(G)2k+(n—k) =n.

O
Theorem 18.12 (Konig, 1916). If G is bipartite with no isolated vertices, then
a(G) =p'(G).
Proof. Using the identities
a(G)+p(G)=n, & (G)+p'(G)=n,
and Konig-Egervary a’(G) = B(G), we get
a(G)=n-B(G) =n-2a'(G) =p'(G).

O

Legend.

1. a(G) = maximum independent set size
2. a’(G) = maximum matching size

3. B(G) = minimum vertex cover size

4. B’(G) = minimum edge cover size
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Statement General graphs | Bipartite graphs | Attribution / note

a(G)+B(G)=n equality equality Complement of a vertex cover
is an independent set.

a’(G) < B(G) inequality equality <is trivial; = is Kénig-Egervéry
(1931).

B(G) < 2a'(G) inequality inequality Endpoints of a maximal match-

ing form a vertex cover.

a'(G) +p'(G) = n
(no isolated vertices) equality equality Gallai (1959); assumes no iso-
lated vertices.

a(G) = p'(G)

(no isolated vertices) | false in general equality Kénig (1916), derived from
Kénig-Egervary + the identities
above.

19 Matchings in general graphs

A k-factor of G is a k-regular spanning subgraph. A 1-factor is
called a perfect matching.

An odd component is a connected component with an
odd number of vertices. Let 0(G) be the number of odd components of G.

19.1 Tutte’s 1-factor theorem

Motivation: Hall’s theorem completely settles perfect matchings in bipartite graphs by looking
at neighborhoods. How about all graphs in general?

We want a clean description of all graphs that fail to have a perfect matching, so we start by
listing the most obvious obstructions and then generalize.

The first obstruction is parity of the number of vertices: if [V(G)| is odd, then no matching can
cover all vertices, since edges cover vertices two at a time.

The parity also shows up more subtly in disconnected graphs. Even when |V (G)| is even, if G
has a connected component with an odd number of vertices (an odd component), then a perfect
matching is still impossible: clearly any matching pairs vertices within components, so an odd
component must leave at least one vertex unmatched.

Now imagine G is connected, but removing a vertex u causes G — u to split into (say) two odd
components. In each odd component of G — 1, some vertex must remain unmatched internally,
and the only way to match it is to use an edge to the deleted vertex u. But u can be matched to
at most one vertex, so if G — u has two odd components, at least one leftover vertex cannot be
rescued. No perfect matching exists.

Removing vertices can create many odd components, and each odd component needs an “escape”
to the removed set. Formally, let U C V(G) and consider G — U. In any matching, every odd
component of G — U must contribute at least one vertex that is unmatched inside that component
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(because it has odd order). The only way to cover that leftover vertex is to match it across an
edge into U. Thus each odd component of G — U demands at least one distinct vertex of U, so a
perfect matching can exist only if

o(G-U) < |U] for every U C V(G),

where 0(G — U) denotes the number of odd components of G — U.

This is why Tutte’s condition is stated in terms of odd components. Tutte’s theorem says this
necessary parity obstruction is also sufficient: the only reason a general graph fails to have a perfect
matching is that, after removing some set U, too many odd components are created.

If G has a 1-factor, then for every S € V(G),

o(G-S) <|[S].

Theorem 19.1 (Tutte, 1947). A graph G has a 1-factor iff
0o(G-S5)<IS| forall S C V(G).

(This is called Tutte’s condition.)

The following proof of Tutte’s theorem is due to Laszl6 Lovész.

Proof. Applying Tutte’s condition with X = @ yields o(G) = o(G — @) < |@| = 0, so G has no odd
components. In particular, every component of G has even order, hence |V (G)| is even.

Suppose for contradiction, that there exists a graph on n vertices satisfying Tutte’s condition but
having no perfect matching. Among all such n-vertex graphs, choose one G with the maximum
possible number of edges. Thus:

e G satisfies 0(G — X) < |X] for every X C V(G),
* G has no perfect matching, and

¢ adding any missing edge to G produces a graph with a 1-factor (indeed, G # K, else it has a
perfect matching)

Define
U :={v € V(G) : v is adjacent to every other vertex of G},

and
W:=V(G)\U.

We call vertices in U as universal vertices, and vertices in W as non-universal vertices.

Let G” be the subgraph of G induced by W. Note that G” = G - U.

Claim: G" is a disjoint union of cliques

Equivalently, adjacency is an equivalence relation on W. Reflexivity and symmetry are automatic;
we must show transitivity.

Lemma 19.2. Ifa,b,c € W with ab, bc € E(G), then ac € E(G).
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Proof. Suppose for contradiction, that a, b, c € W with
ab,bc € E(G) but ac ¢ E(G).

Since b € W is not universal, there exists some vertex d with bd ¢ E(G).
By maximality of G with respect to edges:

¢ In the graph G1 := G + ac, there is a 1-factor F;.

¢ In the graph G, := G + bd, there is a 1-factor F».

Moreover, each of the added edges must lie in the corresponding 1-factor: if ac ¢ F, then F;
would be a 1-factor of G; similarly for bd and F,. Thus

ac € Fq, bd € F,

and clearly ac ¢ F,, bd ¢ F;.

Consider the union F; U F; as a graph on V(G), with edge set contained in E(G) U {ac, bd}.

Lemma 19.3. F; UF, decomposes into a disjoint union of cycles and isolated edges; on each
cycle, edges alternate between F; and F».

Proof. Each vertex has degree 1 in Fy and in F>, hence degree < 2 in H := F{ U F,. Thus every
component of H is a path, a cycle, or a single edge.

If v has dy(v) = 1 and e = vw is its unique incident edge in H, then both matchings must use e
atov,so e € F; N F,. At w the same argument shows dy(w) = 1; otherwise some matching would
give w degree 2. Hence this component is just the isolated edge vw and not a longer path.

If a component has no vertex of degree 1, then all its vertices have degree 2, so it is a cycle. At
each vertex on this cycle one incident edge is from F; and one from F;, so the edges alternate
between F; and F>.

Thus components are alternating cycles or isolated edges, and in particular there are no nontrivial
paths. m|

Let C be the unique cycle in F; U F, that contains the edge ac. We distinguish two cases
depending on whether bd lies on C.

Case 1: bd ¢ C.

Along C the edges alternate between F; and F; in particular ac is an Fi-edge on C. Define
Fi = (P1 \ E(C)) U (Pz N E(C)).

On C we swap the roles of F; and F,; outside C we leave F; unchanged.

Because C is an alternating cycle, every vertex on C still has degree 1 in F;, and vertices outside
C are unchanged; thus F is a 1-factor of G;.

Note that:
* ac € E(C)NFyand ac € F», so ac is removed and not reinserted; hence ac ¢ F;.

* All edges of C other than ac and bd belong to E(G). Since bd ¢ C in this case, every edge of C
other than ac actually lies in E(G).
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Therefore every edge of F] belongs to E(G), so F] is a 1-factor of G itself, contradicting that G
has no 1-factor.

Thus Case 1 is impossible.

Case 2: bd € C.

Now C contains both ac and bd. Deleting ac and bd from C splits it into two vertex-disjoint
paths. Exactly one of these paths has d as an endpoint; call that path P.

We may relabel a and c (if necessary) so that P has endpoints 2 and d: we assume P goes from a
tod.

Consider the cycle
C’:==PU{bd,ab}.

Here ab € E(G) by assumption, and bd is the added edge used in G,.

Lemma 19.4. C’ is an alternating cycle with respect to F».

Proof of claim. On C, edges alternate between F1 and F,. The path P C C therefore alternates
between F; and F,. The edge bd is in F, by construction, whereas ab ¢ F, because b is already
matched to d in F,. Tracing around C’ we encounter edges alternately in F, and outside F», so
C’ is an Fp-alternating cycle. O

Define
Fj:= (F2\ E(C")) U (E(C") \ F2),

i.e., swap membership of edges along C’. Again, since C’ is alternating, F is a 1-factor of Go.

Moreover:

* bdis an Fy-edge of C’, so it is removed and not reinserted; thus bd ¢ F;.
* All other edges of C’ lie in E(G).

Hence every edge of F] belongs to E(G), so F is a 1-factor of G, contradicting again that G has
no 1-factor.

Both cases lead to contradictions. Therefore our assumption that ab, bc € E(G) but ac ¢ E(G) is
false, and adjacency is transitive on W.

Thus G”” = G[W] is a disjoint union of complete graphs (each component is a clique). O
Let the connected components of G”” be
Hl/"'/Ht/ K1/~'-/KS/

where each H; has odd order and each K i has even order (so there are t odd components and s
even components in G”).

Lemma 19.5. If t < |U|, then G has a 1-factor.

Proof. Assume t < |U|. We explicitly construct a perfect matching M of G.

Step 1: Match inside even components. Each K; is a complete graph of even order, hence
admits a 1-factor. Fix one 1-factor M; in each K;.
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Step 2: Use U to fix parity in odd components. For each odd component H; (a clique of odd
order), choose a vertex u; € V(H;). Every vertex in U is adjacent to all vertices of G, so in
particular each u; is adjacent to every vertex of U.

Since t < |U|, we can choose t distinct vertices vy, ..., v; € U and match them with uq, ..., u;
via edges
01U1,...,0:Us € E(G)

Step 3: Match remaining vertices in odd components. For each i, the induced subgraph
H; —{u;} is a clique on |H;| — 1 vertices, which is even. Thus it has a 1-factor; call it N;.

Step 4: Match remaining vertices in U. Let
R:=U\A{v1,...,v:}

be the set of vertices in U not yet matched.

We claim that |R| is even. Since G has no odd components, we already know |V (G)| is even.
Count the vertices already matched in Steps 1-3:

* For each even component K;, M; matches all vertices of K.

e For each odd component H;, the matching N; covers V(H;) \ {u;}, and the edge v;u; covers u;
and v;.

Thus all vertices outside R are matched in pairs; their total number is even, so |R| is also even.

The induced subgraph G[R] is complete (as a subset of U), so G[R], being a clique on an even
number of vertices, has a 1-factor L.

Step 5: Combine all edges. Define
M = (UM]) v (UNZ-) U {vquq,..., 0} U L.
j i

By construction:

* Each vertex of each K; is incident with exactly one edge of M;.

e Each vertex of each H; is incident with exactly one edge in N; U {v;u;}.

* Each vertex of U is incident with exactly one edge in {vqu1, ..., vsus} U L.

These sets of edges are pairwise vertex-disjoint, so M is a 1-factor of G.

This contradicts the assumption that G has no 1-factor. Therefore our assumption t < |U] is
false. O

Hence we must have
t > |U.

But the components Hjy, ..., H; are exactly the odd components of G”, and G” = G[W] = G - U.
Thus
o(G-U)=t>|U|

This contradicts Tutte’s condition in G. Therefore no such counterexample graph G exists. Hence
every graph satisfying Tutte’s condition has a 1-factor, completing the proof of the sufficiency
direction of Tutte’s theorem. m|
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Definition 19.3 (Deficiency). For S € V(G) define the deficiency
def(S) := o(G - S) -S|
Define

def(G) := slg}/a()é) def(S).

Lemma 19.6 (Parity). For every S C V(G),

def(S) =0o(G-S)—|S|=n (mod 2),

where n = [V (G)|.

Idea. Count (0(G - S) +1S]) modulo 2 by partitioning V(G) into components of G — S plus S. O

Fix T € V(G) with def(T) = def(G), and among such sets choose T maximal under inclusion.

Lemma 19.7. Let T C V(G) be such that defc(T) = def(G) and, among all such sets, T is
maximal with respect to inclusion. Then:

1. If u lies in an odd component C of G — T, then C — u satisfies Tutte’s condition (i.e. C — u
has a 1-factor).

2. G =T has no even component.

Proof. Recall the definitions:

defg(S) :=0o(G—-S)—19|, def(G) := max defg(S),
ScV(G)

where 0o(H) denotes the number of odd components of a graph H.

(i) C — u satisfies Tutte’s condition.

Let C be an odd component of G — T, and fix u € V(C). Consider the graph C — u, and for each
S € V(C — u) define the local deficiency

defc_u(S) :=0o((C —u)-S) —|S|.

We want to show defc_,(S) < 0 for all S, which is exactly Tutte’s condition on C — u.

Key idea. If for some S the local deficiency defc_,(S) were positive, then by combining S with
T and u we would build a larger set T” := T U S U {u} whose global deficiency defs(T’) is at
least as large as defg(T), contradicting the maximality of T

Fix S € V(C — u). Define
T':=TUSU{u}.
We compare defg(T’) with defg(T).

First, analyze the odd components:
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¢ In G - T, the component C is odd. When we pass from G — T to G — T’, we are removing
the vertices u and S from C, and we do nothing to any other component of G — T, because
S € V(C — u) lies entirely inside C.

* The other components of G — T (besides C) remain exactly as they are when we goto G - T”,
so they keep their odd/even status.

Inside C, after removing u and S, the remaining part is (C — u) — S, whose odd components are

exactly the ones counted by o((C — u) - S).

Therefore the total number of odd components of G — T” is
o(G=T")=(o(G=T)-1) +o((C—u)-5).
(The “—1" accounts for the fact that C itself disappears and is replaced by the components of
(C-u)-S.)
Now compute the deficiency:
defc(T’) = o(G-T") - |T’|
=(0(G=T)=1+0((C-u)=9)) — (IT|+1S|+1)
(0(G=T)—1T|) + (o((C —u)—S)—|S|-2)
= defg(T) + defc_,(S) - 2.

Thus we have the exact relation

defG(T’) = defG(T) + defc_u(S) - 2.

Now recall the parity lemma (applied to C — u): since C is odd, C — u has an even number of
vertices, and for any S C V(C — u) we have

defc_u(S) = [V(C—u)|=0 (mod 2),

so defc_,(S) is an even integer.

Suppose, for contradiction, that there exists S with defc_,(S) > 0. Then defc_,(S) > 2, and so

defc(T”) = defg(T) + defc—,(S) — 2 > defs(T).

Now two things happen:

¢ Since def(G) is the maximum deficiency, we must have defg(T’) < def(G) = defs(T), so in fact
defG(T’) = defc(T).

* ButT’ 2 T (we added at least u), so we have found a strictly larger set with the same maximal
deficiency, contradicting the assumption that T was maximal by inclusion among those sets.

Therefore our assumption was impossible, and we conclude that

defc—,(5) <0 forall S C V(C —u),

which means C — u satisfies Tutte’s condition.

(ii) G — T has no even component.

Assume, for contradiction, that G — T has an even component D. We will enlarge T by one
vertex in D without changing its deficiency, again contradicting the maximality of T'.
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Because D is connected and finite, we can choose some vertex v € D that is not a cut vertex of D
(for instance, a leaf of a spanning tree of D). Then D — v remains connected, and since |D| is
even, |D — v|is odd. So D — v is a single odd component.

Now consider T’ := T U {v}. Then
G-T'=(G-T)-vo.

In G — T the component D was even, so it did not contribute to o(G = T). In G — T/, that same
vertex set becomes D — v, which is an odd component. All other components are unaffected.

Thus the number of odd components increases by 1:
o(G=-T")=0(G-T)+1.
At the same time, the size of T increases by 1:
IT’| = |T|+ 1.
Hence

defg(T') =o(G-T)—|T'|=(0(G-T)+1) - (IT|+1) = o(G - T) —|T| = defs(T).

So T’ has the same (maximal) deficiency as T, but T’ 2 T, again contradicting the maximality of
T with respect to inclusion.

Therefore no such even component D can exist, and G — T has only odd components. |

19.2 Berge-Tutte formula

Theorem 19.8 (Berge-Tutte Formula). For every graph G on n vertices,

a’'(G) = %(n — def(G)).

Proof. Let d := def(G) = maxgs def(S). For any S, a matching misses at least def(S) vertices,
hence

a'(G) < %(n — def(S)),

so a'(G) < 3(n —d).
It remains to find a matching covering all but d vertices. Proceed by induction on 7.

Let T be maximal with deficiency d. By the previous lemma, G — T has only odd components,
and for every odd component C and every u € V(C), the graph C — u has a 1-factor; by induction,
each C — u has a perfect matching.

There are |T| + d odd components of G — T It suffices to match the vertices of T into distinct
odd components.

Form an auxiliary bipartite graph H as follows:
e left class: the vertices of T,
¢ right class: the odd components of G - T,

¢ we put an edge tC in H if the vertex t € T has at least one neighbor in the component C (in
the original graph G).
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Goal. We want to use Hall’s theorem on H to match every vertex t € T to a distinct odd
component of G — T Intuitively, this means: each vertex of T will be “assigned” to a different
odd component where it has a neighbor, so we can later attach ¢ into that component and use
the perfect matching of C — u inside.

Thus we must show that H satisfies Hall’s condition:

VSCT: S| < INH(S)I.

Fix some subset S C T. We will prove |S| < |[Ny(S)| by comparing deficiencies.
First recall that
defc(T)=d and defg(T)=0(G-T)—|T|
SO
o(G-=T)=|T|+d.
In words: the graph G — T has exactly |T| + d odd components.

Now consider the smaller set T \ S. The graph G — (T \ S) is obtained from G — T by adding back
the vertices of S (together with their incident edges). We want a lower bound on the number of
odd components of G — (T \ S).

Key observation. An odd component C of G — T is adjacent to S in H iff some vertex of C has a
neighbor in S (in G).

Now look at G — (T'\ S):

¢ The vertices of S are present again, so any odd component of G — T that has a neighbor in S
might merge with some other components or change its structure. These components are
exactly those in N (S).

¢ On the other hand, any odd component C of G — T that is not adjacent to S in H (i.e. has no
edges to S) is completely untouched by adding back S: no new edges connect C to anything,
so C remains an isolated component of G — (T \ S), and it stays odd.

Therefore, when passing from G — T to G — (T \ S), at least all odd components of G — T that are
not in Ng(S) remain odd components. Hence

0(G—-(T\S)) > (all odd components of G — T) — (those adjacent to S) = (|T| + d) — [INu(S)|.

Now compute the deficiency of T \ S:

defc(T\ S) =0(G—(T\S)) = [T\ S|
> (IT|+d) = INu(S)| - (IT| - |S)
=d — [Nu(S)| +1S|.

By the definition of d = def(G) as the maximum deficiency over all vertex sets, we know
defc(T \ S) <d.
Combining this with the inequality above gives
d—|Nu(S)|+1S| < defg(T\S) < d,

SO
S| < INH(S)I.
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Since this is true for every S C T, the bipartite graph H satisfies Hall’s condition and therefore
has a matching that saturates T

Finishing the construction. Thus we can assign to each t € T a distinct odd component C of
G — T in which t has a neighbor. In each such C, we already know (from part (i)) that for any
chosen vertex u € C, the graph C — u has a perfect matching. We choose u to be the neighbor of
tin C.

So for each matched pair (¢, C):

¢ take the perfect matching of C — u inside C,
¢ add the edge tu.

This covers every vertex of T and all vertices in those components except for exactly one leftover
vertex per component. Counting carefully (using that G — T has |T| + d odd components) shows
that in total we miss exactly d vertices of G.
Hence we obtain a matching of size
n—d
>

SO d
’ n-—
a'(G) = 7

Together with the upper bound a’(G) < (n — d)/2 proved earlier, this yields

#(G) = %(n _d),

which is the Berge-Tutte formula.

Theorem 19.9. Let G be a k-regular multigraph on an even number n of vertices. Assume
G is (k — 1)-edge-connected (i.e., removing any k — 2 edges keeps G connected, equivalently
every nontrivial edge cut has size at least k — 1). Let G’ = G — F where F is any set of k — 1
edges. Then G’ has a 1-factor (a perfect matching).

Proof. We argue by contradiction. Suppose G’ has no perfect matching. By Tutte’s 1-factor
theorem, there exists a set S C V(G’) such that

o(G'=S)—-15| > 2. (%)
So the deficiency of S in G’ is at least 2.

Let m be the number of edges of G’ that join S to the odd components of G’ — S (i.e. edges with
one endpoint in S and the other in an odd component of G - S).

Upper bound on m. Every vertex in G has degree k, and G’ is obtained from G by deleting
k — 1 edges, so in G’ every vertex has degree at most k. Each edge counted in m is incident with
exactly one vertex of S, and each vertex of S is incident with at most k edges in G’. Hence

m < k|S|. (6)

Now we derive a lower bound on m using regularity and edge-connectivity.
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Fix an odd component H of G’ —S. Let {y be the number of edges of G with exactly one endpoint
in H:

Uy :={uv € E(G):ueV(H), v¢ V(H)}.
In other words, ¢y is the size of the edge cut [V(H), V(H)] in G.

Because G is k-regular,

Z dc(v) = k|H|.

veV(H)

Counting degrees inside H another way: each edge of H contributes 2, and each edge leaving H
contributes 1. Thus

D dc(v) = 2E(H)|+ b,

veV(H)

hence
klH| =2|EH)|+{y = {y = k|H|-2|E(H)|.

Parity of {. The term 2|E(H)| is even, so {g has the same parity as k|H|. Since H is an odd
component, |H| is odd, hence
g =k|Hl=k (mod 2).

Using edge-connectivity. G is (k — 1)-edge-connected, so every nontrivial edge cut has size at
least k — 1; in particular {5 > k — 1. Combining with {5 = k (mod 2) forces

by > k. (7)
(Indeed, the smallest integer > k — 1 with the same parity as k is k.)

Relating ¢y to m and the deleted edges.
For each odd component H of G’ — S, define:

* ap =number of edges of G’ with one endpoint in H and the other in S. These are exactly the
edges of G’ from H to S. By definition,
m = Z ay.

H

* by = number of edges in the deleted set F with exactly one endpoint in H.

Claim: For each odd component H,
¢ H =4y + b H-

Reason: any edge of G with exactly one endpoint in H either:

e survives in G’ and then must go from H to S (it cannot go to another component of G’ - S, or
those components would be connected), and is counted in ay;

e oritis one of the deleted edges in F and is counted in bp.

There are no other possibilities. Thus ¢y = ay + by.

Summing over all odd components of G’ — S gives

Z(}H:ZQH-"ZbH:m-"ZbH'
H H H H
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From (7), summing over all odd components yields

Z‘H > k-o(G' - S).
H

So
m+ZbH > k-o(G - 9).
H

Each deleted edge in F can be incident with at most two odd components of G’ — S, so it
contributes at most 2 to the sum ) by. Therefore

Z by < 2|F|=2(k -1),
H
and hence
m+2k-1) > k-o(G'-5),
ie.
m > k-o(G'—=8)-2(k-1). (8)
Final contradiction. Combine the upper bound (6) and lower bound (8):
kIS| = m > k-0o(G'=S)—-2(k-1),

SO
k(o(G'=S)—18]) < 2(k-1).

Dividing by k > 0,

2(k-1)

P
Since @ < 2for all k > 2 and the left-hand side is an integer, we must have

o(G' = S) 18| < 1.

0o(G' = S)— 18] <

But this contradicts (%), which says o(G’ — S) — |S| > 2. Therefore our assumption that G’ has no
perfect matching was false, and G” does in fact have a perfect matching. O

Remark 19.1 (Petersen (1891)). If G is 3-regular and has no cut-edge (i.e., is 2-edge-connected),
then G has a 1-factor. This is the case k = 3 of the theorem.

Theorem 19.10 (Berge). Let G be a k-regular multigraph on an even number of vertices,
and assume G is (k — 1)-edge-connected. Then every edge of G lies in some perfect matching.

Proof. Fix an edge uv € E(G). Remove the other k — 1 edges incident to u, obtaining a graph G’.
By the previous theorem G’ has a perfect matching, and since u has only the edge uv remaining,
that matching must contain uv. |

Definition 19.4 (f-factor). Given G and a function f : V(G) — N, an f-factor of G is a
spanning subgraph H C G such that

du(v) = f(v) forallv € V(G).

A k-factor is an f-factor with f = k. A 1-factor is a perfect matching.
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Theorem 19.11 (Petersen 2-factor theorem). Every 2k-regular multigraph has a 2-factor. In
fact, every 2k-regular multigraph decomposes into edge-disjoint 2-factors.

Proof. Assume G is connected (work componentwise otherwise). Since all degrees are even, G
has an Eulerian circuit. Orient each edge in the direction traversed by the Eulerian circuit. Then
each vertex has indegree k and outdegree k.

Build a bipartite graph B = (U, W) with U = W = V(G), and put an edge u € U tow € W for
each directed edge u — w in G. Then B is k-regular bipartite, hence decomposes into k perfect
matchings. Each perfect matching selects exactly one outgoing edge and one incoming edge at
every vertex of G, which forms a 2-factor. Taking all k perfect matchings yields a decomposition
of G into k 2-factors. m|

19.3 Algorithmic aspects of matchings

This section is about how you can actually find matchings (not just prove they exist). The recurring
theme is the same in every setting:

Find an augmenting path, flip it, and your matching gets bigger.

Definition 19.5 (M-alternating and M-augmenting paths). Let M be a matching in G. A
path P is M-alternating if its edges alternate between belonging to M and not belonging to
M. An M-alternating path whose endpoints are not covered by M is an M-augmenting path.

Theorem 19.12 (Berge). A matching M in G is maximum iff there is no M-augmenting
path.

Proof. (=) If P is an M-augmenting path, then replacing the M-edges of P by the non-M edges
of P increases the size of the matching;:

M’ := MAE(P) satisfies |[M’|=|M|+1,

contradicting maximality.

(&) Assume M has no augmenting path, but M’ is a larger matching. Consider the symmetric
difference
F:=MaM'.

Every vertex has degree at most 2 in F, so each component of F is an even cycle or a path
alternating between edges of M and M’. Since [M’| > |M|, some component must be a path with
more M’-edges than M-edges. Such a path begins and ends with M’-edges, so its endpoints are
not covered by M, making it an M-augmenting path—contradiction. m|

Algorithms for bipartite matchings: In bipartite graphs G = (X, Y), augmenting paths are
easy to compute since no odd cycles exist. There are efficient polynomial-time algorithms for
maximum matching (e.g. Hopcroft-Karp).

The key structural bonus is Kénig-Egervary:

a’(G) = B(G) (bipartite G).
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This is algorithmically important because minimum vertex cover is NP-hard in general graphs:
outside the bipartite world, we should not expect an efficient exact algorithm.

In bipartite graphs, however, Kénig-Egervary says the “hard” problem (minimum vertex cover)
collapses to the “easy” one (maximum matching):

compute a maximum matching M (polynomial time), then extract from M a vertex
cover C with |C| = |M| (also polynomial time).

In general graphs, the augmenting-path search can be obstructed by odd cycles. Edmonds’
blossom algorithm handles this by contracting odd cycles during the search.

Edmonds’ idea is: treat the entire odd cycle as a single super-vertex. After contracting the
blossom, the parity ambiguity disappears and the search can continue in the smaller graph. If
an augmenting path is found in the contracted graph, you can expand the blossom and lift that
augmenting path back to the original graph (there is a guaranteed way to route through the
cycle so the matching increases by 1).

Approximation algorithms for maximum matchings and minimum vertex covers

From earlier we have:

@) a’(G) < B(G) < 2a/(G).

(b) If M is a maximal matching and M" is maximum, then
M| > $IM| = 1a/(G).

These two facts turn one greedy routine into several certified approximations.

Greedy routine. Build a maximal matching M (scan edges; add an edge if both endpoints
are free). This runs in O(|E|) time.

(1) A 2-approximation for maximum matching size. By (b), we have a’(G) < 2|M|. So M is a
factor-2 approximation to the maximum matching: it is guaranteed to be at least half-optimal.

(2) A certified factor-2 vertex cover. Let C be the set of endpoints of edges in M. Maximality
implies C is a vertex cover, and |C| = 2|M]|.

Moreover, any vertex cover must hit every edge in M, so f(G) > |M|. Hence we get the certificate
sandwich
M| < B(G) < IC| = 2|M].

So in linear time we produce both

¢ a feasible cover C of size 2|M|, and

* amatching lower bound |M| proving no cover smaller than |M]| exists,
which immediately certifies that C is within factor 2 of optimal.

Bottom line. Even though minimum vertex cover is NP-hard in general graphs, the previously
proved lemmas imply that a maximal matching computed in O(|E|) time simultaneously yields:

a large matching (within factor 2 of optimal) and a small cover (within factor 2 of optimal),
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20 Connectivity

20.1 Vertex connectivity

Recall: Let G = (V,E)be agraphand let S C V. We write G — S for the graph obtained from G
by deleting all vertices in S and all edges incident to those vertices. Equivalently, G — S is the
induced subgraphon V' \ S.

Definition 20.1 (Cut-set / vertex cut). A setS C V(G) is a cut-set (or vertex cut) if G — S is
not connected.

Definition 20.2 (k-connected). A graph G is k-connected if
[V(G)| >k and forevery S € V(G)with |S| <k, G — S is connected.

You must delete at least k vertices before you can disconnect the graph.

Definition 20.3 (Vertex connectivity). The (vertex) connectivity of G, denoted x(G), is the
maximum integer k such that G is k-connected.

x(G) = min{lS |: S C V(G)and G — S is disconnected or has at most one vertex}.

If |V(G)| = 1, we set k(G) = 0 by convention.

Remark 20.1. For vertex connectivity, multiedges do not matter. Therefore we may assume
G is a simple graph.

Example 20.1. For n > 2, the complete graph K, satisfies
k(Ky)=n-1.

Reason: if you remove fewer than n — 1 vertices, at least two vertices remain, and any two
remaining vertices are adjacent, so the remaining graph is still connected. But if you remove
n — 1 vertices, exactly one vertex remains, so you certainly cannot have connectivity > n — 1.

Example 20.2. The graph K; is connected, but

K(Kl) =0
by the convention built into the definition of k-connected (you cannot have |V (G)| > k for any
k>1).

Example 20.3 (Cycles). Forn > 3,
x(Cp) = 2.

Reason: deleting one vertex from a cycle leaves a path, which is connected. Deleting another
internal vertex of the path breaks it into two path components.
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Example 20.4 (Complete bipartite graphs). Forr,s > 1,
k(Kys) = min{r, s}.

Reason: if you delete fewer than min{r, s} vertices, at least one vertex remains in each part, and
then every remaining vertex in one part is adjacent to every remaining vertex in the other, so
the graph stays connected. On the other hand, deleting all vertices from the smaller part (size
min{r, s}) leaves an independent set, hence disconnected (unless only one vertex remains, in
which case you still cannot do better than min{r, s}).

If a graph is k-connected, then in particular every vertex has degree at least k:
k(G) >k = 6(G) > k.

Hence, for an n-vertex k-connected graph,

2EG) = ) d) = nk = |E(G)|4”—ﬂ.
veV(G) 2

The Harary graph Hy ,, is k-connected and has exactly [”—2"] edges, proving this crude lower bound
is actually tight.

Fix integers 2 < k < n. Place vertices on a cycle and label them
V(Hkn) ={1,2,...,n}
with arithmetic taken modulo 7.
Let t = [k/2]. Connect each vertex i to its t nearest neighbors on each side on the cycle:
i~ixl,i£2,...,ixt.
After this step, every vertex has degree 2t.

When k is odd: If k is even, we are done (since 2t = k). If k is odd, then 2f = k — 1, so we add
one more “(almost) diagonal” per vertex in the following standard way.

¢ Case A: k odd and 7 even. Add the perfect matching of opposite vertices:
. . n .
z~z+§ forallie{1,...,n}.

Now every vertex has degree (k —1) +1 = k.

* Case B: k odd and n odd. A k-regular simple graph on n odd vertices is impossible (since
nk is odd), so the best you can do is “almost” regular while still hitting [7’2—k-| edges. Add
the (n —1)/2 edges

n-1
2

This increases the degrees of n — 1 vertices by 1, leaving exactly one vertex with degree

k — 1 after Step 1 (or equivalently: all but one vertex have degree k). One may also present

an equivalent variant where exactly one vertex has degree k + 1 and the rest have degree k;

either way the edge-count is optimal.

_1
z’~z’+”T fori=1,2,...,
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Let G be a graph, let x € V(G), and let k > 1. A graph H is
obtained from G by a vertex k-split at x if H is formed by:

¢ deleting x;
¢ introducing two new vertices x1, x, with an edge x1x»;

¢ redistributing the edges incident to x among x; and x; so that
NH(x1) U Nu(x2) = Ng(x) U {x1, x2},

and
dy(x;) > k foreachi € {1,2}.

Intuitively: you “split” x into two adjacent vertices x1, x so that together they see all the
old neighbors of x, and each new vertex still has degree at least k.

Lemma 20.1. If G is k-connected and H is obtained from G by a vertex k-split, then H is
k-connected.

Proof. Suppose for contradiction that H has a vertex cut S with |S| < k — 1. Let x be the vertex of
G that is split into adjacent vertices x1, x; in H, and define

T := {xl,xz}ﬂS.

We distinguish cases according to |T|.

Casel1: |[T| =0(soxy,x2 ¢ S). Weclaim that G—S is disconnected. Indeed, suppose instead that
G — S is connected. Take any two vertices u, v € V(H)\ S. Note that V(H) \ {x1, x2} = V(G) \ {x},
and S € V(H) \ {x1, x2} in this case, so u and v correspond to vertices of G — S as well. Since
G - S is connected, there is a u—v path P in G - S.

If P avoids x, then P is also a path in H — S (all edges away from the split are unchanged), so u
and v are connected in H — S.

If P uses x, write P as a sequence of vertices and focus on every subwalk of the form a —x — b
where a,b € Ng(x). In H, the neighbors of x were redistributed so that each old neighbor
a € Ng(x) is adjacent to at least one of x1 or x. Now replace each occurrence of a —x — b in P by:

a—x;—b ifa,be Np(x;)\ {x3-i},

and otherwise by a — x; — x3_; — b, where x; is chosen so that a € Ny(x;) and x3_; is the other
split vertex. This replacement is always possible because x1x, € E(H) and a (resp. b) is adjacent
in H to whichever split vertex it was assigned to. Moreover, since x1, x> ¢ S, none of the new
internal vertices we introduce lies in S, so the modified walk lies in H — S. After suppressing
repeated vertices if necessary, we obtain a #u—v pathin H — S.

Thus any two vertices of H — S are connected, so H — S is connected, contradicting that S is a
vertex cut. Therefore G — S must be disconnected, and S is a vertex cut of G with |S| < k —1,
contradicting that G is k-connected.
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Case 2: [T| =1. Without loss of generality, assume T = {x1},i.e. x1 € S and x; ¢ S. Define
Sc = (S \ {x1}) U{x} C V(G).
Then |Sg| =S| < k- 1.

We claim that G — S¢ is disconnected. Suppose for contradiction that G — Sg is connected.
Consider the subgraph induced by V(H) \ (S U {x,}) inside H — S. Its vertex set is exactly
V(G) \ Sg, and all edges among these vertices are the same in G and H (because the only
modification from G to H involves x and its incident edges). Hence, since G — S¢ is connected,
all vertices of H — S other than x; lie in a single component of H — S.

It remains to show that x also lies in that component. Because di(x2) > k, the vertex x; has at
least k — 1 neighbors in H other than x1. But S \ {x;} has size at most k — 2, so it cannot contain
all those neighbors. Therefore there exists a vertex

¥y € Ny(x2)\ S.

In particular, y # x1 and y # x5, so y is one of the vertices already in the big component of H — S,
and the edge x,y survives in H — S. Thus x; is connected to that big component, so H — S is
connected, contradicting that S is a vertex cut.

Hence G — Sg is disconnected, so S¢ is a vertex cut of G with |Sg| < k — 1, again contradicting
that G is k-connected.

Case 3: |T| =2 (so x1,x2 € S). Define
Sg = (S \ {x1, x2}) U{x} € V(G).
Then [Sg| =[S| -1 <k -2.
Now observe that H — S is exactly the same graph as G — Sg: both have vertex set
V(G ((S\{x1,x2}) U {x}) = V(G) \ S,

and the edge sets on this vertex set coincide (since the only altered edges were those incident to
x, and x is removed in G — S, while x1, x; are removed in H — S). Therefore H — S disconnected
implies G — Sg disconnected, so Si is a vertex cut of G of size at most k — 2, contradicting
k-connectedness of G.

In all cases we obtain a vertex cut of G of size at most k — 1, contradicting that G is k-connected.
Therefore no such set S exists, and H is k-connected. O

Lemma 20.2. For the hypercube Qy,

®(Qk) = k.

Proof. Write

Qk = Qr-100Q1,
which consists of two copies of Qk_1, call them G; and Gy, joined by a perfect matching between
corresponding vertices.

Since Q-1 is (k—1)-connected by the induction hypothesis, each of G; and G is (k—1)-connected.
Let S be a separating set in Q. We show that |S| > k, which proves «(Qx) > k. Combined with
x(Qx) < 6(Qk) = k, we obtain x(Qk) = k.
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Case 1: S disconnects G or Gy:

Assume S disconnects Gy. Since Gy is (k — 1)-connected, removing fewer than k — 1 vertices
cannot disconnect it. Thus S must contain at least k — 1 vertices of G1. Furthermore, S must
contain at least one vertex from G»; otherwise, all vertices of G,—S remain connected inside Go,
and through the matching edges they reconnect the separated parts of G; — S. Hence in this
case,

S| > (k-1)+1=k.
Case 2: G1 — S and G» — S are both connected:

In this case, the only way for Qi — S to be disconnected is for S to delete all matching edges
between the two copies. Each matching edge has one endpoint in G; and one in G,. Thus S
must contain the endpoint of every matching edge, so

S| = [V(Gy)| = 251,

Since k > 2, we have 21 > k, so again |S| > k.

In all cases, every separating set has size at least k. Thus x(Qx) > k, and since 6(Qx) = k we
obtain

®(Qk) = k.

Theorem 20.3 (Niu-Zhu (1994), Chiue-Shieh (1999)). If G and H are connected graphs,
then
x(GOH) > x(G) + k(H).

The proof follows the same idea as the lemma and is omitted (can be found in the textbook).
This theorem strengthens the lemma, which in particular recovers x(Qx) > x(Qx-1) + k(K2) = k
as a corollary.

20.2 Edge connectivity

Definition 20.5. An edge cut of G is a set of edges F C E such that the graph G — F (obtained
by deleting all edges in F) is disconnected.

Definition 20.6. A connected graph G is k-edge-connected if it stays connected after the
deletion of any set of fewer than k edges; that is, for every F C E(G) with |F| < k — 1, the
graph G — F is connected.

Definition 20.7. The edge-connectivity of a connected graph G is
x’(G) := min{|F|: F is an edge cut of G}.

Equivalently, x’(G) is the largest integer k such that G is k-edge-connected.
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d; For a partition of the vertex set into two
nonempty parts S and S := V(G) \ S, write

[S,S] := {uveE(G): ue$, veS}

These are exactly the edges crossing from S to its complement; deleting [S, S]isolates S from
S.
5(S) :=1[S,8] = {uveE: ueS,veS:=V\S}

A bond is a nonempty cut 6(S) that is minimal (by inclusion, not “minimum size") as a
disconnecting set. This is weaker than being minimum (having smallest cardinality among
all edge cuts).

Motivation: It is often useful to think of a graph as a communication network: vertices are
routers/servers and edges are physical links like cables. A failed hub can wipe out many
connections at once.

Vertex connectivity measures robustness to these node failures. If a graph is k-connected, then
deleting any k — 1 vertices (and all incident edges) still leaves the network connected, meaning
there is still a route between every remaining pair of devices. Equivalently, k(G) is the minimum
number of hubs you must lose (by failure) before the network splits into separate islands that
cannot communicate. Vertex cuts therefore identify the critical choke points: the small set of
nodes whose removal fragments the system. A larger x(G) means connectivity is spread out
rather than concentrated in a few fragile hubs, so the network is genuinely harder to break.

Edge-connectivity quantifies robustness to link failures. If a network is k-edge-connected, then it
still has a functioning route between every pair of nodes even after any k — 1 links disappear.
Equivalently, x¥’(G) is the minimum number of links an adversary (or bad luck) must remove to
split the network into disconnected pieces. Cuts of the form [S, S] capture the bottlenecks: they
are precisely the links that carry all communication between two regions of the network. So
studying edge cuts and «’(G) is really studying where the network links are fragile, how many
redundant links it has, and how hard it is to knock it offline.

Proposition 20.4.

1. Every minimal disconnecting set is an edge cut (i.e. equals 6(S) for some nontrivial
SscV).

2. If G is connected and @ # S ¢ V(G), then 6(S) is a bond if and only if both induced

subgraphs G[S] and G[S] are connected.

(i) Let F € E(G) be a minimal disconnecting set, so G — F is disconnected. Let C be the vertex
set of one connected component of G — F, and put C := V(G) \ C. By definition of component,
there are no edges of G — F between C and C; hence every edge of G with one endpoint in C
and the other in C must have been removed, i.e.

5(C)=[C,C] CF.

We claim equality holds. If not, choose ¢ € F \ 6(C). Then both ends of e lie in C or both lie
in C, so removing e is irrelevant to separating C from C. In particular, G — (F \ {e}) is still
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disconnected (since C is still isolated from C), contradicting the minimality of F. Thus F = 5(C),
so F is an edge cut.

(ii) Assume G is connected and fix @ # S ¢ V, writing S := V' \ S.

(=) Suppose 6(S) is a bond. If G[S] were disconnected, let C be the vertex set of a component
of G[S] (with @ # C C S). Because C is a component inside S, there are no edges between C and
S\ C, so any edge leaving C must go to S. Hence

5(C)=[C,V\C]=][C,S]CIS,S]=0d(S).

Moreover, 6(C) # 0: since G is connected, the set C cannot be isolated from V \ C, so at least
one edge leaves C. Therefore 6(C) is a nonempty disconnecting set properly contained in
0(S), contradicting that 6(S) is minimal. Thus G[S] must be connected; by symmetry, G[S] is
connected as well.

(&) Now assume G[S] and GJ[S] are both connected. We show 6(S) is minimal. Let F C
attachment 6(S) be a proper subset. Then some crossing edge uv € 6(S) \ F remains, with
u € Sand v € S. Since F removes only crossing edges, the induced subgraphs G[S] and G[S]
are unchanged and remain connected inside G — F. The surviving edge uv links these two
connected pieces, so G — F is connected. Thus removing any proper subset of 6(S) cannot
disconnect the graph, i.e. 6(S) is a bond.

This proves both directions.

Theorem 20.5 (Whitney, 1932).

x(G) < «¥'(G) < 6(G).

Proof. Let v be a vertex of minimum degree 6(G). Delete all edges incident to v. Then v becomes
isolated so these 6(G) edges form an edge cut. Hence

«’(G) < 6(G).

To prove k(G) < «’(G), let A = x’(G), and let [S, S] be a smallest edge cut of size A. We will show
that from this edge cut we can build a vertex cut of size at most x’(G). That will immediately
imply x(G) <= «’(G). If every vertex of S is adjacent to every vertex of S, then the cut contains
all possible edges between the two sides, hence

A =1[S,S]I =1Sl[S|-

In particular, since both S and S are nonempty, |S|[S| = |S|(|V| - [S]) = |V| -1 (the product is
minimized when one side has size 1). Thus «’(G) > [V(G)| — 1. But always «(G) < [V(G)| -1, so
x(G) < ¥’(G) and we are done.

Otherwise, there exist x € S and y € S with xy ¢ E(G). We will construct a set of vertices T with
IT| < A such that removing T separates x from y.

Define T by “picking one endpoint” from each cut edge, carefully arranged so that every x—y
path hits T

e For each cut edge incident to x (i.e. edges xv with v € S), put the other endpoint v into T.

e For every remaining cut edge uv with u € S and v € S and u # x, put the endpoint in S
(namely u) into T.
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So each cut edge contributes at most one vertex to T, and therefore

ITI<1[S, 8]l = ¥"(G).

Why does T separate x and y? Consider any path P from x to y in G. Sincex € Sand y € S, the
path must at some point cross from S to S. Let uv be the first edge of P that has one endpoint in
S and the next vertex in S. Then uv € [S, S] is a cut edge.

There are two possibilities:

e If u = x, then uv is a cut edge incident to x, and by construction we placed the other
endpoint v € S into T. So P hits T at the vertex v.

e If u # x, then uv is one of the “remaining” cut edges, and by construction we placed its
S-endpoint u into T. So P hits T at the vertex u.

In either case, every x—y path meets T. Equivalently, in the graph G — T there is no path from x
to y, so T is a vertex separator for x and y. m|

Proposition 20.6. If S C V(G), then

[s,51] = ), d@) - 2|E(GIS)I.

vES

Proof. The sum 3,5 d(v) counts every edge with both endpoints in S twice, and it counts each
edge in [S, S] once. Subtracting 2|E(G[S])| leaves exactly the number of edges joining S and
S. m]

Proposition 20.7. Let G be a simple graph and S # @. If [S,S] < 6(G), then |S| > 5(G).

Proof. Since 6(G) > [S, S], we have

5(G) > Zd(v)—Ze(G[S]).

veS
Because e(G[S]) < |S|(|S| — 1)/2, we obtain

D d(©) - 2¢(G[S]) = ISI5(G) - 1SI(1S| - 1).

veS

Hence
5(G) > 18I(6(G) = (IS - 1)).

Thus
0> (IS| - 1)(8(G) - 1S]).

Since |S| — 1 > 0, the inequality implies
0> 0(G) -S|,

and therefore |S| > 6(G). |
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Theorem 20.8. If diam(G) = 2, then «’(G) = 6(G).

Proof. We want to show that x’(G) > 6(G). Suppose for a contradiction that there is a smallest
edge cut of size _
[S,S] < &(G).

Pick x € S and y € S such that all edges joining S and S lie between these two sides. Since
d(x),d(y) > 6(G) and fewer than 6(G) edges join S and S, both x and y have neighbors on their
own side. Because diam(G) = 2, the distance between x and y is at most 2. But any x—y path
must use an edge between S and S, and there are fewer than 5(G) such edges, contradicting the
assumption that d(x), d(y) > 6(G).

Hence «’(G) > 6(G), and since always «x’(G) < 6(G), we obtain k’(G) = 6(G). O



Connectivity 184

G 0B

20.3 Block decomposition

When we study the structure of a graph, the first coarse decomposition is into connected
components. Inside a connected component, however, connectivity can still be “fragile”: there
may be a single vertex whose removal breaks the component apart. Such vertices are the
cut-vertices.

Blocks isolate the parts that have no such vulnerability. Informally, a block is a maximal region
of the graph that cannot be separated by deleting a single vertex. Thus blocks are the natural
“2-connected pieces” of a graph, and a connected graph can be viewed as blocks stitched together
at cut-vertices (this leads to the block—cutvertex tree).

Definition 20.9 (Block). A block of a graph G is a maximal connected subgraph of G that
has no cut-vertex (with cut-vertices understood inside that subgraph).

Remark 20.2. With this definition, blocks include the “degenerate” cases: an isolated vertex
forms a block, and a bridge edge uv forms a block. In general, distinct blocks intersect in at
most one vertex, and any common vertex must be a cut-vertex of G.

Proposition 20.9 (Basic properties of blocks). Let G be a graph, and let a block mean a
maximal connected subgraph of G with no cut-vertex (with cut-vertices understood inside
the subgraph). Then:

1. If an edge e lies on a cycle, then e is not a block. In fact, the unique block containing e
contains the entire cycle.

2. An edge uv is a block (i.e. {u, v} with the edge uv) if and only if uv is a cut-edge (bridge)
of G.

If T is a tree with |V (T')| > 2, then the blocks of T are exactly its edges.
Every block with at least 3 vertices is 2-connected.
Any two distinct blocks intersect in at most one vertex.

Only cut-vertices can lie in more than one block.

N o oW

Every edge of G lies in exactly one block.

Proof. (i) Let C be a cycle containing e. The cycle C is connected and has no cut-vertex (removing
any one vertex from a cycle still leaves a path), so C is contained in some block B by maximality.
In particular, e C B, so e cannot itself be a block unless C had only 2 vertices, which is impossible
in a simple graph. Moreover, since B contains C, the block containing e contains the entire cycle.

(ii) If uv is a cut-edge, then in G — uv the vertices u and v lie in different components. Any
connected subgraph of G that contains uv and also contains any vertex besides u, v must include
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vertices from at least one side of the separation, and then removing u or v disconnects that
subgraph (it isolates the other side through the bridge). Hence the only connected subgraph
containing uv with no cut-vertex is the edge itself, so uv is a block.

Conversely, if uv is a block and uv were not a cut-edge, then uv lies on a cycle. By (i), an edge on
a cycle cannot be a block. So uv must be a cut-edge.

(iii) In a tree every edge is a cut-edge. Thus by (ii) every edge is a block. There are no other
blocks when |V (T)| > 2.

(iv) A connected graph on at least 3 vertices is 2-connected if and only if it has no cut-vertex. So
a block with at least 3 vertices is 2-connected by definition.

(v) Let By # B, be blocks. Suppose for contradiction that B; N B, contains two distinct vertices
a # b. Then By U B; is connected (they share vertices) and has no cut-vertex: removing any
vertex w cannot disconnect B; U B, because B; — w and B; — w remain connected (each block
has no cut-vertex), and even if w = a (or w = b) the other common vertex b (or a) still links
the two pieces. Thus By U B; is a larger connected subgraph with no cut-vertex, contradicting
maximality of By and B,. Hence |B1 N By| < 1.

(vii) (Existence.) Fix an edge e € E(G). Consider the collection of connected subgraphs of G that
contain e and have no cut-vertex. Since G is finite, there is one with a maximum number of
vertices; call it B. By construction, B is connected, has no cut-vertex, contains ¢, and is maximal
with these properties, hence B is a block. So every edge lies in at least one block.

(Uniqueness.) If an edge ¢ = uv lay in two distinct blocks B; and By, then u, v € By N By, so
|B1 N By| > 2, contradicting (v). Hence every edge lies in exactly one block.

(vi) Suppose a vertex v lies in two distinct blocks By # B,. Then By and B, cannot both be the
single vertex {v}, so in each B; there is an edge incident to v. Choose va € E(B;) and vb € E(B,)
witha #vand b # v. If G — v had a path P from a to b, then v —a — P — b — v would be a cycle
containing both edges va and vb. By (i), edges on a cycle belong to a block containing that cycle,
and by (vii) an edge lies in a unique block; this would force va and vb to lie in the same block,
contradicting By # B,. Therefore no such path exists, so 2 and b lie in different components of
G — v, meaning G — v is disconnected. Hence v is a cut-vertex. m|
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21 Properties of k-connected graphs

Definition 21.1. A digraph G is strongly connected if for all x,y € V(G) there exists a
directed x, y-path.

Definition 21.2. .
«(G) = max{k : G is k-strongly connected},

that is, removing any k — 1 vertices leaves G strongly connected.

Remark 21.1. For a directed cut, [S, S] and [S, S] need not be equal.

Definition 21.3. A digraph G is k-edge-connected if every directed edge cut has size at
least k.

21.1 Menger’s Theorem

Definition 21.4. For vertices x, y in a graph G with xy ¢ E(G), an (x, y)-separating set is a
set

SCV(G)\ {x, v}
such that G — S has no (x, y)-path.

Definition 21.5. Let k(x, y) be the minimum size of an (x, y)-separating set in G.

Definition 21.6. A family of (x, y)-paths is independent if the paths share no internal
vertices. Let A(x, y) be the maximum number of pairwise independent (x, y)-paths.

Remark 21.2. It is always true that

k(x,y) = Alx, y),

since removing one vertex from each path in an independent family separates x and y.

Theorem 21.1 (Menger, 1927). For all vertices x, y in a graph G with xy ¢ E(G),

Kk(x, y) = Alx, y).

We will prove a stronger version and obtain this as a corollary.

Definition 21.7. Let X, Y C V(G) be two disjoint vertex sets. An (X, Y)-path is a pathin G
that starts in X, ends in Y, and has all internal vertices in V(G) \ (X UY).
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Definition 21.8. A strict (X, Y)-path is an (X, Y)-path whose only vertices in X U'Y are its
endpoints.

Definition 21.9. An (X, Y)-cutis aset Z C V(G) such that G — Z contains no (X, Y)-path.

Definition 21.10. An (X, Y)-link is a collection of pairwise internally disjoint (X, Y)-paths.

Theorem 21.2 (Pym, 1969). Let G be a graph and let X,Y C V(G) be disjoint. Then the
minimum size of an (X, Y)-cut equals the maximum size of an (X, Y)-link.

Proof. Let

A:=min{|Z|: Z is an (X, Y)-cut}, v := max{size of an (X, Y)-link}.

Easy direction: v < A. If £ is an (X, Y)-link of size r, then its paths are vertex-disjoint. Any
cut must meet each path of # in at least one vertex, and those vertices must be distinct. Hence
every barrier has size at least r, hence v < A.

Hard direction: A <v. We prove v > A by induction on |V (G)| + |[E(G)|. The statement is trivial
for graphs with very few vertices/edges, so assume |V (G)| + |E(G)| is large and the theorem
holds for all smaller graphs/digraphs.

If G has no (X, Y)-path, then X itself is an (X, Y)-barrier, so A = |X|and v = |X N Y| (because the
only (X, Y)-paths have length 0). In particular v > A holds trivially in this degenerate case. So
assume (X, Y)-paths exist, hence A > 1.

Fix a minimum (X, Y)-barrier Z with |Z| = A. We split into two cases.

Case 1: there is a minimum barrier Z with Z # X and Z # Y. Because G — Z has no (X, Y)-path,
every (X, Y)-path must visit Z. Consider paths from X to Z and from Z to Y, avoiding Z until
the endpoint:

e Let G; be the subgraph of G induced by all vertices that lie on some (X, Z)-path whose
internal vertices avoid Z.

e Let G, be the subgraph of G induced by all vertices that lie on some (Z, Y)-path whose
internal vertices avoid Z.

Claim 1: V(G1) N V(G2) = Z. Certainly Z C V(G1) N V(G2) (every z € Z is on a trivial z-z path).
Conversely, suppose v ¢ Z lies in both V(G1) and V(Gz). Then there is an (X, Z)-path P; that
reaches some z € Z and passes through v without meeting Z earlier, and there is a (Z, Y)-path
P, starting at some z’ € Z and passing through v without meeting Z again. By following P;
from X to v and then P; from v to Y, we obtain an (X, Y)-path that avoids Z, contradicting that
Z is a barrier. Thus V(G1) NV (Gp) = Z.

In particular, G1 and G; are both smaller than G (since Z # X,Y and A > 1), so the induction
hypothesis applies to each.
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Claim 2: the minimum size of an (X, Z)-barrier in Gy is exactly A. First, Z itself is an (X, Z)-barrier
in Gy, so the minimum is at most A. On the other hand, any (X, Z)-barrier in Gy is automatically
an (X, Y)-barrier in G: every (X, Y)-path hits Z, and its initial segment from X to the first vertex
of Z is a Z-avoiding (X, Z)-path, hence lives in G;. So blocking all such (X, Z)-paths blocks all
(X, Y)-paths. Since A is the minimum size of an (X, Y)-barrier, no (X, Z)-barrier in G; can have
size < A. Therefore the minimum size is A.

By induction applied to Gy, there exists an (X, Z)-link in G; of size A. Because the paths are
vertex-disjoint and there are only |Z| = A possible endpoints in Z, this link uses every vertex of Z
as an endpoint exactly once.

Similarly, applying the same argument to G, shows that G, contains a (Z, Y)-link of size A, again
using every z € Z exactly once as an endpoint.

Now for each z € Z, concatenate the unique X—z path from the first link with the unique z-Y
path from the second link. These concatenated paths are pairwise vertex-disjoint: within each
link they are disjoint, and outside Z the two links live in G1 \ Z and G \ Z, which are disjoint
by Claim 1. Thus we obtain an (X, Y)-link of size A, so v > A.

Case 2: every minimum barrier is X and/or Y.
By symmetry we may assume X is a minimum barrier, so |X| = A.

If X CY, then for each x € X the length-0 path (x) is an (X, Y)-path. These |X| = A trivial paths
are vertex-disjoint, giving an (X, Y)-link of size A. Hence v > A.

Otherwise pick x € X \ Y. Since X is a minimum barrier, X \ {x} is not a barrier. So G — (X \ {x})
contains an (X, Y)-path, and that path must start at x and immediately leave X along some edge
(or arc) xw with w ¢ X. Fix such an edge ¢ := xw, and consider the smaller graph G’ := G —e.

Let Z’ be a minimum (X, Y)-barrier in G’. There are two subcases.

Subcase 2a: G’ has an (X, Y)-link of size A. Then the same link also exists in G (adding an edge
cannot destroy existing paths), so v > A.

Subcase 2b: G’ has no (X, Y)-link of size A. Then the maximum link size in G’ is < A, so by the
induction hypothesis (applied to G’),

|Z’| = min{barrier size in G’} = max{link size in G’} < A.

In particular, [Z'| < A - 1.

Now Z’ cannot be an (X, Y)-barrier in G (otherwise A < |Z’| < A), so G — Z’ contains an
(X, Y)-path. But G’ — Z’ contains no (X, Y)-path (since Z’ is a barrier in G’). Therefore every
(X, Y)-path in G — Z’ must use the deleted edge e = xw. Consequently, every (X, Y)-path meets
7’ U{x} and also meets Z’ U {w}. Thus both sets are (X, Y)-barriers in G.

Since A is the minimum barrier size in G,

AL|Z’U{x}|=Z"|+1<A,

s0|Z’| = A —1and both Z’ U {x} and Z’ U {w} are minimum barriers of size A. By the hypothesis
of Case 2, the only minimum barriers are X and/or Y. Because x € X \ Y, the barrier Z’ U {x}

cannot equal Y, hence
7' U{x} =X.

Also w ¢ X by construction, so Z’ U {w} # X, and therefore

Z'U{w} =Y.
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X Z Y XY

It follows that
Z'=X\{x} =Y \{w},
so every vertex of Z’ liesin X NY.

Finally, we build an (X, Y)-link of size A in G: take the A — 1 trivial paths (z) for each z € Z’
(these are (X, Y)-paths since z € X N Y), together with the length-1 path xw. These A paths are
vertex-disjoint (their vertices are all distinct), so v > A.

In all cases we have shown v > A. Together with v < A, we conclude v = A. m]

Corollary 21.3 (Menger’s Theorem). Let G be a graph and let x # y be vertices. Then
the minimum size of an x—y vertex separator equals the maximum number of pairwise
internally vertex-disjoint x—y paths from Pym’s Theorem with X = {x},Y = {y}.

Definition 21.11. Let G be a graph (or digraph) and let x, y € V(G). Define «’(x, y) to be
the minimum size of an x—y edge cut, i.e.

x’(x,y) = min{|F|: F € E(G) and y is not reachable from x in G — F}.

Definition 21.12. For vertices x, y in a graph G, let A’(x, y) be the maximum size of a set of
pairwise edge-disjoint (x, y)-paths.

Definition 21.13 (Line graph). Let G be a (multi)graph. The line graph L(G) is the graph
with vertex set E(G), where two distinct vertices e, f € E(G) are adjacent in L(G) exactly
when the corresponding edges share an endpoint in G.

Definition 21.14 (Line digraph). Let D be a digraph. The line digraph L(D) has vertex set
E(D), and two arcs e = (1,v) and f = (v, w) are adjacent (i.e. there is an arc from ¢ to f)
precisely when they are consecutive directed edges in D.
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Theorem 21.4 (Menger’s theorem, edge form). Let G be a graph (or digraph) and let
x,y € V(G) with x # y. Then
K'(x,y) = AM(x, ).

Proof. The inequality A’(x,y) < «’(x, y) is immediate: if F is any x—y edge cut and P is a set
of pairwise edge-disjoint x—y paths, then each path in $ must use at least one edge of F, and
since the paths are edge-disjoint those edges of F must be distinct. Hence |F| > |P|, and taking
minima/maxima gives A’(x, y) < x’(x, y).

For the reverse inequality, reduce to the vertex version of Menger by subdividing edges. Form a
new graph (or digraph) G* by subdividing every edge e = uv once: replace e by a length-2 path
u — s, — v, where s, is a new vertex unique to e (and in the directed case, replace (1, v) by (u, s.)
and (s,, v)). Then:

* An x—y path in G corresponds to an x—y path in G* whose internal vertices among the new
subdivision vertices are exactly the s, for edges used by the original path.

¢ Two x—y paths in G are edge-disjoint if and only if the corresponding x—y paths in G*
are internally vertex-disjoint (because distinct edges correspond to distinct subdivision
vertices).

* A set of edges F separates x from y in G if and only if the set of subdivision vertices
{se¢ : e € F} separates x from y in G".

Therefore

Al(xl]/) = /\G*(x/y) and K’(xly) = KG”(x/y)r
where the right-hand sides are the vertex-disjoint-path / vertex-separator parameters in G”.
Applying the vertex form of Menger to G” yields Ag:(x,y) = xg(x,y), and hence A'(x,y) =
x’(x,y) as desired. O

Corollary 21.5 (Global connectivity via local disjoint paths). Let G be a graph (or digraph),
and let A(x, y) denote the maximum number of pairwise internally vertex-disjoint x—y
paths.

1. Gis k-connected <= A(x,y) > k for all distinct x, y € V(G).
2. Gis k-edge-connected <= A’(x,y) > k for all distinct x, y € V(G).

Proof. (2) Recall the standard identity

"(G) = . ’ ).
x'(G) L min K (x,y)
X#Y
Thus G is k-edge-connected iff x’(x, y) > k for all x # y. By Theorem 21.4, x’(x, y) = A’(x, y) for
all x # y, giving the equivalence.

(1) Similarly,
G) = i 'Y
©(G) L min w(x, y)
X#y
where «x(x, y) is the minimum size of an x—y vertex separator. By the vertex form of Menger,
k(x,y) = Alx,y) for all x # y. Hence x(G) > k iff A(x,y) > k for all x # y, i.e. G is k-connected
iff the stated local path condition holds. m|
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21.2 Network flows and Max-Flow Min-Cut Theorem

Menger’s theorems say, roughly, that “many disjoint routes” between two terminals exist if and
only if you must delete many vertices/edges to separate the terminals. Network flows package
this idea into an optimization problem: instead of asking for disjoint paths directly, we send
flow through a capacitated network and compare it to the cheapest way to block the flow.

Definition 21.15 (Flow network). A flow network is a digraph D = (V, A) together with a
capacity function ¢ : A — Ryg and two distinct vertices s, t € V called the source and sink.

Definition 21.16 (Feasible flow and its value). A flow is a function f : A — Ry such that:
e (Capacity constraints) 0 < f(a) < c(a) for every arc a € A.

* (Flow conservation) For every v € V' \ {s, t},

Z f(M,U) = Z f(v,w).

(u,v)eA (v,w)eA

The value of f is the net flow out of s,

which equals the net flow into ¢ by conservation.

Definition 21.17 (s—t cut and its capacity). An s— cut is a partition (S,S) of Vwiths €S
and t € S. Its capacity is
(S,8) := Z c(u,v),

(u,v)eA
ues, veS

the total capacity of arcs leaving S.

Theorem 21.6 (Max-Flow Min-Cut). In any flow network,

max{|f|: f isa feasible flow} = min{c(S,S) : (S,S)is an s— cut}.

How this recovers Menger: Let G be an undirected graph and fix distinct vertices x, y. Turn
G into a flow network by replacing each undirected edge {u, v} with two opposite arcs (u, v)
and (v, 1), and assign capacity 1 to every arc. Takes = x and t = y.

* Any set of k edge-disjoint x—y paths gives a flow of value k: send one unit of flow along
each path. (With unit capacities, edge-disjointness ensures no edge is asked to carry more
than 1.)

* Any x-y edge cut F gives an s—t cut of capacity |F|: choose S to be the vertices reachable
from x in G — F; then every arc from S to S corresponds to an edge of F, and conversely.
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Thus the maximum flow value equals the maximum number of edge-disjoint x—y paths, and
the minimum cut capacity equals the minimum size of an x—y edge cut. By Theorem 21.6 these
are equal, which is exactly the edge form of Menger:

N(x,y)=«"(x,y).

Vertex version: Replace each vertex v ¢ {x, y} by two vertices v'" and v°% joined by an arc
v of capacity 1, and redirect every original arc entering v to v™ and every original arc
leaving v from v°". Give all redirected arcs capacity oo (or a sufficiently large number).

Then sending one unit of flow through v"v°" “uses up” the capacity-1 vertex v, so integral flows
correspond to collections of internally vertex-disjoint x—y paths, and minimum cuts correspond
to minimum x—y vertex separators. Applying Max-Flow Min-Cut in this transformed network
yields Menger’s theorem in its vertex form.

Menger’s theorems are the unit-capacity, disjoint-path special cases of Max-Flow Min-Cut.
Flows generalize them by allowing arbitrary capacities (not just 0/1), fractional routing, and
weighted “cost to destroy” bottlenecks, which is exactly why they became the framework of
modern network design.

21.3 The Ford-Fulkerson algorithm

The max-flow min-cut theorem tells us the optimum flow value equals the minimum cut capacity.
Ford-Fulkerson is the basic method that actually finds a maximum flow by repeatedly routing
more flow along an augmenting path in a residual network.

Let (D =(V,A),c,s,t)be a flow network and let f
be a feasible flow. The residual capacity of an arc (u,v) € Ais c(u,v) — f(u,v). The residual
network D ¢ has vertex set V and contains:

* a forward arc (u,v) with capacity c(u,v) — f(u,v) whenever c(u,v) — f(u,v) > 0;

* a backward arc (v, u) with capacity f(u,v) whenever f(u,v) > 0.

An augmenting path (with respect to f) is a directed
s—t path in the residual network Dy. Its bottleneck (or residual capacity) is

A := min{c(e) : e is an arc on the path},

where ¢y denotes residual capacities.

The Ford-Fulkerson algorithm runs as follows:

1. Initialize f = 0.

2. While there exists an augmenting path P from s to t in Dy:
(a) Let A be the bottleneck residual capacity of P.
(b) For each arc on P:

e if the arc is a forward arc (1, v) (original direction), increase f(u,v) by A;
e if the arcis a backward arc (v, u) (undoing flow), decrease f(u,v) by A.
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(c) Update the residual network and repeat.
3. Output f.

Theorem 21.7 (Correctness of Ford—Fulkerson). If all capacities are integers, Ford—Fulkerson
terminates and outputs a maximum s—t flow. Moreover, when it terminates, thf set S of
vertices reachable from s in the residual network D defines a minimum cut (S, S).

Proof. Let f be the current flow and let P be an augmenting path with bottleneck A. Augmenting
by A preserves feasibility: on forward arcs we do not exceed capacity because A < c(u, v)— f(u,v),
and on backward arcs we do not make flow negative because A < f(u, v). Flow conservation
is preserved at internal vertices of P because we add A to exactly one incoming/outgoing arc
in the residual sense, so net flow at each internal vertex remains 0. Thus each augmentation
produces a feasible flow whose value increases by A > 0.

If capacities are integers, then every residual capacity is an integer, so each A is a positive
integer. Hence the flow value strictly increases by at least 1 each iteration. Since the flow value
is always at most the total capacity leaving s, only finitely many augmentations are possible, so
the algorithm terminates.

Now suppose the algorithm terminates at flow f, so there is no augmenting path in Dy. Let S
be the set of vertices reachable from s in D¢. Then t ¢ S by assumption, so (S ,S) is an s—t cut.

We claim the value of f equals the capacity of this cut. Consider any arc (1, v) of the original
network withu € Sand v € S. If f(u,v) < c(u,v), then the forward residual arc (1, v) would
have positive residual capacity, so v would be reachable from s, contradicting v € S. Hence
every such arc is saturated: f(u,v) = c(u,v).

Similarly, for any original arc (u,v) with u € Sand o € S, if f(u,v) > 0 then the backward
residual arc (v, u) would exist with positive residual capacity, making u reachable from s, again
a contradiction. Thus every arc entering S from S carries zero flow: f(u,v) = 0.

Therefore the net flow crossing from S to S equals

Z flu,v) - Z f(u,v) = Z c(u,v) = ¢(S,9).

(u,v)eA (u,v)eA (u,v)eA
ues, veS ueg, veS ues, veS

But the left-hand side is exactly |f| (the flow value), by flow conservation inside S. Hence
|fI=c(S,5).

Finally, for any feasible flow ¢ and any cut (S, S) we always have |g| < c(S,E) (the cut is an
upper bound on flow). Thus |f| = c(S, S) implies f is a maximum flow and (S, S) is a minimum
cut. O

Remark 21.3 (Complexity and a standard refinement). Ford-Fulkerson depends on how
augmenting paths are chosen. With irrational capacities it may not terminate. With integer
capacities it terminates, but the number of iterations can be large. Choosing augmenting paths
by BES in the residual network gives the Edmonds—Karp algorithm, which runs in polynomial
time O(|V||E[?).

Bipartite matching via max flow Let G = (L U R, E) be bipartite. Build a flow network by
adding a source s and sink ¢, directing edges left-to-right, and giving unit capacities:

s—0(1) ({el), {—>r() ({reE), r—t(1) (reR).
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Because all capacities are 1, any integral s—t flow is a collection of edge-disjoint paths s — ¢ —
r — t. Reading off the middle edges gives a matching

Mf={reE: f(t,nN =1},  [Ms=|f]

Conversely, any matching M yields a flow of value |M| by sending one unitalongs — ¢ —r — t
for each {r € M. Hence maximum matching size equals maximum flow value, and Ford-
Fulkerson becomes exactly the usual augmenting-path algorithm for matchings.

21.4 Expansion and Fan Lemma

Lemma 21.8 (Expansion Lemma). Let k > 1 and let G be a k-connected graph. Let G’ be
obtained from G by adding a new vertex y adjacent to at least k vertices of G. Then G’ is
k-connected.

Proof. We must show that deleting any set of at most k — 1 vertices leaves G’ connected.
Let S € V(G’) with |S| < k — 1. We prove that G’ — S is connected.

Case 1: y € S. Then
G' -5 =G-(S\{y}.

Since |S \ {y}| < k =2 < k and G is k-connected, the graph G — (S \ {y}) is connected. Hence
G’ — S is connected.

Case 2: y ¢ S. Because y has at least k neighbors in G and S contains at most k — 1 vertices, S
cannot contain all neighbors of y. Thus we may choose a neighbor

u € Ng(y)\S.

Consider the subgraph induced by the original vertices V(G) \ S. This is exactly the graph
G—-(S5NV(G)), and since |SNV(G)| < |S| < k —1, k-connectivity of G implies that G — (SN V(G))
is connected.

Therefore, for every vertex v € V(G) \ S, there is a path fromu tovin G - (SN V(G)) € G’ - S.
Appending the edge yu shows that y is connected to every vertex of V(G) \ S inside G’ - S.
Hence G’ — S is connected.

In all cases, deleting at most k —1 vertices does not disconnect G’. Therefore G’ is k-connected. O

Let G be a graph, let x € V(G), and let U C V(G) with x ¢ U.
An x, U-fan of size k is a family of paths P, ..., Py such that:

1. each P; is an x—u; path for some (not necessarily distinct) u; € U;

2. the paths are internally vertex-disjoint: for i # j,
(VP \ {x, ui}) 0 (V(P)\ {x,u;}) =0;

3. each P; meets U only at its endpoint u; (equivalently, V(P;) " U = {u;}).

Equivalently: the paths all start at x, end in U, and are pairwise disjoint except for the
common start vertex x.
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Lemma 21.9 (Fan Lemma; Dirac (1960)). Let k > 1 and let G be a graph with |V(G)| > k + 1.
Then G is k-connected if and only if for every vertex x € V(G) and every set U C V(G) with
x ¢ U and |U| > k, there exists an x, U-fan of size k.

Proof. (=) Assume G is k-connected. Fix x € V(G) and U C V(G) with x ¢ U and [U]| > k.
Choose any subset Uy € U with |Up| = k.

Form a new graph G’ from G by adding a new vertex y adjacent to every vertex of Uy. By
Lemma 21.8 (Expansion Lemma), G’ is k-connected.

Apply Menger’s theorem (vertex form) in G’ to the vertices x and y. Since G’ is k-connected,
every x—y separator has size at least k, hence Menger yields k pairwise internally vertex-disjoint
x—y paths Q1,...,Qxin G’.

Each Q; must enter y through one of its neighbors, and N¢/(y) = Uop. Let u; € Uy be the neighbor
of y used by Q;, and let P; be the subpath of Q; from x to the first vertex of Uy encountered
along Q; (which is necessarily u;).

Then P; is an x—u; path in the original graph G (it does not use y), and by construction it meets
Uy only at its endpoint u;. Moreover, because the Q; are internally disjoint, the truncated paths
P; are still internally disjoint and share only the start vertex x. Thus Py, ..., Py form an x, Up-fan
of size k, and since Uy € U, they are also an x, U-fan of size k.

(<) Assume the fan condition holds for all x and U with |U| > k. Suppose for contradiction
that G is not k-connected. Then there exists a vertex cut S C V(G) with |S| < k — 1 such that
G — S is disconnected. Choose vertices x and z in distinct components of G - S.

LetU :=SU{z}. Then x ¢ U and
ul=|S|+1<k.

If |U| < k, enlarge U by adding arbitrary vertices of V(G) \ ({x} UU) until |U| = k; this is possible
since [V(G)| > k + 1. Call the resulting set still U. Then x ¢ U and |U| = k.

Now consider any x, U-fan of size k. Since the paths in a fan are internally vertex-disjoint, and
all of them must reach U, at most one of the fan paths can end at z. The remaining k — 1 paths
must end in U \ {z}.

But every x—z path in G meets S (because x and z are in different components of G — S). In
particular, every path from x to any vertex of U that lies in the component of z in G — S must
pass through S. Since |S| < k — 1, pigeonhole says k internally disjoint x—U paths cannot all
avoid sharing an internal vertex in S: with k paths, at least two would have to pass through the
same vertex of S.

Thus no x, U-fan of size k can exist, contradicting the hypothesis. Therefore G must be
k-connected. O

21.5 Dirac’s theorem on k vertices on common cycle

Theorem 21.10 (Dirac (1960)). Let k > 2. Every set of k vertices in a k-connected graph G
lies on a common cycle of G.

Proof. We argue by induction on k.

Base case k = 2. Let S = {x, y}. Since G is 2-connected, Menger’s theorem gives two internally
vertex-disjoint x—y paths. Their union is a cycle containing x and y.
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Induction step. Assume k > 3 and the statement holds for k — 1. Let S be any set of k vertices
in G, and fix x € S. Because G is k-connected it is also (k — 1)-connected, so the induction
hypothesis applies to

So =S\ {x}, |So| = k - 1.

Hence there exists a cycle C in G containing all vertices of Sp.

If x € V(C), then C already contains S and we are done. So assume x ¢ V(C). Write the vertices
of Sp in their cyclic order along C as

51,82,+++,5k-1,

and let A; denote the s;—s;+1 segment of C (indices taken modulo k — 1). Thus the segments
A1, ..., Ax_q partition the edges of C, and by construction each A; contains no vertex of Sg
internally.

We now insert x into the cycle using the Fan Lemma (Lemma 21.9).

Case 1: |V(C)| > k. Apply the Fan Lemma in the k-connected graph G to the vertex x and the
set U := V(C) (note that [U| > k). We obtain an x, U-fan of size k, i.e. internally disjoint paths

Pi1,...,Px

from x to distinct vertices uy, ..., ux € V(C), each meeting C only at its endpoint.

Since the k endpoints u1, ..., ui lie on C and the cycle C is partitioned into only k — 1 segments
A1, ..., Ax-1, by the pigeonhole principle there exist two endpoints, say u and v, that lie on
the same segment A;. Let Q be the u—v subpath of C contained in A;. By definition of A;, the
interior of Q contains no vertex of Sy.

Let R be the complementary u—v subpath of C (so C = QU R and Q NR = {u,v}). Then R
contains every vertex of Sgp. Now consider the subgraph

C’ == RUP, UP,,

where P,, P, are the two fan paths ending at u and v. Because P, and P, are internally disjoint
and meet C only at their endpoints, the union R U P,, U P, is a simple cycle: it goes from u along
P, to x, back along P, to v, and then along R to return to u.

This cycle C’ contains x and all of Sgp € V(R), hence contains S.

Case 2: |V(C)| = k — 1. Then V(C) = Sp (a cycle on k — 1 vertices cannot contain more than k — 1
distinct vertices). Apply the Fan Lemma with parameter k — 1 (valid since G is (k — 1)-connected)
to x and U := V(C). We obtain an x, U-fan of size k — 1, whose endpoints must therefore be
all vertices of C. In particular, choose two adjacent vertices u,v on C, and let uv denote the
corresponding edge of C. Let R be the u—v path on C that avoids the edge uv; then R contains
all other vertices of C.

Let P,, P, be the fan paths from x to u and to v. As above, P, and P, meet C only at their
endpoints and are internally disjoint, so

C":=RUP, UP,
is a cycle. This cycle contains x and all vertices of C = V(C), hence it contains S.

In both cases we found a cycle containing all k vertices of S. This completes the induction. O
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21.6 Ford-Fulkerson CSDR

Definition 21.21 (CSDR). Let A = {A1, ..., A} be a family of sets. Recall a system of distinct
representatives (SDR) for A is an injective map

m
@ :[m]— UAi such that (i) € A; for all 7.
i=1

Equivalently, itis a set R = {¢(1), ..., p(m)} of m distinct elements with ¢(i) € A;.

Now let A = {A1,...,An}and B = {By, ..., By} be two families of m sets. A common system
of distinct representatives (CSDR) for A and B is a set R of m elements such that R is an SDR
for A and also an SDR for B (possibly with different assignments). Equivalently, there exist
bijections

@a:[m] =R, @p:[m] = R

with (i) € A; and @g(j) € Bj forall i, .

Theorem 21.11 (Ford-Fulkerson (1958)). Let A = {A,...,Ax}and B = {By,...,B;;} be
families of m sets. For I, ] C [m] write

A(l) = UAZ-, B(J) := U B;.

i€l j€]

Then A and B have a CSDR if and only if

[A)NB())| = [I|+]|]|-m forallI,] C [m].

Proof. It is convenient to rewrite the condition as
A N BN+ (m =)+ (m =) = m  foralll,] < [m], (*)
which is equivalent by rearranging terms.

Step 1: Build a layered digraph. Let X := (; Ai) U (U j B;) be the ground set of elements.
Construct a digraph D with vertex set

V(D)={s,t} UA" U X U B’, where A :={ai,...,a,}, B :={b1,...,bu}.
Add arcs
s—a; (1<i<m), a; > x (x € Aj),
x — bj (x € Bj), bi—t (1<j<m).
Every directed s—t path in D has the form

s —>a;—x—>bj—>t with x€eA;NB;.

Step 2: CSDR <= m internally disjoint s—t paths. We claim: A and B have a CSDR if and
only if D contains m pairwise internally vertex-disjoint directed s—t paths.

(=) Suppose R is a CSDR. Choose bijections ¢4, ¢p as in Definition 21.21. For each i € [m]
consider the path
Pi:s—a; = @ali) — bqogl(qu(i)) — t.
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All these paths are internally vertex-disjoint because: distinct i give distinct a;; the representatives
@A(7) are distinct elements of R; and distinct representatives also force distinct b-vertices (since
@B is a bijection onto R). Hence we obtain m internally disjoint s—t paths.

(<) Conversely, suppose D has m internally vertex-disjoint s—t paths. Each such path uses
exactly one vertex of A’ and one of B’. Since there are only m vertices in each of A” and B’,
disjointness forces the paths to use all vertices ay, . .., a,, and all vertices by, ..., b, exactly once.
Let R be the set of the m distinct element-vertices x € X used by the paths. Assign to each A;
the unique x € R lying on the path through a;, and to each B; the unique x € R lying on the
path through b;. This makes R an SDR for both A and B, i.e. a CSDR.

So the claim holds.

Step 3: Apply Menger and identify the relevant separators. By the directed vertex version of
Menger’s theorem, D has m internally disjoint s—t paths if and only if every s—t separating set
(vertex cut) has size at least m.

Fix any s—t separating set R C V(D) \ {s, t}, and define index sets
I:={ie[m]:a; ¢ R}, J:={jelm]:bj¢R}.

Then R must contain every element-vertex in A(I) N B(J): indeed, if x € A(I) N B(J) and x ¢ R,
then there exist i € I and j € ] with x € A; N Bj, so the paths — 4; - x — b; — t avoids R,
contradicting that R separates s from t. Therefore

A(I)NB(J) € R.
Also, R contains exactly the A’-vertices not in I and the B’-vertices not in |, so
IR| > |A(D) N B(DI + (m = |I]) + (m = []]).
Conversely, for every choice of I, ] C [m], the set

Rij:=({ai:igl}) U (ADNB() U ({bj:j¢]})

is an s—t separating set (it destroys every possible s — a; — x — b; — t path), and it has size

exactly
IRl = A N BN+ (m = [I]) + (m = []]).

Hence the minimum size of an s—t separating set is

min (JA(D) 0B+ (m = 1) + (m = |])).
JEm]

Therefore, every s—t separator has size at least m if and only if (+) holds for all I, ]. By Step 2 and
Menger’s theorem, this is equivalent to existence of a CSDR. |

Remark 21.4. The inequality |A(I) N B(J)| > [I| + |J| — m says: no matter how many A-sets you
insist on representing (|I|) and how many B-sets you insist on representing (|J|), the overlap pool
A(I) N B(J) must be large enough to supply the representatives that must serve both families
simultaneously.

Theorem 21.12. If G is a 3-regular graph with [V(G)| > 4, then

x(G) = ¥’'(G).
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Proof. Since G is 3-regular, 6(G) = 3. The general inequalities
x(G) < ¥'(G) < 6(G)
imply x(G) < x’(G) < 3. Thus it suffices to prove the reverse inequality
k'(G) < x(G),
i.e. for each possible value of x(G) € {0, 1, 2,3} we will exhibit an edge cut of size x(G).
Case 0: ¥(G) = 0. Then G is disconnected, so x’(G) = 0 as well. Hence «’(G) = «(G) = 0.

Case 1: ¥(G) = 1. Then G has a cut-vertex v. Let the components of G — v have vertex sets
C1,...,C, with r > 2. Every component C; must contain at least one neighbor of v; otherwise
it would already be a component of G. Since d(v) = 3, by the pigeonhole principle there is
a component, say Ci, containing exactly one neighbor u of v. (Indeed, if every component
contained at least two neighbors of v, then d(v) > 2r > 4.)

We claim that the edge uv is a cut-edge. After deleting uv, the vertex set C1 has no remaining
edges to V(G) \ Cy: it had no edges to the other C; (different components of G —v), and by choice
it had no other edge to v. Hence C; is isolated in G — uv, so uv is a bridge and «’(G) = 1 = «(G).

Case 2: k(G) = 2. Then G has no cut-vertex, but it does have a 2-vertex separator. Fix one, say
{u,v}. Let the components of G — {u, v} have vertex sets Cy, ..., C,, where r > 2.

Observation: each component meets both u and v. That is, for every i there is at least one edge from
u into C; and at least one edge from v into C;. Indeed, if some component C; had no neighbor
of u, then all its connections to the rest of the graph would go through v, and removing v alone
would disconnect G, making v a cut-vertex, contradicting x(G) = 2. Symmetrically for u.

For each i define

ai =|[{u}, Cill,  bi:=|[{o}, Cill.
By the observation, a4; > 1 and b; > 1 for all i.
Now distinguish whether uv € E(G).

Subcase 2a: uv € E(G). Then u has exactly 2 edges to G — {u, v}, so }}; a; = 2; similarly }}; b; = 2.
Since each a;,b; > 1, we must have r = 2 and

(a1,a2) = (1,1), (b1,b2) = (1,1).

Fix C;. Then exactly two edges join C1 to {u, v}, namely one from u and one from v. Deleting
these two edges disconnects C; from the rest of the graph, so G has an edge cut of size 2. Hence
k’(G) <2 = «x(G).

Subcase 2b: uv ¢ E(G). Then u has 3 edges to G — {u, v}, so >; a; = 3; similarly >}; b; = 3. Since
each a;,b; > 1, we have r € {2, 3}.

If r = 3, then necessarily a; = b; = 1 for all i, and again any component C; is joined to {u, v} by
exactly two edges; deleting those two edges disconnects C;.

If r = 2, then (a1, a2) is either (1,2) or (2, 1), and the same holds for (b1, b2). Let e, be the unique
edge from u to the component to which u has only one neighbor (so e, is the edge accounting
for the “1” in (a1, a2)). Define e, analogously for v.

¢ If ¢, and e, go to the same component, then that component has a; = b; = 1, so the two
edges e, e, form a 2-edge cut isolating it.
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* If e, and e, go to different components, then deleting {e,, e, } disconnects G as follows: after
deletion, u has all remaining edges into one component and none into the other, while v
has all remaining edges into the other component and none into the first. Since uv ¢ E(G)
and there are no edges between C; and Cy, there is no path from u to v in G — {e,, €5}, so
the graph is disconnected.

In all situations we obtain an edge cut of size 2, hence x’(G) < 2 = x(G).
Case 3: x(G) = 3. Then «’(G) > x(G) = 3, but also ¥’(G) < 6(G) = 3,s0 x’(G) = 3.

Combining all cases yields k’(G) = k(G) for every 3-regular graph with [V(G)| > 4. |

21.7 Characterization of 2-connected graphs

Let G be a graph and let e = uv € E(G).
Subdividing e means deleting ¢, introducing a new vertex w, and adding the edges

e1:= uw, ey 1= Wo.

The resulting graph is denoted G’.

Theorem 21.13 (Characterizations of 2-connected graphs). Let G be a graph with [V(G)| > 3.
The following conditions are equivalent:

. (A)G is connected and has no cut-vertices.

. (B) For all x, y € V(G), there exist two internally vertex-disjoint x—y paths.

. (C) For all x, y € V(G), there exists a cycle containing both x and y.

. (D) 6(G) > 1 and for all edges e, ¢’ € E(G), there exists a cycle containing both e and e’.

G = W N =

. (F) 6(G) > 2 and for all edges e, ¢’ € E(G), there exists a cycle containing both e and e’.

Proof. We prove a cycle of implications.
(A) &= (B). This is exactly Menger’s theorem in the case k = 2.

(B) & (O). There are two internally disjoint x—y paths iff their union contains a cycle through
x and y.

(O)=(A). Condition (C) implies G is connected because any two vertices lie on a common cycle,
hence are connected by a path. To see there is no cut-vertex, suppose (for contradiction) that v is
a cut-vertex. Then G — v has at least two components; pick x, y in different components of G — v.
Any cycle containing x and y would give two x—y paths on the cycle, and at least one of them
avoids v, contradicting that x and y are disconnected in G — v. Hence no cut-vertex exists.

(C)=(F). Assume (C). Clearly 6(G) > 2.

First, 6(G) > 2.CNow fix two edges ¢ = xy and e’ = uv of G (they may share endpoints, and
may even coincide). Form a new graph H from G by adding two new vertices a and b such that

NH(“) = {x, y}/ NH(b) = {M,U},
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and no other new edges are added. In particular, deg;,(a) = deg,(b) = 2.

By the Expansion Lemma, H is 2-connected. Hence H satisfies property (C): any two vertices lie
on a common cycle. Applying this to 2 and b, there exists a cycle C in H containing both 2 and b.

Since a has degree 2 in H, the cycle C must use both edges incident to a, namely ax and ay.
Thus C contains the length-2 subpath x — 4 — y (in one direction around the cycle). Similarly, C
must use both bu and bv, so it contains the subpath u — b - v.

Now delete the vertices a and b from the cycle C and replace the subpaths x —a -y and u —b—-v
by the edges xy and uv, respectively. Concretely, we obtain a closed walk in G by

X—a—y~>xy, u—b-v~uv.

Because C was a simple cycle and a, b appear only on those forced subpaths, this operation
produces a simple cycle in G. That resulting cycle contains the edges xy = e and uv = ¢’, as
desired.

(F)=(D). Ask a toddler on the street.

(D)=(C). We prove the contrapositive: =(C) = —(D).
Assume —(C). Then there exist vertices x, y € V(G) that do not lie on a common cycle. Assume
for contradiction that (D) holds.

Since 6(G) > 1, both x and y are incident with at least one edge. Choose an edge ¢ € E(G)
incident with x, and an edge ¢’ € E(G) incident with y.

If there were a cycle C containing both e and ¢’, then C would contain both endpoints of ¢,
hence it would contain x; similarly it would contain y. Thus x and y would lie on a common
cycle, contradicting our choice of x, y.

Therefore no cycle contains both e and e’, so (D) fails. This proves =(C) = —(D), hence
(D) = (O).

We have shown (A) & (B) < (C) and (C)=(F)=(D)=(C), so all listed conditions are
equivalent. m|

Corollary 21.14. If G is 2-connected, then the graph G’ obtained by subdividing any edge
of G is also 2-connected.

Proof. Lete = uv € E(G), and let G’ be obtained from G by subdividing e with a new vertex w,
creating edges e; = uw and e; = wo.

We use (F) from the previous theorem: a graph is 2-connected if and only if it has minimum
degree at least 2 and every pair of edges lies on a common cycle. First note that subdividing
an edge does not create any vertex of degree < 2 (the new vertex w has degree 2, and all other
vertices keep their degrees), hence

0(G") = 2.

It remains to verify condition (F) for G’. Let g, h € E(G’) be arbitrary. We will show that there is
a cycle in G’ containing both g and 5.

Define the following simple operation on cycles: if C is a cycle in G and e € E(C), let C’ denote
the cycle in G’ obtained from C by subdividing the edge ¢ = uv with the u—v pathu —w —v
(i.e., replace e by eq, e2). If e ¢ E(C), we simply view C as a cycle in G’.

Now consider cases according to how {g, i} intersects {e1, e2}.
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Case 1: {g, h} N {e1,e2} = @. Then g, h € E(G) \ {e}. Since G is 2-connected, condition (F) holds
in G, so there exists a cycle C in G containing both g and h. If e ¢ E(C), then C is also a cycle in
G’ containing ¢ and h. If e € E(C), replace e by the path u — w — v to obtain C’, a cycle in G’
containing ¢ and h.

Case 2: |{g, h} N {e1, e} = 1. Without loss of generality, ¢ = e; and h # e;. Then h €
E(G’) \ {e1,e2} € E(G) \ {e}. Because G satisfies (F), there exists a cycle C in G containing the
two edges e and . Replacing e by the path u —w — v yields a cycle C’ in G’ that contains / and
also contains both e and ey, in particular it contains ¢ = e; and h.

Case 3: {g, i} = {e1, e2}. Since G is 2-connected, (F) implies there exists a cycle C in G containing
e. Replacing e by the path u — w — v produces a cycle C’ in G’ containing both e; and e;, hence
containing g and h.

In all cases, g and h lie on a common cycle in G’, so G’ satisfies condition (F). Therefore G’ is
2-connected. g

Definition 21.23 (Ear). Let G be a graph. An ear in G is a path P with distinct endvertices
s, t such that deg(s) > 3, deg(t) > 3, and every internal vertex of P has degree 2 in G.

21.8 Whitney’s Ear Decomposition

Definition 21.24 (Ear decomposition). An ear decomposition of a graph G is a sequence
(Po, P1, ..., Px) of subgraphs whose edge-sets partition E(G) and such that:

(@) P is acycle of length at least 3, and

(b) foreachi =1,...,k, the graph P; is a path whose endvertices lie in V(Py U --- U P;_1)
while its internal vertices are notin V(Py U --- U Pj_1).

Equivalently, if we set G; := Py U --- U P;, then G; is obtained from G;_; by adding an ear P;.

Theorem 21.15 (Whitney’s Ear Decomposition Theorem). A graph G is 2-connected if and
only if G has an ear decomposition. Moreover, if G is 2-connected, then every cycle C in G
of length at least 3 can be chosen as the initial ear Py of some ear decomposition of G.

Proof. (<) Suppose (Po, P, ..., Px) is an ear decomposition of G. We prove the stronger claim
that for every i € {0, 1, ..., k}, the partial union

Gi:=PyUPiU---UP;

is 2-connected.
For i =0, Go = Py is a cycle of length at least 3, hence 2-connected.

Assume i > 1 and that G;_1 is 2-connected. By definition, G; is obtained from G;_; by adding
the ear P;, i.e., a path whose endpoints lie in V(G;_;) and whose internal vertices are new.

View the operation “add a path” as follows: first add an edge between the two endpoints of P;,
obtaining a graph H; then subdivide this new edge repeatedly to create the internal vertices of
P; and thus recover G; from H. Adding an edge to a 2-connected graph preserves 2-connectivity,
so H is 2-connected. By Corollary 4.7, subdividing an edge of a 2-connected graph preserves
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2-connectivity. Therefore G; is 2-connected. This completes the induction, and in particular
Gk = G is 2-connected.

(=) Now assume G is 2-connected, and let C be any cycle in G of length at least 3. We will
construct an ear decomposition starting with Py = C.

Set G := C. Inductively, suppose we have constructed a subgraph G;_; of G that is 2-connected
and satisfies E(G;-1) € E(G). If G;_1 = G, stop; the process will yield an ear decomposition.

Otherwise, there exists an edge e = uv € E(G) \ E(G;-1) with at least one endpoint in V(G;_1).
Choose such an edge with u € V(G;-1). Since u lies in G;_1, there is an edge ¢’ € E(G;-1) incident
to u.

Because G is 2-connected, it satisfies condition (F) of Theorem 4.6: any two edges of G lie on a
common cycle. Hence there exists a cycle I' in G containing both e and e’.

Traverse I starting at u in the direction that uses the edge e first. Continue along I' until you
encounter, for the first time after leaving u, a vertex w € V(G;_1). Let P; be the u—w subpath of T
obtained this way.

By the choice of w as the first vertex of I' (after u) that lies in V(G;_1), every internal vertex of P;
lies outside V(G;_1). Thus P; is an ear of G;_1. Define

G; = Gj_1UDP;.
Then G; strictly increases the edge set (it contains ¢), so the construction must terminate after
finitely many steps, producing G = G.

Finally, define Py := C and let Py, ..., Py be the successive added ears. By construction, the
P; partition E(G) (each step adds edges not previously present), and each P; is an ear of the
previous union. Hence (Pg, P, ..., Pk) is an ear decomposition of G with initial cycle C. O
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22 Hamiltonian Cycles

Definition 22.1 (Hamilton cycle / Hamiltonian graph). A spanning cycle in a graph G is a
cycle C with
V(C) =V(G).

Such a cycle is called a Hamilton cycle (or H-cycle). A graph is Hamiltonian if it contains a
Hamilton cycle.

Remark 22.1. Determining whether a graph is Hamiltonian is computationally intractable
in general (the decision problem is NP-complete). So, unlike matchings, we typically do not
expect a clean “if and only if” characterization that is also easy to check. Instead, we look for
necessary and sufficient conditions that are strong enough to be useful.

Example 22.1. The Petersen graph is not Hamiltonian

Example 22.2 (Complete bipartite graphs). For the complete bipartite graph K, s,

K, s is Hamiltonian &= r=s52>2.

Proof. Any cycle in a bipartite graph alternates between the two partite sets, so a spanning cycle
can exist only if it uses the same number of vertices from each side. Hence a Hamilton cycle in
K, s forces r = s. Also we must have r = s > 2 to even have a cycle.

Conversely, if r = s > 2 with bipartition L = {¢;,...,¢}and R = {ry,..., 1.}, then
brbry - b by

is a Hamilton cycle, since all {;7; edges exist in K; . O

22.1 Necessary conditions

Theorem 22.1 (A necessary connectivity condition for Hamiltonicity). If G has a Hamilton
cycle, then for every nonempty set S C V(G),

c(G-5) < I8,

where ¢(H) denotes the number of connected components of a graph H.

Proof. Let C be a Hamilton cycle of G, and fix a nonempty set S € V(G). Delete the vertices of S
from the cycle C. Since removing vertices from a cycle can only break it, the graph C — S isa
disjoint union of paths (possibly trivial), say

C—S=PiU---UP,,

where g is the number of path components of C — S.

Now walk once around the cyclic order of C. Between two consecutive vertices of S on the
cycle (in this cyclic order), there is a (possibly empty) segment of vertices from V(G) \ S. Each
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nonempty such segment forms exactly one of the paths P;. Since there are exactly |S| “gaps”
between consecutive vertices of S on the cycle, we get

g <|S|.

Finally, note that every component of G — S contains at least one path P;: indeed, the vertices
of G — S are precisely the vertices of C — S, and each vertex lies in exactly one P;. Thus the
components of G — S are obtained by possibly merging some of the paths P; together using edges
of G — S, so the number of components cannot exceed the number of path pieces:

c(G-=S) <q < S|
This proves the claim. O

Remark 22.2 (Not sufficient). The condition ¢(G — S) < |S| is a strong obstruction test: a
Hamilton cycle cannot “visit” more than |S| different components after removing S, because
each component must be entered and exited through vertices of S. However, this condition
is not sufficient: there exist non-Hamiltonian graphs that still satisfy ¢(G — S) < |S| for every
nonempty S (see the example in the figure).

¥

22.2 Ore’s Lemma and Dirac’s Theorem on Hamiltonian graphs

Lemma 22.2 (Ore’s Lemma; Ore (1960)). Let x and y be distinct nonadjacent vertices of an
n-vertex graph G. If
d(x)+d(y) = n,

then G is Hamiltonian if and only if G + xy is Hamiltonian.

Proof. (=) If G is Hamiltonian, then adding the extra edge xy preserves the Hamiltonian cycle,
so G + xy is Hamiltonian.

(<) Assume G + xy has a Hamiltonian cycle, but G does not. In every Hamiltonian cycle of
G + xy, the edge xy must appear, since otherwise it would also be a Hamiltonian cycle of G.
Traverse the Hamiltonian cycle in G + xy from x to y along the x, y-path that lies in G. Index
the vertices on this path as

X=01,02,...,0p =Y.

Define
S={i:viy1 EN(x)}, T={i:vieN()}
Thus |S| = d(x) and |T| = d(y), and both S and T are subsets of {1,2,...,n — 1}.

Since

S| +|T| = d(x) +d(y) = n,
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we have
[SUT|+|SNT|=|S|+]|T| = n.

ButSUT C{1,...,n — 1} has size at most n — 1. Therefore
ISNT| > 1.

Choose i in SNT. Then v;41 € N(x) and v; € N(y), meaning on the x, y-path in G a neighbor of
x immediately follows a neighbor of y. Omitting the edge v;v;;1 and using edges xv;,1 and v;y
instead produces a spanning cycle entirely in G.

Hence G is Hamiltonian. O

Theorem 22.3 (Dirac). For n > 3, an n-vertex graph G with 6(G) > 5 is Hamiltonian.

Proof. The requirement n > 3 is necessary, since K satisfies the degree condition but is not
Hamiltonian.

For n > 3, the complete bipartite graph
Kimn-1721, 10241721

is not Hamiltonian, yet all of its vertices have degree at least 11/2. Thus the condition 6(G) > n/2
is best possible.

For sulfficiency, if 5(G) > n/2, then for any x, y € V(G) we have d(x) + d(y) > n. Therefore Ore’s
condition holds, the graph G is Hamiltonian. |

(n+1)/2

(n+1)/2 (n+1)/2 (n-1)/2

K(n+1 ¥2,(n-1)/2

Figure 1: Dirac’s bound 6(G) > n/2 is sharp; the above graphs do not have Hamilton cycles

22.3 Chvatal’s Theorem

Definition 22.2. The Hamiltonian closure of a graph G is the graph C(G) obtained by
repeatedly adding an edge #v whenever uv is not already an edge and

d(u) +d(v) > n,

where n = [V(G)|.
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Lemma 22.4. G has a Hamiltonian cycle if and only if C(G) has a Hamiltonian cycle.

Proposition 22.5 (Chvétal condition). Letd, > d,—1 > --- > d; be the degree sequence of a
graph G. Assume that for every i < 7,

di>i or dyij>n-—1i.

Then G is Hamiltonian.

Proof. 1If G is the complete graph K,,, then it is Hamiltonian. Assume G # K,,. Then some
nonedge uv ¢ E(G) exists. Choose such a nonedge uv for which d(u) + d(v) is maximum among
all nonadjacent pairs. Since G is not complete, we have

du)+dw)<n-1. (1)
Without loss of generality, let d(u) < d(v) and set i = d(u). Thus

. n
du)y=i< >

Consider any vertex w not adjacent to u. If w ¢ N(u), then by maximality of d(u) + d(v) we must
have
d(w) < d(v).

There are n — 1 — d(u) such vertices. In the degree ordering, this means
dp-i < d(v).
Butd(v) <n —d(u) =n — i, so we obtain

dn—i S Tl—i.

By the hypothesis of the Chvétal condition, since i < 7 and d; = i, we must have
dy_i>n—i.

Combining both inequalities yields
dn_,‘ =n-—i.

Now apply the same argument symmetrically to v. Since d(u) < d(v), every nonneighbor of v
has degree at most d(u), which implies

di <d(u) <i.
This contradicts the assumption that for every i < 7 we have

di>i or dy,_;>n-—i.

Therefore the assumption that G is non-Hamiltonian leads to a contradiction. Hence G is
Hamiltonian. O
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224 Erdgs—-Chvéital Theorem

Theorem 22.6 (Chvatal-ErdGs Theorem). If x(G) > a(G), then G has a Hamiltonian cycle
(unless G is K3).

Proof. Let k = k(G) > a(G). With G # K3, the conditions require k(G) > 1, so there is a longest
cycle C in G. Since 6(G) > x(G), and since every graph with 6(G) > 2 has a cycle of length
at least 6(G) + 1, the length of C is at least k + 1. Let H be a component of G — V(C). Since
k(G) = k,at least k vertices of C have neighbors in H.

Ui

Let u1, ..., ux be vertices of C with neighbors in H indexed in order along C. For each i, let a;
be the vertex following u; along C. If 2; and a; are adjacent, then we construct a longer cycle by
replacing u;a; and u;ja; with a;a; and a u;—u; path through H (see illustration). Similarly, a; has
no neighbor in H. Hence {ay, ..., a;} plus a vertex of H forms an independent set of size greater
than k. This contradiction implies that C is a Hamiltonian cycle. m|

Tait, Hamilton cycles, and the Four Color Theorem. In 1880, Peter Guthrie Tait proposed a
bold plan to prove the Four Color Conjecture (as it was then called) by translating map-coloring
into a statement about cycles. Given a planar map, one can pass to its planar dual graph (we
will cover this later). After some modifications, the hard cases can be phrased in terms of cubic
(3-regular), bridgeless, planar graphs. Tait observed that if every such graph had a Hamilton
cycle, then the map would be 4-colorable: a Hamilton cycle in a cubic planar graph forces
a structure that can be used to produce a 3-edge-coloring, and from that one can derive a
4-coloring of the original map. This became known as Tait’s conjecture:

Every 3-regular, 2-edge-connected planar graph is Hamiltonian.

For decades this looked plausibly true and would have implied the Four Color Theorem
in a remarkably clean way. But in 1946, W.T. Tutte destroyed the dream by constructing a
counterexample: a 3-regular, bridgeless planar graph with no Hamilton cycle (the now-famous
Tutte graph). So Tait’s conjecture was false, and the Four Color problem could not be reduced so
simply to Hamiltonicity. The Four Color Theorem was finally proved much later (Appel-Haken,
1976) by a very different approach, involving unavoidable sets and computer-assisted checking
of reducible configurations.
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Figure 2: Tutte’s counterexample to Tait’s conjecture: a 3-regular, bridgeless planar graph with
no Hamilton cycle (the “Tutte graph”).

Definition 22.3 (Circumference). The circumference of a graph G, denoted ¢(G), is the length
(number of vertices) of a longest cycle in G. If G is acyclic, we set ¢(G) = 0.

22.5 Erdds—Gallai Theorem

Theorem 22.7 (Erd6s—-Gallai (1959)). Fix an integer m > 2. Let G be a graph on n vertices. If

e(G) > @

then ¢(G) > m (equivalently, G contains a cycle of length at least m + 1).

Proof. We prove the contrapositive in extremal form: for fixed m > 2 we show by induction on n
that

c(G)sm = e(G)< @

(t)
Rewriting gives the desired statement.

Reduction to the connected case. If G is disconnected with components Gy, ..., G, (v > 2), then

r

e(G) = Z e(Gj).

i=1

If (1) failed for G, i.e. e(G) > m(nz_l), then some component would already violate the corre-
sponding bound: indeed, if for every i we had ¢(G;) < w, then summing yields

m(n —2) - m(n —1)

e(G) < %;awcm “)=Zh-r) < 5 5

a contradiction. Thus it suffices to prove (1) for connected graphs G.
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Base case: n = m + 1. Assume G is connected, |V(G)| = n = m + 1, and ¢(G) < m. We prove

(n=1) _ (n-1)?
e(G) < Ml - (o1F

Suppose for contradiction that e(G) > (n1¥ 1)

n nn-1) (n—l)z_n—l
(2)—€(G)< 5 i =

. Then the number of missing edges is

If some vertex v had degree d(v) < 5 — 1, then v would have at least
n n
n--(3-1)=3
1

non-neighbors, which would already force at least % > %
Hence 6(G) > 3.

By Dirac’s theorem, G is Hamiltonian, so it contains a cycle of lengthn = m+1, ie. ¢(G) >

missing edges, a contradiction.

m +1 > m, contradicting c(G) < m. Therefore ¢(G) < ( , proving (1) in the base case.

Induction step. Assume n > m + 1 and that (1) holds for all graphs on fewer than n vertices.
Let G be a connected n-vertex graph with ¢(G) < m. We show ¢(G) < m(” D

Let P = v1v; - - - vy be a longest path in G. Among all longest paths, choose P so that the degree
of its first vertex vy is as large as possible. Set

d :=d(vy).

If v1 had a neighbor x ¢ V(P), then xv1v; - - - vy would be a longer path, contradicting maximality
of P. So N(v1) C V(P).
“Rotation” set W and bounding degrees inside it: Define

W :={vg : v10x+1 € E(G) }.
Since each neighbor of v; is some vy1 on P, the map vy41 — vy is bijective from N(v1) to W, so

W[ =IN(v1)| =d

Moreover, for each v € W the path

Py := Ug U101 Ugy1- -+ 0p

is also a longest path (it has the same vertex set and length). By our choice of P (maximizing the
degree of the first vertex among longest paths), we must have

d(vg) < d(vy) =d for all v € W. (%)

Claim: W must be contained among the first m vertices of P. If vy € W, then v1vx11 € E(G),
and the subgraph on

01,02,++.,0k+1

contains the cycle v1v; - - - Uk4101 of length k + 1. Since ¢(G) < m,wegetk+1<m,ie. k <m—1.
Therefore every v, € W satisfies k < m — 1.

Let
t := min{{, m}, Z :={v1,02,...,0:}.
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Then W C Zand |Z| =t < m.
Claim: There are no edges from W to vertices beyond Z. If { < m, then Z = V(P) and there is

nothing to prove. Assume ¢ > m,so Z = {v1,...,vy}. We claim that for any v, € W and any
index j > m,
vkv; & E(G). @
Indeed, if vxv; € E(G) with j > m, then using also v1vk41 € E(G) we obtain the cycle
0102 =+ 0k 0j0j-1 * " Uk+1 01,
whose length is exactly j > m, contradicting ¢(G) < m. This proves ().
Thus every edge incident to a vertex of W has its other endpoint in Z.

Delete W and count edges. Let Gp := G — W. Then |[V(Go)| = n — d. Let Ew be the set of edges
of G with at least one endpoint in W. Then

e(Go) = e(G) — |Ew|. (%)

We now bound |Ew/|. Because there are no edges from W to V(G) \ Z (Step 4), every edge with
an endpoint in W lies either inside W or between W and Z \ W. Write

e(W) :=e(G[W]), e[W,Z\W]:= |{xy €EG):xeW, yeZ)\ W}|.
Then
|[Ew| =e(W) +e[W,Z \ W]. ©)

Also,

Z d(w) = 2e(W) + e[W, Z \ W]

weW
(each edge inside W is counted twice, and each edge from W to Z \ W is counted once).
Combining with (¥) gives

[Ew| = e(W) + e[W, Z \ W] = % > dw) + %e[W,Z\W]. (»)
weW

By (x), eachw € W has d(w) < d, and |W| =d, so
Z d(w) < d>.
weW

Moreover, each vertex of W can send edges into at most |Z \ W| =t — d vertices of Z \ W, so
e[W,Z\ W] <d(t-4d).
Plugging into (#) yields
|Ew| < %d2 + %d(t —d) = %dt < %dm, (0)
since t < m.
From (&) and (¢), if e(G) > @ then

e(Go) = e(G) — [Ew| > @ _ %m _ w

By the induction hypothesis applied to the graph Gy (which has fewer than n vertices), this
would force ¢(Gg) > m. But Gy is a subgraph of G, so c(G) > ¢(Gp) > m, contradicting our
assumption ¢(G) < m.

m(n—1) m(n—1)
2 2 7

Therefore the assumption e(G) > is impossible when ¢(G) < m. Hence ¢(G) <
completing the induction and proving (1). o
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23 Vertex Coloring

23.1 Basics of vertex coloring

Motivation: ~ Vertex-coloring is the “no-conflicts” version of scheduling: vertices are
tasks/people/frequencies, edges mean “these two cannot share a label,” and colors are the
labels. A proper coloring is just an assignment of labels that respects the conflicts. The fewer
labels you can get away with, the more structured (or more restrictive) the graph is.

Definition 23.1 (Proper k-coloring). Let G = (V, E) be a graph and let k > 1. A (proper)
k-coloring of G is a function
f:V(G) —{1,2,...,k}

such that for every edge xy € E(G),
f)# f(y).

Remark 23.1 (Loops and multiple edges). A loop makes proper coloring impossible, so graphs
with loops have no proper coloring for any k. Multiple edges do not change anything: if x
and y are adjacent once or 10'% times, the constraint is still just f(x) # f(y). Therefore, when
studying vertex-coloring we usually restrict attention to simple graphs.

Definition 23.2 (Color classes). Given a proper k-coloring f, for each colori € {1, ..., k}
the set

f @) ={veV(G): fv) =i}

is called the i-th color class. Each color class is an independent set.

Proposition 23.1 (Colorings as partitions). A proper k-coloring of G is equivalent to a
partition of V(G) into k independent sets (some parts are allowed to be empty).

Remark 23.2 (More colors = more freedom). If G is k-colorable then it is also (k + 1)-colorable:
just reuse the same coloring and ignore the extra color. In particular, any graph on n vertices is
n-colorable (color every vertex differently).

Definition 23.3 (Chromatic number). The chromatic number of G, denoted x(G), is the

smallest positive integer k such that G has a proper k-coloring. We say G is k-colorable if
X(G) < k.

Remark 23.3 (Computational complexity). For each fixed k > 3, deciding whether a graph
is k-colorable is NP-complete. So beyond k = 2, we should not expect a clean, fast algorithm
that works for all graphs. This is why much of coloring theory focuses on structural sufficient
conditions and bounds for x(G).

Definition 23.4. We use a(G) for the independence number and w(G) for the maximum
size of a clique in G, called the clique number.
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Proposition 23.2. For every graph G,

V(G)I

X(G) > w(G) and xX(G) = =G

Proof. Clique bound. Let K be a clique in G of maximum size, so |V (K)| = @(G). In any proper
coloring, adjacent vertices receive different colors, so all vertices of K must receive pairwise
distinct colors. Hence at least w(G) colors are needed:

X(G) = w(G).

Independence bound. Let f beaproper x(G)-coloring of G. Its color classes f ~1(1),..., f 1 (x(G))
form a partition of V(G) into independent sets. Each color class is an independent set, so its size
is at most a(G):

|f1(#) < a(G) foralli.

Summing over all colors gives

x(G) x(G)

VGl = > If0) < D) a(G) = x(G)a(G).
i=1

i=1

IA

Rearranging yields
VGl

x(G) = 2C) "

O

Example 23.1. Let G ~ G(n, 3), meaning V(G) = [n] and each edge appears independently
with probability 1/2.

a(G) = 2log, n, w(G) = 2log, n.
n n

KG)~ a(G) ~ 2log,n’

Recall the join of G and H, denoted G V H, is the graph obtained from the disjoint union G U H
by adding all edges between V(G) and V (H):

V(GVH)=V(G)UV(H), EGVH)=EGUEH)U{xy: xeV(G), yeV(H)}.

Proposition 23.3 (Clique number and chromatic number of a join). For graphs G, H on
disjoint vertex sets,

w(GV H) = w(G) + w(H), X(GV H) = x(G) + x(H).

Proof. Clique number. Let K be a clique in G V H. Since all edges between V(G) and V(H) are
present, the intersections K N V(G) and K N V(H) are cliques in G and H, respectively. Hence

K| = [K N V(G)| + K N V(H)| < ©(G) + w(H),
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so w(G V H) < w(G) + w(H).
For the reverse inequality, take a maximum clique K¢ in G and a maximum clique Ky in H.
Then Kg U Ky is a clique in G V H (all cross-edges are present), and
|Kg U Ky| = w(G) + w(H).
Thus w(G V H) > w(G) + w(H), proving equality.

Chromatic number. First we show x(G V H) < x(G) + x(H). Color G properly with colors
{1,..., x(G)} and color H properly with fresh colors {x(G)+1, ..., x(G)+ x(H)}. Because every
vertex of G is adjacent to every vertex of H, using disjoint color sets guarantees no conflict across
the join edges. Hence this is a proper coloring of G vV H with x(G) + x(H) colors.

Now we prove the reverse inequality x(G V H) > x(G) + x(H). Let f be any proper coloring of
G V H. No color can appear on both sides: if some color ¢ were used on a vertex x € V(G) and
also on a vertex y € V(H), then xy is an edge of G V H, contradicting properness. Therefore the
set of colors used on V(G) is disjoint from the set of colors used on V(H). In particular, f uses
at least x(G) colors on V(G) and at least x(H) colors on V(H), so in total

x(GVH) 2 x(G)+ x(H).
Combining the two inequalities gives x(G V H) = x(G) + x(H). O

Example 23.2 (Joining odd cycles creates a linear gap x — @). Let Cpt4+1 be an odd cycle. Then
X(Cat4+1) = 3 and w(Car41) = 2. Let G be the join of k disjoint odd cycles:

G=0Co+1 V Coppy1 V --- V Copyy1.
Iterating Proposition 23.3 yields
x(G) =3k, w(G) = 2k,

50 x(G) — w(G) = k grows linearly.

23.2 Greedy coloring

Fix an ordering of the vertices,
01,02,...,04.

Color the vertices one-by-one in this order. When coloring v;, assign it the smallest positive
integer (“the first available color”) that is not used by any already-colored neighbor of v;. This
always produces a proper coloring, but the number of colors can depend heavily on the chosen
ordering.

Proposition 23.4. For every graph G,
X(G) <A(G) +1,

where A(G) is the maximum degree of G. Moreover, for any vertex ordering, greedy coloring
uses at most A(G) + 1 colors.
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Proof. Run greedy coloring on an arbitrary ordering vy, ..., v,. Fix a step i, and consider the
vertex v; at the moment we are about to color it.

Among the vertices already colored, only the neighbors of v; impose restrictions: v; is forbidden
from using the colors appearing on those earlier neighbors. But v; has at most deg(v;) < A(G)
neighbors in total, hence at most A(G) earlier neighbors. Therefore at most A(G) colors are
forbidden when coloring v;.

If we allow ourselves the palette of colors {1,2, ..., A(G) + 1}, then by the pigeonhole principle
(at most A(G) forbidden colors, but A(G) + 1 available colors), there is always at least one color in
this palette not used by any earlier neighbor of v;. Greedy chooses such a color, so the procedure
completes using at most A(G) + 1 colors.

Hence G is (A(G) + 1)-colorable, and therefore x(G) < A(G) + 1. O

Example 23.3 (A tree where greedy uses k colors). Fix k > 2. We construct a tree Ty and a vertex
ordering for which the greedy (first-fit) algorithm uses exactly k colors, even though x(Tx) = 2.

Construction of T;. Define Ti to be a single vertex. For k > 2, assume T, ..., Ti—1 have been
constructed. Create a new vertex rx (the “root”) and for each i € {1, ..., k — 1} connect 7y to the
root r; of T; by a subdivision edge: introduce a new vertex s ; and add edges

TkSk,is Sk,iti-

Equivalently, we attach each earlier tree T; to r; by a path of length 2.
The resulting graph is a tree (we attach trees by paths and create no cycles), so x(Tx) = 2.

The ordering. Order the vertices in the following way. Fori =1,2,...,k — 1, list all vertices
of T; first (in an order that will be specified inductively), then list the subdivision vertex sy ;.
Finally, list the new root 7 last.

Claim. In this ordering, greedy uses color i on the root r; forevery i =1,..., k.

Proof by induction on k. For k = 1 it is trivial. Assume the claim holds for Ty, . . ., Tj—1.

Consider the greedy coloring on Ty with the ordering described above. By the induction
hypothesis, when the algorithm colors the copy of T;, its root r; receives color i.

Next, the vertex sy ; appears after all of T; has been colored, and si ; is adjacent to 7;. So sk ;
cannot use color i; in particular, greedy assigns si,; some colorin {1,...,k — 1} \ {i} (possibly
reusing a color from earlier trees).

Finally, the last vertex is r¢. It is adjacent to every si; fori =1,...,k — 1. We claim that for
each color j € {1, ...,k — 1}, at least one neighbor of rx has color j. Indeed, take i = j. The
vertex sy, ; is forbidden from using color j (because it is adjacent to r;), so greedy assigns it
the smallest available color different from j. Over the collection {sk,...,Skk-1}, every color
1,...,k—1appears at least once: if a color j were missing entirely from the neighbors of rx, then
when coloring s ; the color j would have been available and (being the smallest not forbidden
by its neighbors) greedy would have used it, contradiction.

Thus, when we color r¢, all colors 1,2, ..., k — 1 are present amonyg its already-colored neighbors.
Therefore greedy cannot use any of these colors on rx, and it is forced to introduce a new color:

f (T’k) = k.
This completes the induction.

Hence greedy uses exactly k colors on the tree Ty even though x(Ti) = 2.
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23.3 Brooks Theorem

Theorem 23.5 (Brooks’ Theorem). Let G be a connected graph with maximum degree A(G).
If G is neither a complete graph nor an odd cycle, then

x(G) < A(G).
Equivalently, every connected graph satisfies

X(G)=A(G)+1 ifandonlyif G iscomplete or an odd cycle.

We will prove this later.

Proposition 23.6 (Welsh-Powell). If G has degree sequence di,dy, . ..,d,, then

X(G) <1+ max min{d;, i — 1}.
1

Proof. Consider the greedy coloring of G in the order v1, vy, ..., V.

Fix an index i and look at the moment we color v;. A color is forbidden for v; only if it appears
on an earlier neighbor of v;. Thus the number of forbidden colors is at most the number of earlier
neighbors of v;.

But v; has at most d; neighbors in total, so it has at most d; earlier neighbors. Also there are only
i — 1 earlier vertices altogether, so it has at most i — 1 earlier neighbors. Therefore the number of
earlier neighbors of v; is at most

min{d;, i — 1}.

Hence at most min{d;, i — 1} colors are forbidden when coloring v;.

Greedy always chooses the smallest available color, so it never needs more than
1+ min{d;, i — 1}

colors to color v; (one more than the number of forbidden colors). Since this holds for every i,
the total number of colors used by the greedy algorithm is at most

max (1 + min{d;, i —1}) =1+ max min{d;, i — 1}.
1<i<n 1<i<n

Because x(G) is the minimum possible number of colors, it is at most the number produced by
greedy. Thus the stated bound holds. |

234 Degeneracy and Szekeres-Wilf Theorem

Definition 23.5. G is k-degenerate if every subgraph of G has a vertex of degree at most k .
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Lemma 23.7 (Degeneracy <= existence of a k-ordering). Let G be a graph and let k > 0.
The following are equivalent:

1. G is k-degenerate, i.e. every (nonempty) subgraph of G has a vertex of degree at most k.

2. There exists an ordering vy, ..., v, of V(G) such that for every 2 <i <,

IN(@i) N {o1,...,0i0}| <k,

equivalently, v; has at most k edges to earlier vertices.

Proof. (i)=(ii). Assume G is k-degenerate. We construct the ordering backwards. Let G, := G.
Since G, is a subgraph of G, it has a vertex of degree at most k; choose one and call it v,,. Delete
v, to obtain G,-1 := G, — v,. Again G, is a subgraph of G, so it has a vertex of degree at
most k; choose one and call it v,_1. Continue until all vertices are chosen, giving an ordering
01,...,04.

Fix i > 2. When v; was chosen, it belonged to the current graph G;, whose vertex set is exactly
{v1,...,vi}. By construction, degGi(vi) < k. But degGi(vi) counts precisely the neighbors of v;
among {v1,...,v;-1}, hence

IN(vi) N {v1,...,vim1}| = degg (vi) <k,
proving (ii).

(ii)=(@). Assume there is an ordering vy, ..., v, such that each v; has at most k neighbors
among earlier vertices.

Let H be any nonempty subgraph of G (you may take H induced if you like; the argument still
works). Choose v; to be the vertex of H with largest index in the ordering among vertices of H.
Then every neighbor of v; inside H must appear earlier in the ordering (since no vertex of H has
index larger than j). Therefore

deg,(vj) < [Ng(vj) N{vy,...,vj-1} < k.

So H contains a vertex of degree at most k. Since H was arbitrary, every subgraph of G has
minimum degree at most k, i.e. G is k-degenerate.

Thus (i) and (ii) are equivalent. ]

Theorem 23.8 (Szekeres-Wilf). If G is d-degenerate, then G is (d + 1)-colorable.

Proof. Let

d := max 6(H).
HCG

We claim that G is d-degenerate, i.e. every subgraph of G contains a vertex of degree at most d.

Indeed, let H be any nonempty subgraph of G. By definition of minimum degree, H has a vertex
of degree exactly 6(H), hence certainly a vertex of degree at most 5(H). But by the choice of
d we have 6(H) < d, so H contains a vertex of degree at most d. Since H was arbitrary, G is
d-degenerate.

By the degeneracy-ordering lemma, there exists an ordering of the vertices

01,02,...,0y4
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such that for each i > 2,
IN(@:i) N {v1,...,0i1}| < d.

Now run the greedy (first-fit) coloring in this order. When coloring v;, only earlier neighbors
forbid colors, so at most d colors are forbidden. Therefore among the palette {1,2, ..., d+1} there
is always at least one available color, and the greedy algorithm produces a proper (d +1)-coloring
of G.

Hence x(G) <d +1 =1+ maxgcg 6(H), as claimed. |

23.5 Gallai-Roy Theorem

Theorem 23.9 (Gallai-Roy). For every orientation D of G, if £(D) denotes the length of the
longest path in D, then
x(G) <1+4(D).

23.6 Mycielski’s Construction

The point of Mycielski’s construction is to take a triangle-free graph with large chromatic
number and increase the chromatic number up by 1 while staying triangle-free. This is how you
manufacture graphs with x as large as you want but still no triangles, showing that x can be
arbitrarily large even if w is not.

Example 23.4 (Mycielski graph). Let G be a graph with vertex set

V(G) ={v1,...,vn}.
Define a disjoint copy of the vertex set

V(G) ={u1,...,un},
and add one new vertex w. The Mycielski graph of G, denoted u(G), is the graph with vertex set

V(u(G)) = V(G) U V/(G) U fu},
and edges determined as follows:
1. (Keep the old graph.) The induced subgraph on V(G) is G:
wGIV(G)] = G.

2. (Connect w to all copies.) The neighborhood of w is exactly the copy set:
Ny)(w) = V'(G).

3. (Copy each old neighborhood.) For each j € {1,...,n}, connect u; to exactly the copies of
the neighbors of v;:

Nye)(uj) = {u; : vi € No(vj) }.
Equivalently, in edge language:
uju; € E(u(G)) <= vjv; € E(G).
There are no edges between V(G) and V’(G), and no edges from w to V(G). Define M3 := Cs,

and then recursively
Mpi1 = pu(My).
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Theorem 23.10 (Mycielski). Given a graph G, let G’ = u(G) be the graph obtained from G
by Mycielski’s construction. If x(G) = k and G is Cs-free, then

xX(G)=k+1 and G’ is Cs-free.

Proof. Write V(G) = {v1,...,v,}and let U = {uy, ..., u,} be a disjoint copy. The vertex set of
G'is V(G’) = V(G) U U U {w}, and the edges are:

* G'V(GI=G;

* w is adjacent to every vertex in U and to no vertex in V(G);

e foralli,j, we have u;v; € E(G’) iff v;v; € E(G).

In particular, U is independent in G'.

(1) Triangle-freeness. Assume G is C3-free. Suppose for contradiction that G’ contains a triangle
T.

If T contains w, then the other two vertices must lie in U (since Ng/(w) = U). But U is
independent, so this is impossible.

Hence T does not contain w. If T lies entirely in V(G), then it is a triangle in G, contradiction.
Therefore T contains at least one vertex of U; say u; € V(T). Since U is independent and
w ¢ V(T), the other two vertices of T must lie in V(G), say v; and vy. Then u;v;, u;v, € E(G’),
which by construction implies v;v;, v;v¢ € E(G). Also vjv, € E(G’) forces vjv, € E(G) because
G'[V(G)] = G. Thus v;v;v, is a triangle in G, contradiction. Hence G” is C3-free.

(2) Upper bound x(G’) < k + 1. Let ¢ be a proper k-coloring of G with color set {1, ..., k}.
Extend ¢ to G” by

p(ui):=@v;)) (1<i<n), p(w) :=k+1.

This is proper: w sees only vertices in U, all colored in {1, ..., k}; there are no edges inside U;
and for an edge u;v; we have v;v; € E(G), so ¢(u;) = ¢(v;) # ¢(v;). Therefore x(G’) < k + 1.

(3) Lower bound x(G’) > k + 1. Assume for contradiction that G’ has a proper k-coloring ¢
with color set {1, ..., k}. By permuting color names if needed, we may assume

P(w) = k.
Then every neighbor of w must avoid color k, so
Y(u;)e{l,...,k—-1} foralli.

Let
A:={v; e V(G) : Y(v;) =k }.

Note A is independent in G because it is a single color class of ¢ and G is an induced subgraph
of G’ on V(G).

Define a new coloring 6 of G with colorsin {1, ...,k — 1} by

Q(Ui) = {l,b(uj), v; € A/
1P(UZ')I v; & A.

This is well-defined and uses only {1, ..., k — 1} since ¢(u;) € {1,...,k =1} and ¢(v;) # k when
v; & A.
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Figure 3: Mycielski graph My

We claim 6 is proper on G. Consider any edge v;v; € E(G).

If neither endpoint lies in A, then 6(v;) = ¥ (v;) and 0(v;) = Y(v;), and these are different
because 1 is proper on G’[V(G)] = G.

If both endpoints lie in A, this cannot happen since A is independent.
So suppose v; € A and v; ¢ A. Then
O(vi) =),  0(v)) = Y(v).

Because v;v; € E(G), the construction of G” gives u;v; € E(G’). Since 1 is proper on G’, we have
Y(u;) # Y(v)), hence O(v;) # 0(v;). Thus 6 is a proper (k — 1)-coloring of G.

This contradicts x(G) = k. Therefore G’ is not k-colorable, so x(G’) > k + 1.

Combining (2) and (3) yields x(G’) = k + 1. |

Theorem 23.11. If G is triangle-free on n vertices, then

X(G) < 2[Vn].

(In particular, if n is a perfect square then x(G) < 2v/n.)

Proof. Set t := [y/n]. We color G in two phases.

Phase I (peel off large neighborhoods). Initialize H := G. While H has a vertex v with dy(v) > ¢,
do:

¢ introduce a new color (a brand new color never used before);
e color every vertex in the open neighborhood Ny (v) with this new color;
¢ delete the vertices of Ny (v) from H (leave v uncolored for now).

This is a proper coloring step because G is triangle-free: if two vertices x,y € Ny(v) were
adjacent, then vxy would form a triangle. Hence Ny(v) is an independent set, so it can safely
receive one color.

Each iteration colors (and deletes) at least ¢ vertices, so Phase I uses at most
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colors.

Phase II (finish the low-degree remainder). When Phase I stops, the remaining uncolored
graph H satisfies A(H) < t — 1 (since there is no vertex of degree > t). By the greedy bound
X(H) < A(H) + 1, we can color H using at most

AH)+1<(t-1)+1=t
additional colors.

Total. Phase I uses < t colors and Phase Il uses < t colors, so x(G) < 2t = 2[/n]. O
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24 Color-critical graphs

Definition 24.1 (Color-critical and k-critical). A graph G is color-critical if every proper
subgraph H ¢ G satisfies
X(H) < x(G).

If x(G) = k, we also say that G is k-critical.

Remark 24.1 (Immediate consequences). If G is color-critical, then:

Yo e V(G): x(G-2) < x(G), Ve € E(G): x(G—e) < x(G).
In particular, G has no isolated vertex (deleting an isolated vertex does not change x).
Example 24.1. 1. The unique 1-critical graph is Kj.

2. The unique 2-critical graph is Kj.
3. The 3-critical graphs are exactly the odd cycles Cy;41.

Lemma 24.1 (Minimum degree bound). If G is k-critical, then

5(G) > k- 1.

Proof. Letv € V(G). Since G is k-critical, we have x(G —v) < k — 1. Fix a proper (k — 1)-coloring
cof G—v.

If some color in {1, ..., k — 1} does not appear on Ng(v), then we could assign v that missing
color and obtain a proper (k — 1)-coloring of G, contradicting x(G) = k. Hence every one of the
k — 1 colors appears on Ng(v), so [Ng(v)| > k — 1, i.e. deg(v) > k — 1.

Since v was arbitrary, 6(G) > k — 1. |

Proposition 24.2. Let x(G) = k.

1. If x(G —v) < x(G) for some v € V(G), then there exists a proper k-coloring f of G such
that:

f(v) =k isused only on v, and {1,2,...,k=1} € f(Ng(v)).

2. If x(G —e) < x(G) for some edge e = uv € E(G), then in every proper (k — 1)-coloring g
of G — e we have

g(u) = g(v).

Proof. 1. Since x(G —v) < k —1, pick a proper (k — 1)-coloring of G — v and call it f. Extend it to
G by assigning f(v) := k. Now v is the unique vertex of color k. If some colorc € {1, ...,k -1}
did not appear on Ng(v), then we could recolor v with ¢ and obtain a proper (k — 1)-coloring of
G, contradicting x(G) = k. Hence every color 1, ..., k — 1 appears on Ng(v).

2. Let e = uv. Take any proper (k — 1)-coloring g of G —e. If g(u) # g(v), then g is also a
proper (k — 1)-coloring of G (because adding the edge v would still connect different colors),
contradicting x(G) = k. Therefore g(1) = g(v) in every (k — 1)-coloring of G — e. O
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24.1 Connectivity properties of color-critical graphs

Proposition 24.3. If G is k-critical with k > 2, then G is 2-connected. Equivalently, G has
no cut-vertex.

Proof. First, G is connected: otherwise x(G) = max; x(G;) over components, so deleting a vertex
from a component not attaining the maximum would not decrease x, contradicting criticality.

Now suppose for contradiction that G has a cut-vertex v. Then G — v is disconnected; write its
components as Hy, ..., Hy with t > 2, and let G; := G[V(H;) U {v}].

For each i, G; is a proper subgraph of G, so by k-criticality
xX(Gi)<k-1

Fix proper (k — 1)-colorings c; of each G;. By permuting the color names inside each c; (allowed
since colors are just labels), we may assume that all ¢; assign the same color to v.

Now define a coloring ¢ of G by setting c|y(c,) := ¢; for each i. This is well-defined because the
only overlap between the vertex sets of the G; is the single vertex v, and we forced agreement
there. No edge joins H; to H; for i # j, so ¢ is a proper (k —1)-coloring of all of G. This contradicts
X(G) = k.

Therefore G has no cut-vertex. Since G is connected, it is 2-connected. O

Theorem 24.4 (Dirac). Every k-critical graph G is (k — 1)-edge-connected

Proof. Let G be k-critical. Let F be a minimum edge-cut, so G — F is disconnected. Choose one
component of G — F with vertex set X, and put Y := V(G) \ X. Then F = Eg(X,Y).

Since X and Y are proper nonempty vertex subsets, the induced subgraphs G[X] and G[Y] are
proper subgraphs of G, hence

X(G[X]) <k-1 and X(G[Y]) <k-1
by k-criticality. Fix proper (k — 1)-colorings of G[X] and G[Y]. Let
X=XjU---UX}_4, Y=Y U---UYr_1

be the corresponding color classes (so each X; and Y] is independent).

Now build a bipartite graph B with left part {1, ...,k — 1} (the colors on X) and right part
{1,..., k — 1} (the colors on Y), where we join i to j in B iff there is no edge of G between X; and
Yj. (Think: pairing color i on X with color j on Y would be “safe across the cut”.)

Claim: B has no perfect matching. Indeed, if M were a perfect matching, then each j on the right
is matched to a unique i on the left. Recolor every vertex of ¥; with color i. This is just a
permutation of colors inside Y, so it remains a proper (k — 1)-coloring of G[Y]. And because
(i,j) € M implies there are no edges between X; and Yj, there are no monochromatic edges
across the cut. Thus we obtain a proper (k — 1)-coloring of all of G, contradicting x(G) = k. So B
has no perfect matching.

By Hall’s theorem, there exists a nonempty set S C {1, ..., k — 1} such that

INB(S)| < [S].
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LetT :={1,...,k—1}\ Ng(S). Then
IT|=(k-1) = INp(S) = (k—=1) = (IS|-1) = k- S].

Moreover, if i € S and j € T, then j ¢ Np(S), so (i, j) is not an edge of B. By definition of B, this
means there is at least one edge of G between X; and Y;.

Each cut-edge in Eg(X, Y) lies between a unique pair (X;, Y;), so the previous paragraph implies
[Ec(X,Y)| = |S|-[T| = |S[(k = IS]).

For integers 1 < |S| < k — 1, the minimum of |S|(k — |S|) occurs at the endpoints |S| = 1 or
|S| = k — 1, and equals k — 1. Hence

IFl=|Ec(X,Y)| 2 k- 1.

Since F was a minimum edge-cut, every edge-cut has size at least k — 1, so G is (k — 1)-edge-
connected. O

24.2 Hajos construction (building k-critical graphs of connectivity 2)
The Hajos construction is a standard way to manufacture new k-critical graphs from old ones,
while keeping the vertex-connectivity as small as possible (namely 2).

Example 24.2 (Hajos). Let G; and G, be vertex-disjoint graphs, and fix edges x1y; € E(G1) and
x2y2 € E(G2). Form a new graph G* by:

1. deleting the edges x1y1 and x217;
2. identifying (gluing) the vertices x; and x; into a single new vertex x*;
3. adding the edge y1y>.

Remark 24.2 (Why «(G*) = 2). By construction, G* — {x*, y1} is disconnected: removing x*
separates the two “halves”, and removing y; in addition kills the only remaining link y1y>
from the Gq-side to the G,-side. Thus {x", y1} is a separating set, so ¥(G*) < 2 (and in the usual
applications one checks G* is 2-connected, hence x(G*) = 2).

Theorem 24.5 (Haj6s preserves k-criticality). If G and Gy are k-critical, then the Hajos
graph G is also k-critical.

Proof. Write x* for the identified vertex, and note that

V(G) = (V(G1) UV(G2)) \ {x1,x2} U {x}.

Step 1: x(G”) > k. Suppose for contradiction that G* has a proper (k — 1)-coloring f.

Restrict f to V(G1) \ {x1} and give x1 the color f(x*). Since the only edge of G; that we deleted
was x1Y1, this assignment fails to be a proper (k — 1)-coloring of G; only if x1 and y; receive the
same color. Hence

f&) = f(y).

Applying the same argument on the G side yields

f&) = f(y2)-



Color-critical graphs 225

Therefore f(y1) = f(y2), contradicting that y1y, is an edge of G* and f is proper. Thus G* is not
(k — 1)-colorable, so x(G*) > k.

Step 2: every edge deletion lowers the chromatic number. Let ¢ € E(G*). We show
X(G'—e)<k-1.

Case 2a: e = y1Y,. Since G, is k-critical, the graph G; — x;y; is (k — 1)-colorable. Let f; be a proper
(k —1)-coloring of G; — x;y;. Because x; and y; are nonadjacent in G; — x;y;, we may (if necessary)
permute the colors within f; so that

filxi) = fi(yi)-

Now permute the colors of f, so that fo(x2) = fi(x1). After identifying x; and x; into x*, define
a coloring f of G* — y1y2 by

f(o) v € V(G)\ {x1},
f(©) =1 fa(v) v € V(G2) \ {x2},
filx1) = fo(x2) v =x"

This is well-defined and proper: inside each side it agrees with a proper coloring; across the cut
there is no edge except y1y2, which we removed. Hence x(G* — y1y2) < k — 1.

Case 2b: e is any other edge. By symmetry, assume e € E(Gy) after the construction (this includes
edges incident to x* that came from G).

Again, k-criticality of Gy gives a proper (k —1)-coloring f; of G1 —e. Also k-criticality of G gives
a proper (k — 1)-coloring f, of G, — x212, and as above we may choose f, so that f2(x2) = fo(12).
Permute colors in f; so that f2(x2) = fi(x1), and then glue the colorings into a coloring of G* — ¢
exactly as in Case 2a. The only potential conflict across the two sides is the edge y112, but y;
and y» may have different colors (and if e # y1y, we did not delete that edge), so the resulting
coloring is still proper.

Thus in all cases x(G* —e) <k —1.

Conclusion. We have shown x(G*) > k and x(G* —e) < k — 1 for every e € E(G"), which is
exactly that G* is k-critical. O

24.3 Proof of Brooks Theorem

We now return to the proof of Brooks Theorem.

Theorem 24.6 (Brooks” Theorem). Let G be a graph with maximum degree A. If A > 3 and
G contains no clique Ka+1, then G is A-colorable (i.e. x(G) < A).

Proof. We may assume G is connected, since different components can be colored independently
using the same palette of A colors.

Assume for contradiction that G is a counterexample with the fewest vertices. Thus G is not
complete and not an odd cycle, A(G) = A, and x(G) > A. Since x(G) < A + 1 always, we have

xX(G)=A+1.

By minimality, for every vertex u the graph G —u is A-colorable, so x(G—u) < A < A+1 = x(G).
Hence G is (A + 1)-critical.
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By previously proved results about k-critical graphs (applied with k = A + 1), we have:

0(G)=(A+1)—1=A and G is2-connected.

Step 2: Find 4, b at distance 2 with G — a — b connected.

Since also A(G) = A, the minimum-degree bound forces G to be A-reqular. Moreover, 2-
connectedness implies that for every vertex u, the graph G — u is connected.

If A = |V(G)| -1, then every vertex has degree |V (G)| -1, so G is complete, contrary to hypothesis.
Hence
A<L|V(G)|-2.

Fix any vertex v € V(G). Since v is not adjacent to every other vertex, pick a vertex t ¢ N(v) U {v},
and let

v =po,P1, P2, P =t
be a shortest v—t path. Then ¢ > 2, so p, # v exists and p, ¢ N(v) (otherwise vp, would shorten

the path). Set
a:=v, b :=po.

Then dist(a, b) = 2, and a and b have a common neighbor p;.

It remains to ensure G — a — b is connected. Consider G —a = G — v, which is connected because
G is 2-connected. If (G — v) — b is connected, we are done. Otherwise, b is a cut-vertex of G — v.
Let B be an endblock of G — v not containing p; (equivalently, not containing the neighbor of v
on the chosen shortest path), and let z be the unique cut-vertex of G — v in B.

Because G is 2-connected, the vertex v must have a neighbor in B — {z}; otherwise z would
separate B — {z} from the rest of G. Choose such a neighbor a’ € B — {z} of v, and set a := a’
while keeping b := p; as above. Then a and b are nonadjacent (they lie in distinct blocks of G —v)
and still have distance 2 through v. Moreover, removing a deletes a vertex from an endblock B
but leaves the block attached through z, so (G — v) — a remains connected; hence G —a — b is
connected as well.

Thus we have vertices a, b with dist(a, b) = 2 such that H := G — a — b is connected. Let v be a
common neighbor of a and b (so a — v — b is a path).

Step 3: Greedy coloring in reverse order. Let H := G — a — b, which is connected. Choose an
ordering
X1=0, X2, ..., Xm

of V(H) such that each x; (i > 2) has a neighbor among {x1, ..., x;_1} (e.g. a rooted spanning
tree order).

We now A-color G.
(i) Precolor a and b. Assign both a and b color 1. This is legal because 2 and b are nonadjacent.

(ii) Color Xy, X1, - . . , X2 greedily. When coloring x; (i > 2), ithas aneighbor among {x1, ..., x;_1}
that is still uncolored (since we color in reverse). Hence at most deg(x;) —1 < A —1 of its
neighbors are already colored, so some color in {1, ..., A} is available.

(iii) Color x1 = v last. All neighbors of v are now colored, including a and b, and both a, b have

color 1. Since v has degree A, the colors appearing on N(v) use at most A — 1 distinct colors, so

some color in {1, ..., A} is missing from N(v). Color v with that missing color.

This yields a proper A-coloring of G, contradicting x(G) = A + 1. Therefore G is A-colorable.
O
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24.4 List coloring

Definition 24.2. For a graph G, a list assignment L assigns to each vertex v € V(G) a set
L(v) of colors allowed at v. An L-coloring of G is a propositioner coloring f such that
f(v) € L(v) for every vertex v.

Definition 24.3. A graph G is k-choosable (or list k-colorable) if for every list assignment
L satisfying |L(v)| > k for all v € V(G), the graph G has an L-coloring. The list chromatic
number y;(G) is the minimum k such that G is k-choosable.

Theorem 24.7. Letm = (Zkk_ !). Then K, is not k-choosable. Hence

Proof. Let the color setbe {1,2,...,2k — 1}, and let L assign to each vertex every k-subset of this
set. Since there are (Zkk_ 1) = m such subsets, this defines distinct lists for the m vertices in each

part of Ky 1.

Suppose toward a contradiction that K, ,, has an L-coloring using the colors {1, ...,2k —1}. Let
the two partite sets be X and Y. Since each list has size k, every vertex must receive one of the k
colors in its list. In particular, each part must use at least k colors; otherwise some vertex in that
part would have no available color from its list.

Without loss of generality, assume the left part X uses at most k — 1 distinct colors. Let B be the
set of colors used on X; then |B| < k — 1. Therefore the remaining colors

1,2,...,2k—1}\ B

form a set of size at least k.

Hence Y must use at least one color from this remaining set. But any such color appears in at
least one list on X as well, because every k-subset occurs as a list on both sides. Since K, is
complete bipartite, this forces some edge between X and Y to have both endpoints receiving the
same color, contradicting propositioner coloring. Thus no L-coloring exists. Since L assigns lists
of size k, the graph K,, ,; is not k-choosable, and therefore x (K m) > k. O

Theorem 24.8 (List-coloring version of Brooks” theorem). If G is connected, not complete,
and not an odd cycle, then
xe(G) < A(G).
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25 Edge Coloring

25.1 Basics of edge-coloring

Definition 25.1 (k-edge-coloring). A (proper) k-edge-coloring of a graph G is a function
f:EG)—={1,2,...,k}
such that for every colori € {1, ..., k}, the set
FU6) = {e € EG): f(e) =i}

is a matching (that is, no two edges in f~!(i) share an endpoint). The sets f~!(i) are called
the color classes of f.

Remark 25.1 (Immediate observations). 1. If G has a loop, then G has no proper k-edge-
coloring for any k. Indeed, a loop is incident to its own endpoint twice, so it cannot share a
color class with anything, and in particular it violates the matching condition.

2. Multiple edges do affect edge-coloring: if two parallel edges join the same pair of vertices,
they are incident at both ends and hence must receive different colors.

3. Equivalently, f is a proper edge-coloring iff for every vertex v € V(G), the edges incident to v
all receive distinct colors.

Remark 25.2 (Partition viewpoint). Giving a k-edge-coloring is the same thing as partitioning
the edge set into k matchings:

E(G)=MyuUMyU---U Mg,

where M; = f71(i) is the ith color class.

Definition 25.2 (Edge chromatic number). The edge chromatic number (also called the
chromatic index) of G is

X'(G) := min{ k € Z¢ : G has a proper k-edge-coloring }.

We say G is k-edge-colorable if x'(G) < k.

Lemma 25.1 (Trivial lower bound). For every graph G,

X'(G) = A(G).

Proof. Let v be a vertex of maximum degree A(G). In any proper edge-coloring, all A(G) edges
incident to v must receive pairwise distinct colors, so at least A(G) colors are needed. O
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Example 25.1 (Cycles). For the cycle Cy,,

2, neven,

"C,) =
x'(Cn) {3, 1 odd.

Example 25.2 (Complete graphs). For the complete graph K,

'(K,) = n—1, neven,
A= n, n odd.

Example 25.3 (Bipartite graphs (Kénig’s line coloring theorem)). If G is bipartite, then
X'(G) = A(G).
Example 25.4 (Petersen graph). The Petersen graph is 3-regular, but it is not 3-edge-colorable:
X' (Petersen) = 4.

(Equivalently: Petersen has no decomposition of its 15 edges into 3 perfect matchings.)

Example 25.5 (3-regular graphs with a bridge). If G is 3-regular and has a cut-edge (bridge),
then G is not 3-edge-colorable, so
X'(G) = 4.

Proposition 25.2. x’(G) < 2A(G) -1

Proof. An edge-coloring of G is exactly a vertex-coloring of its line graph L(G): each edge of G
becomes a vertex of L(G), and two vertices of L(G) are adjacent iff the corresponding edges in G
share an endpoint. Therefore

x'(G) = x(L(G)).

Now apply greedy coloring to L(G). When a vertex is colored, the only colors forbidden are
those already used on its previously colored neighbors. Hence if every vertex has at most D
previously colored neighbors, then D + 1 colors always suffice.

So it remains to bound the degree in L(G). Let e = uv be an edge of G. In L(G), the vertex e is
adjacent to all edges incident to u except e itself (there are deg(u) — 1 of them) and all edges
incident to v except e (itself) (there are deg(v) — 1 of them). Thus

deg; c(e) = (deg(u) — 1) + (deg(v) — 1) < 2A(G) - 2.

Therefore, in a greedy coloring of L(G), when we color e there are at most 2A(G) — 2 forbidden
colors, so one more color always exists. Hence

X(L(G)) < RA(G) -2)+1 =2A(G) -1,
and using x’(G) = x(L(G)) we conclude

¥'(G) < 2A(G) - 1.
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25.2 Shannon’s Theorem

Theorem 25.3 (Shannon, 1949). Let G be a loopless multigraph with maximum degree
A := A(G). Then

3A

’ < —

NONEY

Proof. If A <1 the statement is immediate. Assume A > 2 and set

s:={%J, M:={1,2,...,s}.

We prove the theorem by induction on [E(G)| over all loopless multigraphs with maximum
degree at most A.

Base case. If |[E(G)| < s, color every edge with a distinct color from M.

Induction step. Let G have m edges, and assume every loopless multigraph with maximum
degree < A and at most m — 1 edges is s-edge-colorable. Pick an edge e = uv and let G; := G —e.
By induction, G1 has a proper edge-coloring

f +E(G1) = M.

For a vertex x € V(G) define the set of free colors at x by
C(x) := {c € M : no edge incident to x has color c under f }.

Because incident edges receive distinct colors,
A
IC(x)| =5 —dg,(x) = s=A > {EJ for all x,

and moreover

Colic@l = s-@a-1=|5]+1, ©)

since dg, (u),dg,(v) < A-1.

If C(u) N C(v) # 0, we are done. Indeed, choose ¢ € C(1) N C(v) and color e with c.

So assume from now on that
Cu)nC(v) = 0. (10)

For colors a,b € M, let H, j, be the subgraph of G; consisting of all edges colored a or b. Every
component of H,  is a path or an even cycle with colors alternating along it.

Claim 1: Foranya € C(u)and b € C(v), the vertices u and v lie in the same component of H, ;;
equivalently, there is an a-b alternating u—v path.

Proof. Suppose not. Then u lies in some component K of H, ; that does not contain v. Swap the
colors a and b on every edge of K (this preserves a proper edge-coloring). Since a € C(u), the
vertex u had no incident a-edge in K, so after swapping, u has no incident b-edge either; i.e.
b € C(u) in the new coloring. But b € C(v) always (we did not touch the component of v), so
now b € C(u) N C(v), contradicting (12). |
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Pick any colors a € C(u) and b € C(v). By Claim 1, there is an alternating a—b path from u to v.
In particular, since b is free at v, the last edge on this path entering v must have color a. Let that
edge be vw, so

fow) = a. (11)
Claim 2: C(v) N C(w) = 0.
Proof. 1f some color t were free at both v and w, we could recolor the edge vw with ¢, making a

free at v (because (11) was the only a-edge incident to v along that a—b chain). Since a € C(u),
this would create a € C(u) N C(v), contradicting (12). O

Claim 3: C(u) N C(w) # 0.

Proof. Using (9) and |C(w)| = [A/2],
A 3A
Cwl+ICE)I+IC@) = 3|F]+2 > |32] = ML
But by (12) and Claim 2, the set C(v) is disjoint from C(u) U C(w), so if C(u) and C(w) were also
disjoint then

IC(w)| +|C ()| +|C(w)] = |C(v)] + |C(u) U C(w)| < |C(v)| + M\ C(v)| = [M],

contradiction. Hence C(u) N C(w) # 0. i

Let c € C(u) N C(w). Apply Claim 1 again, now to the pair (c, b): there is a c-b alternating u—v
path P. Since c is free at w, the path P cannot pass through w (because an internal vertex on a
c-b alternating path must be incident to both colors, and w is incident to no c-edge). Therefore
the edge of P incident to v is not vw.

Perform a Kempe swap on P (swap colors c and b along P). After this swap:
® ¢ becomes free at v (because b was free at v and P ends at v), and
® ¢ remains free at w (since P avoids w).

So now c € C(v) N C(w), contradicting Claim 2.

This contradiction shows our earlier assumption (12) was impossible. Hence C(u) N C(v) # 0,
and we can color the missing edge e = uv with a common free color. Thus G is s-edge-colorable.

By induction, every loopless multigraph G satisfies x’(G) < s = |3A(G)/2]. O

Example 25.6 (Shannon’s Triangle). In the multigraph obtained by replacing each edge of K3
with k parallel edges, every edge is adjacent to all others. Therefore all edges must receive
distinct colors. Each vertex has degree 2k, and

£(G) = 3k = %A(G).
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Graph S

X—

A(S) = kand /(i) = | % .

Figure 4: Shannon’s Triangle demonstrates the bound is sharp

25.3 Vizing's Theorem

Theorem 25.4 (Vizing (multigraph form)). Let G be a loopless multigraph. Write
A = A(G) and pi=w(G) = max mg(uv)
(where mg(uv) is the number of parallel edges between u and v). Then
X' (G) <A+

(If G has a loop, then x’(G) is undefined/infinite since a loop is adjacent to itself.)

Proof. Set k := A + p and prove by induction on [E(G)|.

Induction setup. The case |[E(G)| = 0 is trivial. Assume |E(G)| > 1 and pick an edge e = xy. By
induction, G — e has a proper k-edge-coloring

c:E(G-e)—>[k]:=1{1,2,..., Kk}
For a vertex v, define the set of missing colors at v (w.r.t. c) by
C(v) := {t € [k] : no edge incident to v has color t }.

Since at most dg—.(v) < A colors appear at v and k > A + 1, we always have C(v) # 0. In
particular,
IC(x)|>k—-dg-e(x)>k-=(A=1)=pu+1.

If C(x) N C(y) # 0, choose t € C(x) N C(y) and color e with t. So assume for contradiction that

C(x)nC(y) = 0. (12)
Alternating paths and the “if it doesn’t hit x, we win” lemma. Fix colors a, b € [k]. Because
the coloring is proper, from any vertex there is at most one incident edge of color a2 and at most

one of color b. Hence there is a unique maximal path starting at a vertex v that begins with an
a-colored edge and then alternates a, b, a, b, .. .; call it the a/b-path from v.
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Lemma 25.5. Let v be an uncolored edge and let c be a proper k-edge-coloring of G — uv.
If a € C(u) and b € C(v) and the a/b-path from v does not end at u, then one can modify c
(by swapping a and b along that path) so that 2 becomes missing at both u and v, and then
color uv with a.

So, because we are assuming G is not k-edge-colorable, we may use the contrapositive of
Lemma 25.5 in the following form:

() Whenever we have a proper k-edge-coloring of G — uv and choose a € C(u) and
b € C(v), the a/b-path from v must end at u.

Build a Vizing fan at x. Choose any color a € C(x). Let yp := y. Build a maximal sequence of
distinct neighbors yo, y1, .. ., ys of x such that for each i > 1,

c(xyi) € C(yi-1)-

(Maximal means: you cannot extend the sequence by adding a new neighbor ys;1 with
c(xys+1) € C(ys).)

Now define colorings co, c1, ..., ¢s as follows: ¢ := ¢, and for 1 < i < s define c¢; by rotating
colors along the fan:

ci(xy;) == co(xyj+1) (0<j <), ci(xy;) is undefined (i.e. xy; is uncolored),

and c;(e’) := co(e’) for every other edge ¢’. By construction, c; is a proper k-edge-coloring of
G — xy;: when we recolor xy; with co(xy;+1), that color was missing at y;. Also, the set C(x) is
the same for all ¢; (we only permute colors on edges incident to x).

Pick a missing color at the last fan vertex. Choose any color b € C,(ys) (missing at y; under
co). Then b is still missing at ys under every c; (we never recolor edges incident to y; except
possibly xys, and deleting an edge cannot remove a missing color).

If b € C(x), then in ¢, the edge xy; is uncolored and both endpoints miss b, so we color xys with
b and obtain a k-edge-coloring of G, contradiction. Hence

b ¢ C(x). (13)

So some edge incident to x has color b under cp; write that edge as xy; for some 1 < i < s.
Moreover, by maximality of the fan: since b is missing at v, the neighbor at the other end of the
b-colored edge from x must already be in the fan, so such an i exists with 1 <i <'s.

Under the rotation to c;, the color b = co(xy;) is shifted one step left, so

cs(xyiz1) = 0.

The alternating-path contradiction. Consider the a/b-path P from y; in the coloring c;. Here
a € C(x) (still) and b € C(y;), so property () applied to the uncolored edge xy; (in cs) implies: P
must end at x.

Because a is missing at x, the final edge of P entering x must have color b. But the only b-colored
edge incident to x in cs is xy;-1, so P ends with the edge y;_1x.

Now look at the coloring c¢;—1. In ¢;—; the edge xy;—1 is uncolored. Also, by the fan property, the
color co(xy;) = b was chosen so that it is missing at y;—1 under cy, and we did not recolor any
edge incident to y;_1 except possibly xy;_1. Therefore b is missing at y;_; under c;_1.
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Let P’ be the a/b-path from y;_1 under c;—1. The internal edges of P avoid x (since x is the
endpoint), and we only changed colors on edges incident to x when going from c¢;_1 to ¢;. Hence
the a/b-alternating walk from y;_1 in ¢;—1 follows exactly the edges of P in reverse order until it
reaches y;.

But b is missing at ys, so P’ stops at ys and does not reach x. This contradicts property () applied
to the uncolored edge xy;_1 in ¢;—1 (witha € C(x) and b € C(y;-1)).

This contradiction shows that (12) is impossible. Hence C(x) N C(y) # 0, and we can color
e = xy with a common missing color. Therefore G has a proper k-edge-coloring, i.e. x'(G) <
k=A+p. o

Definition 25.3 (Vizing class). A simple graph G is

Class1 — x'(G) = A(G), Class 2 — x'(G) = A(G) +1.

Example 25.7 (Standard examples). e Bipartite graphs are Class 1 (Kénig’s line coloring theo-
rem below).

¢ Odd cycles Cp;41 are Class 2: A =2 but y’ = 3.
¢ Complete graphs satisfy

, n—1, neven (Class1),
X (Kn) =
, n odd (Class 2).

25.4 Konig's Line Coloring Theorem

Theorem 25.6 (Kénig (line coloring)). If G is bipartite, then

x'(G) = AG).

Proof. Let A = A(G). The lower bound x’(G) > A is immediate.

For the upper bound, it suffices to show that every bipartite graph with maximum degree A has
a proper A-edge-coloring.
We may assume G is A-regular: if not, add dummy vertices and dummy edges (still bipartite) to

obtain a A-regular bipartite supergraph G. Any A-edge-coloring of G restricts to one of G by
deleting dummy edges.

Now let G be A-regular with bipartition (X, Y). By Hall’s Marriage Theorem, Ghasa perfect
matching: indeed for any S C X,

AlS|=e(S,N(5)) <AIN(S)l = IN(S)| = [S].
So there exists a matching M; saturating X, hence perfect.

Remove M;. The remaining graph is (A — 1)-regular and bipartite, so by the same argument it
has a perfect matching M. Iterating, we obtain pairwise edge-disjoint perfect matchings

E(G) = MiUMpU- - - UMa.

Color edges in M; with color i. Each M; is a matching, so this is a proper A-edge-coloring of G,
and hence of G.

Therefore x’'(G) < A, and combined with x’(G) > A we get x'(G) = A. |
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26 Planar graphs

26.1 Basics of planar graphs

Definition 26.1 (Polygonal curve). A polygonal curve in R? is a curve obtained by concate-
nating finitely many straight line segments.

Definition 26.2 (Drawing of a (multi)graph). Let G be a (multi)graph. A drawing of G is a

function
¢ :V(G)UE(G) — R?

such that
1. for each vertex v € V(G), ¢(v) € R? is a point;
2. if v # v/, then @(v) # @(v’) (distinct vertices map to distinct points);

3. for each edge e = xy € E(G), ¢(e) is a polygonal curve whose endpoints are ¢(x) and
P(y)-

(For a loop xx, the curve ¢(xx) starts and ends at ¢(x).)

Definition 26.3 (Crossing). A crossing in a drawing ¢ is a point p € ¢(e) N @(f) for two
distinct edges e # f such that p is not the image of a common endpoint of ¢ and f.
Equivalently, p is a common internal point of the two edge-curves.

Definition 26.4 (Planar graph and plane graph). A (multi)graph G is planar if it has a
drawing with no crossings. A plane graph is a pair (G, ¢) where ¢ is a crossing-free drawing
of G (i.e. a specific planar embedding has been chosen).

Example 26.1. Ky is planar (it has a crossing-free drawing).

Ks and K3 3 are not planar: no matter how you draw them in the plane, some pair of edges must
Cross.

Definition 26.5 (Faces). Let (G, ) be a plane graph. A face of (G, ¢) is a connected
component of

R?\ ¢(V(G) UE(G)).

There is always one unbounded face, called the outer face.

Definition 26.6 (Length of a face). Let F be a face of a plane graph (G, ¢). The length {(F) is
the total length of the closed walk(s) in G that trace the boundary of F. Equivalently, ¢(F) is
the number of edge-sides incident with F, counting multiplicity (a bridge contributes twice,
once for each side).
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Definition 26.7 (Dual graph). Let (G, @) be a plane graph with face set ¥ . The dual G* is
the graph defined by
V(G) =7, E(G") < E(G),

where each edge e € E(G) corresponds to an edge e* € E(G”) joining the two faces on the
two sides of e (if e borders the same face on both sides, then e* is a loop).

Remark 26.1. The dual depends on the chosen embedding: different plane drawings of the
same planar graph can yield non-isomorphic dual graphs.

Proposition 26.1 (Handshake for faces). Let (G, ¢) be a plane multigraph with edge set
E(G) and faces ¥ = {F1,...,Ff}. Then

f
D U(F) = 2E(G)I.
i=1

Proof. Traverse the boundary of each face as a closed walk in G. Each step of such a walk uses
an edge-side (an incidence of an edge with a face). By definition, ¢(F;) counts the number of
edge-sides on the boundary of F;, with multiplicity.

Every edge e in a plane drawing has exactly two sides. If e is not a bridge, it is incident with
two (not necessarily distinct) faces, contributing 1 to each. If e is a bridge, then both sides of
e are incident with the same face, so e contributes 2 to that one face. In all cases, each edge
contributes exactly 2 to the total sum of face-lengths. Hence ) r.# {(F) = 2|E(G)|. O

26.2 Euler’s Formula

Theorem 26.2 (Euler’s Formula). If (G, ¢) is a connected plane multigraph with n = [V(G)|
vertices, m = |E(G)| edges, and f faces, then

n—m+ f =2.

Proof. We induct on m (the number of edges). The claim is immediate for m = 0: connectedness
forcesn =1land f =1,son-m+ f=1-0+1=2.

Assume m > 1 and that the statement holds for all connected plane multigraphs with fewer
than m edges.

Case 1: G has a non-loop edge that is not a bridge. Pick such an edge e. Deleting e keeps the graph
connected (since e is not a bridge), and in a plane embedding the deletion of e merges exactly
two faces into one. Thus, for G’ := G — ¢ we have

n' =mn, m =m-1, f'=f-1
By the induction hypothesis, n’ —m’ + f’ = 2, and substituting gives

n—-m+f=n"-m+D)+(f +1)=n"-m"+ f' =2.

Case 2: every non-loop edge of G is a bridge. Then the underlying simple graph is a tree (with
possibly some loops attached). Contract (or delete) a bridge edge e connecting two distinct



Planar graphs 237

vertices. Contracting a bridge preserves the number of faces (bridges do not lie on a cycle, so
they do not separate two distinct faces), and it reduces both n and m by 1. For G’ := G/e,

n=n-1, m =m-1, f'=f.
Again, by induction n” —m’ + f’ = 2, hence

n-m+f=m'+1)-m+1)+f =n"-m+f" =2.

In either case, Euler’s formula holds for G, completing the induction. i

Corollary 26.3 (Euler for k components). If a plane multigraph G has k connected compo-
nents and 1, m, f denote its numbers of vertices, edges, and faces (in a fixed plane drawing),
then

n-m+f=k+1.

Proof. Let the components be Gy, . .., Gk, with parameters (n;, m;, f;). Applying Theorem 26.2
to each component,
ni—m;+ fi =2 (1<i<k).

Summing gives 3, n; — X; m; + 3; fi = 2k.

Now > ;n; = n and }}; m; = m. For faces, each component has its own outer face, but in the
union of all components these k outer faces merge into a single global outer face. Hence

k
D fi=fHk=1).
i=1
Substituting into the summed Euler equalities yields
n—m+(f+(k=-1)) =2k,

son—-m+ f=k+1. |

Theorem 26.4 (Edge bounds for planar graphs). Let G be a simple planar graph with n > 3
vertices and m edges.

(i) m <3n —6.

(ii) If G is triangle-free, then m < 2n — 4.

Proof. Fix a plane embedding of G with f faces. Since G is simple, the boundary walk of any
face has length at least 3 (no loops, no parallel edges), so

{(F) >3 forall faces F.

Summing over faces and using Proposition 26.1 gives

3f < ) U(F)=2m.

F

Euler’s formula (Theorem 26.2) gives f = 2 —n + m, hence

32-n+m)<2m = 6-3n+3m<2m = m <3n-6,
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proving (i).
For (ii), if G is triangle-free then every face has length at least 4, so 4f < >'r {(F) = 2m. Again
substitute f =2 —n + m:

42-n+m)<2m = 8—-4n+4m <2m = m <2n —4.

Corollary 26.5. The graphs K5 and K3 3 are nonplanar.

Proof. We use the planar edge bounds from Theorem 26.4.

1) K5 is nonplanar. The complete graph K5 is simple with

5
= = = 1 .
n=>5, m (2) 0

If K5 were planar, then by Theorem 26.4(i) we would have
m<3n-6=3-5-6=9,
but m =10 > 9, a contradiction. Hence K5 is not planar.
2) K33 is nonplanar. The complete bipartite graph K3 3 is simple with
n =6, m=3-3=09.

Moreover K3 3 is bipartite, so it contains no odd cycle, in particular no triangle. Thus K33 is
triangle-free.

If K33 were planar, then by Theorem 26.4(ii) we would have
m<2n—-4=2-6—-4=8,

but m =9 > §, a contradiction. Hence K3 3 is not planar. O

Theorem 26.6 (Cycles <> bonds in the dual). Let G be a connected plane multigraph (i.e. a
planar multigraph with a fixed crossing-free drawing), and let G* be its dual. For an edge
set X C E(G) write X" :={e*: e € X} C E(G").

Then an edge set C C E(G) is the edge set of a cycle in G (equivalently: G[C] is connected
and 2-regular) if and only if C* is a bond in G* (a minimal nonempty edge cut).

Theorem 26.7. Let G be a connected plane multigraph (i.e. G is embedded in the plane with
no crossings), and let G* be its planar dual. The following are equivalent:

(A) G is bipartite.
(B) Every face of G has even length.

(C) G"is Eulerian (equivalently, every vertex of G* has even degree).
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Proof. (A)=(B). If G is bipartite, then every closed walk in G has even length (colors must
alternate). The boundary of each face is a closed walk in G (possibly repeating vertices/edges
in a multigraph), hence its length is even.

(B)&(C). Vertices of G* correspond to faces of G. Fix a face F of G and let vf be the corresponding
vertex of G*. Each time an edge e of G appears on the boundary walk of F, the dual edge e is
incident with vr. (If e is a bridge of G, then ¢* is a loop in G* and contributes 2 to deg..(vF),
exactly matching the fact that e appears twice on the boundary walk of the unique incident
face.) Therefore

deg..(vr) = {(F) for every face F of G.

Hence all face-lengths are even iff all degrees in G* are even. Since G is connected, G* is
connected, so “all degrees even” is exactly the Eulerian condition.

(B)=(A). Assume every face has even length. If G were not bipartite, it would contain an odd
cycle C. As a simple closed curve in the plane, C has an interior region. Let Fy, ..., F; be the
faces of G lying strictly inside C, and let Ejn be the set of edges of G that lie strictly inside C (i.e.
not on C).

Every interior edge is incident with two interior faces, hence is counted twice in the sum
>!_, £(F;), while each edge of C is incident with exactly one interior face, hence is counted once.

Thus t

D U(F:) = 2Einel + [C].

i=1
The left-hand side is even (sum of even numbers), and 2|E;.¢| is even, so |C| must be even. This
contradicts that C is an odd cycle. Therefore G has no odd cycle, hence G is bipartite.

We have shown (A)=(B)<(C) and (B)=(A), so all three conditions are equivalent. O

26.3 Outerplanar graphs

A (multi)graph G is outerplanar if it has a planar
drawing in which every vertex lies on the boundary of the outer face. A specific such drawing is
called an outerplane embedding of G.

Proposition 26.8 (2-connected outerplanar = Hamiltonian cycle). If G is a 2-connected
outerplanar graph, then G has a Hamilton cycle.

Proof. Fix an outerplane embedding of G, so all vertices lie on the boundary of the outer face.
Let W be the closed walk obtained by traversing the boundary of the outer face.

We claim that W is in fact a simple cycle (no vertex repeats). Indeed, if some vertex v appeared at
least twice on this boundary walk, then the edges of G incident with v would split locally into
at least two separate “intervals” of W, and the portion of G drawn between two consecutive
appearances of v would be separated from the rest by v. That makes v a cut-vertex, contradicting
that G is 2-connected.

Hence the boundary of the outer face is a cycle containing every vertex of G, i.e. a Hamilton
cycle. O
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Example 26.2. Ky and K>3 are planar but not outerplanar. (Equivalently: they are exactly the
two forbidden minors for outerplanarity; we will prove this characterization later.)

Proposition 26.9 (Outerplanar graphs have a low-degree vertex). Every simple outerplanar
graph G has a vertex of degree at most 2. In fact, if [V(G)| > 4 then G has two nonadjacent
vertices x, y with dg(x) <2 and dg(y) < 2 (so in particular xy ¢ E(G)).

Proof. Take an outerplane embedding of G and add edges one-by-one (without creating crossings)
until no further edge can be added while keeping all vertices on the outer face. This produces a
maximal outerplanar supergraph H on the same vertex set.

Facts about maximal outerplanar graphs:

¢ the boundary of the outer face is a Hamilton cycle C containing all vertices (by the previous
proposition applied to each 2-connected block; maximal outerplanar graphs are 2-connected
when |V| > 3);

¢ every bounded face of H is a triangle (otherwise we could add a chord inside a face and
contradict maximality).

Now consider the weak dual of H: its vertices are the bounded faces of H, with two faces adjacent
if they share an edge. Because all bounded faces are triangles and the embedding is outerplane,
this weak dual is a tree. Therefore it has a leaf face F.

A leaf face F shares exactly one edge with another bounded face, so in H the triangle F has
exactly one internal edge and its other two edges lie on the outer Hamilton cycle C. Let v be the
vertex of F opposite the internal edge. Then v is incident only with those two outer-face edges,
so dy(v) = 2.

Doing the same with a different leaf face gives another vertex u with dy(u) = 2. These two
degree-2 vertices can be chosen nonadjacent (in a triangulated polygon, distinct ears are never
adjacent unless the graph is very small; for |V| > 4 we can pick two leaf faces whose ear vertices
are not consecutive on C).

Finally, since G is a subgraph of H on the same vertices,
dc(v) <dy(v) =2 and dc(u) <dg(u) =2,

and if u, v are nonadjacent in H then certainly uv ¢ E(G). |

26.4 Maximal planar graphs

Definition 26.9 (Maximal planar). A simple planar graph G is maximal planar if G is planar
and for every nonedge uv ¢ E(G), the graph G + uv is nonplanar. Equivalently: G is planar
and you cannot add any new edge without destroying planarity.

Definition 26.10 (Triangulation). A triangulation (or maximal plane graph) is a plane em-
bedding of a simple graph in which every face (including the outer face) has boundary a
triangle.
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Remark 26.2 (Plane vs. sphere). A plane embedding is equivalent to an embedding on the
sphere S?: adding a single “point at infinity” to R? turns the outer face into an ordinary face.
This is why triangulations are usually defined as “every face is a triangle,” outer face included.

Theorem 26.10. Let G be a connected simple plane graph on n > 3 vertices and m edges.
The following are equivalent:

(A) m =3n —6.
(B) G is a triangulation (every face is a triangle).

(©) G is maximal planar.

Proof. We use two standard facts for connected plane graphs:

Zl’(l—")=2m and n-m+f =2,
T

where {(F) is the length of face F and f is the number of faces.
(B)=(A). If every face is a triangle then ¢(F) = 3 for all faces, so
2m

zm:ZF:e(F)::sf = f=%3

Plug into Euler:

n—m+2?m:2 = m=3n-6.

(A)=(B). In any simple plane graph, every face has length at least 3, so
2m = Ze(F) > 3f.
F

Using Euler, f =2 —n + m, hence
2m >3Q2-n+m)=6-3n+3m = m<3n-6.

If m = 3n — 6 holds, then all inequalities above must be equalities. In particular >, {(F) = 3f,
which forces ¢(F) = 3 for every face F. So G is a triangulation.

(B)=(C). Assume G is a triangulation and suppose we try to add a new edge uv. In any plane
embedding, a new edge can be drawn without crossings only if # and v lie on the boundary of
a common face. But every face boundary is a triangle, so any two vertices on that boundary
are already adjacent. Hence no new edge can be added while preserving planarity, i.e. G is
maximal planar.

(CO)=(B). Assume G is maximal planar. If some face F has boundary length ¢(F) > 4, then the
boundary walk of F contains two nonconsecutive vertices on the face boundary; adding the
diagonal between them inside F creates no crossings, producing a larger planar graph. This
contradicts maximality. Therefore every face has length 3, so G is a triangulation.

Combining the implications yields (A)&(B)<(C). O
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26.5 Kuratowski and Wagner’s Theorems

Definition 26.11 (Subdivision of an edge). Let G be a graph and let e = uv € E(G). A
subdivision of e is obtained by deleting e and replacing it by a path

U—X1—Xp2—+-—Xt—0

where the new vertices x1, ..., x; are distinct and have degree 2 in the resulting graph. More
generally, a subdivision of G is any graph obtained from G by subdividing some (possibly
zero) edges.

Remark 26.3. Subdividing edges preserves planarity: if G has a plane drawing, then we can
place the new degree-2 vertices along the drawn curve for each subdivided edge, so no crossings
are created.

Theorem 26.11 (Kuratowski, 1930). A graph G is planar if and only if G contains no
subgraph that is a subdivision of K5 or K3 3.

Definition 26.12 (Edge contraction). Let G be a simple graph and let e = xy € E(G). The
contraction of e is the graph G/xy obtained by deleting x and y, adding a new vertex x * v,
and joining x * y to every vertex in

Ng(x) U Ne(y) \ {x, y}-

(If this produces parallel edges, we keep only one so that G/xy remains simple.)

Definition 26.13 (Minor). A graph H is a minor of a graph G if H can be obtained from G
by a sequence of the following operations:

1. deleting a vertex,
2. deleting an edge,
3. contracting an edge.

We write H < G to indicate that H is a minor of G.

Proposition 26.12. If G is planar, then contracting any edge of G yields a planar graph.

Proof. Take a plane drawing of G. Contracting an edge xy can be realized by “shrinking” the
drawn curve for xy to a point, merging x and y into a single vertex. This operation does not
create crossings, so the resulting graph is still planar. |

Theorem 26.13 (Wagner). A graph G is planar if and only if G has no minor isomorphic to
K5 or K3,3.
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Proof. We prove both directions by contrapositive.

(= contrapositive.) Assume that G contains a minor H with H = K5 or H = K3 3. Since K5 and
K3 3 are nonplanar, H is nonplanar. By Observation 26.12, planarity is preserved under edge
contractions, and it is clearly preserved under deletions. Therefore, if G were planar then every
minor of G would be planar. Since H is a minor of G and H is not planar, it follows that G is not
planar.

(& contrapositive.) Assume that G is not planar. By Kuratowski’s Theorem, G contains a
subgraph G’ that is a subdivision of some H € {K5, K33}. Butif G’ is a subdivision of H, then
contracting each subdivided path back to a single edge produces H. Hence H is a minor of G’.
Finally, every subgraph of G is a minor of G (just delete the other vertices and edges), so H is a
minor of G. Thus G contains K5 or K3 3 as a minor. O

Theorem 26.14 (Outerplanar characterization). A graph G is outerplanar if and only if G
contains no subdivision of K4 and no subdivision of K3 3.

Proof. Let G* be the graph obtained from G by adding one new vertex y adjacent to every vertex
of G (so y is a universal vertex for G).

Lemma 26.15. G*is planar if and only if G is outerplanar.

Proof of Lemma. (=) Suppose G* is planar. Take a planar embedding of G* and choose the outer
face so that it contains y on its boundary. Delete the vertex y and its incident edges. In the
remaining drawing of G, every vertex of G lies on the boundary of the outer face (because each
was adjacent to i), hence G is outerplanar.

(&) Suppose G is outerplanar. Then G has an embedding in which all vertices lie on the
boundary of the outer face. Place a new vertex y in that outer face and draw edges from y to
every vertex of G inside the outer face without crossings. This yields a planar embedding of
G*. O

By the claim, G is outerplanar &= G* is planar. By Kuratowski’s Theorem, G* is planar if and
only if it contains no subdivision of K5 and no subdivision of K3 3.

(=) Assume G is outerplanar. Then G* is planar, so G* has no subdivision of K5 or K3 3. If G
contained a subdivision of K4, then (since y is adjacent to every vertex of G) adding y would turn
it into a subdivision of K5 inside G*, contradiction. Similarly, if G contained a subdivision of K 3,
then adding y (adjacent to all branch vertices) yields a subdivision of K33 in G*, contradiction.
Hence G contains no subdivision of Ky or K3 3.

(<) Assume G is not outerplanar. Then by the lemma G* is not planar, so by Kuratowski G*
contains a subdivision of K5 or of K3 3.

If G* contains a subdivision of K5, then deleting the universal vertex y from that subdivision
leaves a subdivision of K4 contained in G = G* — y.

If G* contains a subdivision of K33, then y cannot lie in one of the two bipartition classes (since
y is adjacent to every vertex of G), so deleting y leaves a subdivision of K 3 inside G.

Thus G contains a subdivision of K4 or K33, completing the contrapositive.

Therefore G is outerplanar if and only if it contains no subdivision of K4 and no subdivision of
Ka3. O
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Theorem 26.16 (Fary). Every planar graph has a plane drawing in which every edge is
drawn as a straight line segment (i.e., a straight-line embedding).

Definition 26.14 (Convex embedding). A plane drawing of a planar graph is a convex
embedding if every face (including the outer face) is bounded by a convex polygon.

Theorem 26.17 (Tutte, Convex Embedding Theorem). Let G be a 3-connected planar graph.
Then G admits a convex straight-line embedding in the plane. Equivalently, G has a plane
straight-line drawing in which every face boundary is a convex polygon.

Example 26.3. Petersen graph is not planar

Figure 5: The Petersen graph. Brown spokes are the edges to be contracted in Proof (2).

We present three independent proofs that the Petersen graph is not planar.

1.

Subdivision of K3 3. The Petersen graph contains a subdivision of K3 3. Indeed, removing
every other vertex on the outer 5-cycle and following the spokes into the inner 5-cycle
produces three vertices on one side and three on the other, with internally disjoint paths
between them. Since K33 is nonplanar and subdivisions preserve nonplanarity, the Petersen
graph is nonplanar.

After contracting the entire inner 5-cycle, the resulting graph becomes a copy of Ks. Since
edge contraction preserves nonplanarity, the original Petersen graph is also nonplanar.

Edge-counting argument. The Petersen graph has
n =10, m = 15.

If a simple planar graph has n > 3, then m < 3n — 6. For n = 10, this gives
m < 3(10) — 6 = 24.

This inequality is satisfied, so we refine the bound: the Petersen graph is cubic and has girth
5. A planar graph of girth g satisfies

g

msg_z(n—Z).

For g = 5, this becomes

5 5 40
<Z2(10-2)=2.8= = < 14.
m_3(0 2) 38 3<

But the Petersen graph has m = 15, violating the planar girth bound. Thus it cannot be planar.
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26.6 Four Color Theorem

The Four Color Problem (posed in 1852) asked whether every planar map can be colored with at
most four colors so that adjacent regions receive different colors. Over the next century it helped
create modern graph theory: repeated “proofs” (notably Kempe’s 1879 argument) were later
found to have subtle gaps, and the search for a correct proof forced people to invent sharper
structural ideas about planar graphs.

In the mid-1970s, Kenneth Appel and Wolfgang Haken at UIUC developed a strategy that
reduces the theorem to checking a finite list of unavoidable configurations in any minimal
counterexample, and then verifying (by computer) that each such configuration is reducible
(cannot occur in a minimal counterexample). The computer part was not a cute afterthought: the
argument required checking a large family of cases that was beyond reasonable hand-verification.

When Appel and Haken announced success in 1976, it became the first mainstream, high-profile
computer-assisted proof, and it triggered a real (and frankly healthy) fight about verification,
standards of certainty, and how the community should audit proofs that are longer than a
human can reliably re-check end-to-end. A famous insult-compliment attributed to His Majesty,
Paul Erd&s, who spent time in Urbana-Champaign: after seeing the computer-heavy proof, he
supposedly said,

“I'm not sure God has this proof in The Book. Maybe He has it in The File.”

(Translation for those unfortunate epsilons who do not understand fluent Erd&s: ”“It’s correct
and historic, but it is not what I would call beautiful”)

After the announcement, skeptics didn't just attack the math; they attacked the physics of the
computer. Critics argued: “How do you know a cosmic ray didn’t hit a vacuum tube in the IBM
360 and flip a bit from FALSE to TRUE?”. This sounds like a joke, but it was a serious philosophical
debate. Appel and Haken had to argue that the probability of a cosmic ray flipping a specific bit
in a way that preserved the program’s syntax and produced a valid-looking Reducible” result
was statistically lower than the probability of a human making a typo in a 500-page handwritten
proof. They essentially introduced the concept of Probabilistic Proof” to mainstream topology.
The math world hated it.

Theorem 26.18 (Four Color Theorem ( Appel-Haken, 1976)). Every planar graph is 4-
colorable. Equivalently, for every planar graph G,

X(G) <4.

Remark 26.4 (Map-coloring form). In any plane embedding, the faces can be colored with at
most 4 colors so that any two faces sharing an edge receive different colors. Equivalently, the
dual graph G* satisfies x(G*) < 4.

A bit of UIUC four-color lore

There is a story that floats around about the very end of the Appel-Haken computer check.

Disclaimer for the overly responsible reader: 1 have only ever heard this as oral lore; it may be
apocryphal or embellished. Please treat this as confidential department heritage folklore:
the kind of thing you hear in a hallway. Please do not cite this in a journal article.
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The legend goes like this:

June 21, 1976: the last night of the computer run. They were basically done, but not all the way
done. Appel and Haken were in the Digital Computer Laboratory (DCL) watching an IBM 360
grind through the final batch of configurations. For each configuration, the program prints TRUE
(good, proof lives) or FALSE (bad, proof collapses).

By this point, the machine had been chewing through case checks for something like 1,200 hours
of CPU time. The administration, allegedly, had begun to ask questions of the form “how much
longer?” and “what is this for?” and “why does DCL have its own weather system?” It was not
subtle that the proof had acquired a second adversary: not a planar counterexample, but the
electric bill. In 1976, computer time was billed internally at hundreds of dollars per hour.

At around this point (so the story says), Haken’s daughter, Dorothea Blostein (who wasn't just
a visitor, but a paid research assistant and UIUC undergrad), visited the lab over at DCL and
showed up with champagne.

The vibe was tense. Logic dictates you wait for the output. But according to the story, they
looked at the machine, looked at the months of successful runs, and decided: “Screw it. The
algorithm hasn't failed yet.” They popped the cork while the mainframe was still processing,
toasting their victory before the final verification was actually complete.

If the computer had spit out FALSE ten minutes later, . ..
Luckily, it didn't.

26.7 Five Color Theorem

In 1879 Alfred Kempe published what was widely accepted as a proof of the Four Color Theorem,
and for about a decade the problem was treated as essentially closed. Then, in 1890, Percy
Heawood found a genuine structural flaw in Kempe’s argument, resurrecting map coloring as a
live problem.

Here is the part that makes the Five Color Theorem historically satisfying: Heawood did not
merely break Kempe’s proof and walk away. Kempe’s ideas were powerful but not powerful
enough to reach four. He extracted from it what was salvageable, repaired the method, and
proved a clean, unconditional replacement: five colors alwa

Theorem 26.19 (Heawood’s Five Color Theorem). Every planar graph is properly vertex-
colorable with at most 5 colors. Equivalently, if G is planar then x(G) < 5.

Proof. We may assume G is connected (color components independently with the same palette).
We prove the statement by induction on n := |V(G)|.

Lemma 1 (Low-degree vertex). Every simple planar graph has a vertex of degree at most 5.

Proof of Lemma 1. 1f n < 2 the claim is obvious. For n > 3, Euler’s formula gives n —m + f = 2.
In a simple planar graph every face has length at least 3, so >.r {(F) > 3f. Also },r {(F) =2m
(each edge borders two faces), hence 2m > 3 f and therefore f < 2. Substitute into Euler:

2m m
2= — + < — 4+ — = - —,
n—-m+f<n-m 3 =13

so m < 3n — 6. Thus the average degree is

—Zd() 2m 2(3” 0 _¢-12 ¢

n
veV(G)
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Hence some vertex has degree < 5. m|

Induction step. Let v € V(G) be a vertex with d(v) < 5 (exists by Lemma 1), and set H := G — v.
Then H is planar with n — 1 vertices, so by induction H has a proper 5-coloring.

We try to extend this coloring to v.

Case 1: d(v) < 4. At most 4 colors appear on N(v), so one of the 5 colors is missing there. Color
v with a missing color and we are done.

Case 2: d(v) = 5. If fewer than 5 distinct colors appear on N(v), we again color v with a missing
color. So assume the five neighbors of v use all five colors.

Fix a planar embedding and list the neighbors in cyclic order around v:
01,02,03,04, Us.

Relabel the colors so that
c(v;))=1i fori=1,2,3,4,5.

For colors i # j, let H;j be the subgraph of H induced by vertices colored i or j. Each component
of Hj; is bipartite and therefore has exactly two possible i/j-colorings (swap i and j within
that component). Such components are called Kempe components, and paths inside them are i—j
Kempe chains.

Claim 2. If v1 and v3 lie in different components of Hy3, then we can recolor H (preserving
propriety) so that color 1 is missing on N(v).

Proof. Swap colors 1 and 3 on the Kempe component of Hy3 that contains v;. This keeps the
coloring proper (we only permute colors inside a 1/3-induced component), and it changes c(v1)
from 1 to 3 while c(v3) stays 3 (since v3 is in a different component). Hence no neighbor of v has
color 1 anymore, so we can color v with 1.

So assume the opposite: v1 and v3 are in the same component of Hi3. Then there exists a 1-3
Kempe chain Py3 in H joining v; to vs.

Now consider the closed curve in the embedding formed by the edges vv1, vv3, and the chain
P13. By the Jordan curve theorem, this closed curve separates the plane into an “inside” and
an “outside” region. Because the neighbors occur around v in the order v1, v, v3, v4, U5, the
vertices v, and v4 lie on different sides of that curve. In particular, any path in the drawing from
vy to v4 that avoids v must cross the curve.

Claim 3. vy and vy lie in different components of Hpy.

Proof. If they were in the same component of Hy4, there would be a 2—4 Kempe chain Pyy4
in H joining v, to v4. This chain uses only vertices of colors 2 and 4, so it is disjoint from
the 1-3 chain P13. Also it avoids v because v ¢ H. But then P4 would give a curve in the
embedding connecting v, to v4 without crossing the separating curve built from vv; U P13 U vo3,
contradicting planarity. Hence no such P4 exists, i.e. v2 and vy4 are in different components of
Hoyg.

By Claim 3, we may swap colors 2 and 4 on the Hy;-component containing v,. This keeps the
coloring proper and changes c(v2) from 2 to 4 while leaving c(v4) = 4 unchanged. Therefore
color 2 is now missing on N(v), so we color v with 2.

In all cases the 5-coloring of H extends to a 5-coloring of G. This completes the induction.
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26.8 Discharging method

The following proposition illustrates the discharging method, which was used in the proof of
Four Color Theorem

Proposition 26.20. Every planar graph G contains either
1. a vertex of degree at most 4, or

2. avertex v of degree 5 that has at least two neighbors of degree at most 6.

Proof. Assume for contradiction that G is a planar graph with neither (1) nor (2). In particular,
6(G) 2 5, (14)

and every 5-vertex has at most one neighbor of degree < 6.

Fix a plane embedding of G and add edges inside faces until every face is a triangle; let T be the
resulting plane triangulation on the same vertex set. (Adding edges preserves planarity and
does not decrease any vertex degree.)

We claim that T also has neither (1) nor (2). Indeed, if T had a vertex of degree < 4, then the
same vertex in G would also have degree < 4 (degrees only increase), contradicting (14). If T
had a vertex v of degree 5, then v also has degree 5 in G (since degrees only increase), so no
added edge is incident with v; hence Nt(v) = Ng(v). Moreover, any neighbor with degree < 6
in T also has degree < 6 in G. Thus (2) in T would imply (2) in G, contradiction. Therefore it
suffices to derive a contradiction for the triangulation T.

So from now on assume G itself is a plane triangulation with neither (1) nor (2).
Step 1: Initial charge and total charge. Define the initial charge
p(x) :=d(x) -6 (x e V(G)).

Since G is a plane triangulation with n := |[V(G)| > 3, we have e(G) = 3n — 6 (standard:
2e =) rl(F)=3fandn—e+ f =2). Hence

Z u(x) = Z (d(x) - 6) = 2¢(G) — 61 = (61 — 12) — 61 = —12.

xeV(G) xeV(G)
So the total initial charge is negative.

Step 2: Discharging rule (redistribution). Redistribute charge along edges as follows:

Every vertex x with d(x) > 7 sends % to each neighbor y with d(y) = 5. Vertices of
degree < 6 send nothing.

Let u/(x) be the final charge of x after this redistribution. Because we only move charge between
vertices, the total charge is unchanged:

D, W= ) p=-12

xeV(G) xeV(G)

We will show that, under our counterexample assumptions, every vertex has p’(x) > 0, which
contradicts the total being —12.

Step 3: Verify 1/(x) > 0 for every vertex. We consider cases by d(x).
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Case 1: d(x) < 4. This cannot occur by assumption (otherwise we already have outcome (1)).

Case 2: d(x) = 5. By assumption, x has at most one neighbor of degree < 6. Since d(x) =5, it

follows that x has at least four neighbors of degree > 7, and each such neighbor sends § to x.
Thus

W) = (5—6)+4-}L = 0.

Case 3: d(x) = 6. Vertex x neither sends nor receives charge (it is not a 5-vertex and does not
send). Hence

W(x) = plx) = 6-6=0.

Case 4: d(x) > 8. In the worst case, x sends }L to every neighbor (i.e. all neighbors have degree 5),

so x sends at most }Td(x) in total. Therefore

W(x) > (d(x)—6)—31d(x) - 201(9()—6 >3.8.6=0

1 W

Case 5: d(x) = 7. Write the neighbors of x in their cyclic order around x in the embedding:

N(x) ={u1,us,...,uz},

where u;u;y1 € E(G) (indices mod 7), since G is a triangulation. Let t be the number of
5-neighbors among the u;. We claim ¢ < 4.

If t > 5, then on the 7-cycle uju; - - - u7u; there must exist three consecutive vertices of degree
5 (because with only two non-5 vertices, you cannot separate five 5-vertices from forming a
length-3 consecutive block). So for some i, the vertices u;_1, u;, u;+1 all have degree 5. Then u;
is a 5-vertex with two neighbors u;_1 and u;,1 of degree 5 < 6, which is exactly outcome (2),
contradicting our assumption. Hence indeed t < 4.

Therefore x sends at most £ - %I <4- 411 = 1 total charge, and so

W(x) > (7-6)-1 = 0.

We have shown p’(x) > 0 for every vertex x. Summing gives },, u’(x) > 0, contradicting
2.x 1 (x) = =12. This contradiction proves that our initial assumption was false, so G must
contain either a vertex of degree at most 4 or a 5-vertex with at least two neighbors of degree at
most 6. |
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27 Ramsey Theory

Ramsey Theory constitutes a profound segment of combinatorial mathematics, showing that
complete disorder is an impossibility within sufficiently large systems. It investigates the
conditions under which a structure, no matter how chaotic or random its organization, must
inevitably contain a substructure exhibiting a high degree of regularity.

The fundamental question Ramsey Theory poses is: “How many elements must a system
possess to guarantee the existence of a specific monochromatic property?” This generalizes the
Pigeonhole Principle to structural collisions within partitions of graphs and sets.

27.1 Graph Ramsey Theory

Definition 27.1 (2-edge-coloring and monochromatic copy). A 2-edge-coloring of a graph G
isa map ¢ : E(G) — {red, blue}. A subgraph H C G is monochromatic if all its edges have
the same color.

Remark 27.1. The coloring is not necessarily a proper edge coloring

Definition 27.2 (Ramsey number R(s, t)). For integers s, t > 2, the Ramsey number R(s, t) is
the smallest n such that every red /blue coloring of the edges of K, contains either a red K
or a blue K;.

Theorem 27.1 (Ramsey). Every red/blue coloring of the edges of K¢ contains a monochro-
matic triangle. Equivalently, R(3,3) = 6.

Proof. Let the vertices of K¢ be {v,1,2,3,4,5} and consider the 5 edges incident to v. By the
pigeonhole principle, at least 3 of these edges have the same color.

WLOG, assume v is joined by red edges to three vertices, say a, b, c. Now look at the triangle on
{a,b,c}:

e If any of ab, bc, ca is red, say ab is red, then vab is a red triangle.

¢ If none of ab, bc, ca is red, then all three are blue, so abc is a blue triangle.

In either case there is a monochromatic triangle. Hence every 2-edge-coloring of K¢ forces a
monochromatic K3. O

Proposition 27.2. There exists a red /blue coloring of E(K5) with no monochromatic triangle.
Hence R(3,3) > 5.
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Theorem 27.3.
R(p,q) <R(p-1,9)+R(p,q - 1).

Proof. Let
N:R(P_LQ)/ M:R(qu—l)/

and consider any red/blue coloring of the edges of the complete graph

Knim-
Choose a vertex x. Among the N + M — 1 edges incident to x, the Pigeonhole Principle implies
that x has at least N red edges or at least M blue edges.
Case 1: x has at least N red incident edges. Let S be the set of neighbors of x joined to x by red
edges; then |S| > N = R(p — 1, q). By the definition of R(p — 1, q), the induced subgraph on S
contains either
1. ared (p — 1)-clique, or
2. ablue g-clique.
If it contains a blue g-clique, we are done. If it contains a red (p — 1)-clique with vertices
{v1,..., Up_l}, then adding x yields a red p-clique, since all edges xv; are red.
Thus in this case there is a monochromatic K, (red) or K (blue).

Case 2: x has at least M blue incident edges. Let T be the set of neighbors of x joined to x by
blue edges; then |T| > M = R(p, q — 1). By the definition of R(p, 4 — 1), the induced subgraph
on T contains either

1. ared p-clique, or
2. ablue (g — 1)-clique.

If it contains a red p-clique, we are done. If it contains a blue (g — 1)-clique with vertices
{u1,...,uy-1}, then adding x produces a blue g-clique, since all edges xu; are blue.
Thus in this case as well there is a monochromatic K, (red) or K (blue).

Since every red/blue coloring of Ky produces a red K, or a blue K;, we conclude that

R(p,9) <N+M=R(p-1,q9)+R(p,q-1).
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Corollary 27 4.
P+q—ﬁ

R@ADS( p—1

Proof. A 2-edge-coloring of K, either has an edge of the second color or does not, so

R(p,2)=p

Hence the upper bound holds with equality when g (or p) is 2. This provides the basis for
inductionon p + 4.

By Theorem 27.1 and the induction hypothesis,

R0 $ KoL Rpa-0 < (203297

p—2 p—-1
By Pascal’s Identity,
p+q=3)_ (p+q-3) _(p+q-2
p-2 p-1 ] \ p-1 )
Therefore,
ptq-2
< .
R@"”_( P—l)

27.2 Erdés lower bound for diagonal Ramsey numbers

To prove a lower bound on R(p, p), we want to exhibit one coloring of K,, with no monochromatic
K,. Constructing such a coloring explicitly is hard, so we do the classic Erd6és probabilistic
method proof: pick a random coloring and prove it has the desired property with positive
probability. If something happens with positive probability, then it happens for at least one
outcome, so an appropriate coloring exists.

Theorem 27.5 (Erdds, 1947).

L p/2(1 _
Iunp)ZEVEPZ (1-o0(1)).

Proof. Let the edges of K, be colored independently at random, where each edge is assigned
the color red or blue with probability 1. The expected number of red p-cliques is

)
E[#{red p-cliques}| = (Z) (%) .

Similarly, the expected number of blue p-cliques is
NG
E[#{blue p-cliques}| = (P) (E) .

Hence the expected number of monochromatic p-cliques is

NG
E[#{monochromatic p—cliques}] = ( )2(—) .
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@
blols) <

then there exists a coloring with no monochromatic p-clique. Hence such an 7 is a lower bound

on R(p, p).
Using the estimate
o)<
<|— s
p p
14
() <2t

p

Now we solve this inequality for n. Taking natural logs,

p(lnn+1-Inp) < ((Z) —1) In2 = (P(Pz— Y —1) In2.

If

it suffices to have

Divide by p:

p-1 In2

Inn < 1n2—7—1+1np.

Exponentiating gives

-1
n < exp(lnp - l) exp(pTan) exp(—lnTZ) = 52(”'1)/2 2-1/p,

Since 2P~D/2 = 2p/2 /A2 and 2717 =1 - o(1) as p — oo, we get
n < (1-o(1)L=2v7,
eV2
Therefore, for such n there exists a 2-coloring of E(K};) with no monochromatic K, so

_ L p/2
R(p,p)=(1 0(1))8\/52 :

27.3 General Ramsey’s Theorem

Definition 27.3 (r-uniform k-coloring). Let S be a set and r € N. Write
S
. ={ACS:|Al=r}

for the family of r-subsets of S. A k-coloring of (3) is a map

f: (f) — [k] :=11,2,...,k}.
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Definition 27.4 (Homogeneous set). Given a k-coloring f : (f) — [k], asubset T C S is
i-homogeneous (or monochromatic of color i) if

flA) =i for every A € (Z)

Equivalently, all r-subsets of T receive the same color i.

Definition 27.5 (Ramsey number). Fix k,r € N and target sizes py, ..., px € N. We write

R(p1, ..., pr;7)

for the minimum N such that for every k-coloring f : ([Ij ]) — [k] there exists some i € [k]
and an i-homogeneous set T C [N ] with |T| = p;.

Remark 27.2. When r = 2, a k-coloring of (U;I ]) is just an edge-coloring of the complete graph
Kn with k colors, and a homogeneous set is a monochromatic clique. For example,

R(3,3;2) = 6.
Also note that adding a parameter 2 does nothing in the graph case:
R(3,3,2;2) =R(3,3;2),

since any two vertices already form a monochromatic K, in whatever color the edge has.

Theorem 27.6 (Ramsey, 1930). Forall k,r e Nand all p1,...,pr €N,

R(p1,...,pk;1) < co.

Proof. We prove finiteness by induction on the uniformity r; for fixed » we use a secondary
induction on }}; p; (equivalently, on };(p; — 1)).

[N]

1 ) isjust a coloring of the points 1,2, ..., N. By the pigeonhole

Base case r = 1. A k-coloring of (
principle, if

N=(p1-D+-+pr—-D+1=p1+-+pr—k+1,

then some color class has size at least p;, giving an i-homogeneous set of size p;. Hence
R(p1,...,px;1) < N.

Vacuous case. If some p; < r, then any set T of size p; is automatically i-homogeneous, because
(z) = @. Thus R(p1, ..., pk; ) < pi < 00o. SO we may assume from now on that r > 2 and p; > r
for all i.

Inductive step. Fix r > 2 and assume all Ramsey numbers for uniformity » — 1 are finite
(induction on r), and also that all numbers of the form R(p1,...,pi —1,...,p; 1) are finite
(secondary induction, since the sum of the parameters decreases).

For each i € [k], define

qi = R(Plr ceo,Pi-1, Pi — 1/ Pi+1, -+, Pks 7’),
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and set
M:=R(q1,..., 96, v—1), N:=M+1.

We claim R(p1, ..., pk;7) < N.

Let f : ([Zj ]) — [k] be an arbitrary k-coloring. Write v := N. Define a new coloring of
(r — 1)-subsets of [N — 1] by

i (”f _‘1”) STk, A= FAU (o).

By the definition of M = R(q1, ..., qx;r — 1), there exists a color i € [k] and aset T C [N — 1]
with |T| = g; such that T is i-homogeneous for f’,i.e.

VA € (r ! 1) . FAU{O)) = F(A) = i.
Now restrict the original coloring f to (Z) Because [T| = g;and ;i = R(p1,...,pi—1,...,p;7),

by the definition of g; one of the following occurs:

1. thereis a color j # i and a j-homogeneous set U C T with |U| = p; (done); or

2. there is an i-homogeneous set S C T with |S| = p; — 1.

In case (2), we claim S U {v} is i-homogeneous for f and has size p;. Indeed, take any r-subset

Be (Sur{v}). Ifv ¢ B, then B € (‘E), so f(B) = i because § is i-homogeneous in f. If v € B, write

B=AU{v} where A € (,°,) € (,",); then f(B) = f(A U {v}) = i by the i-homogeneity of T for
f’. Thus all r-subsets of S U {v} have color i, as required.

Therefore every k-coloring of (N) produces an i-homogeneous set of size p; for some i, so
R(p1,...,pk;r) <N < 0. O

Remark 27.3. The proof yields the bound
R(p1,...,pi;r) < 1+ RR(p1—61i, ..., pk — Oki;7) fori € [k]; r = 1),
ie if gi=R(p1,...,pi—1,...,pk r) then
R(p1,...,p;r) <1+ R(q1,...,qr = 1).

27.4 Erddés-Szekeres on points in convex position

Theorem 27.7 (Erd6s-Szekeres, 1935). For each integer m > 3, there exists an integer N (1)
such that every set of N(m) points in the plane in general position contains m points in
convex position.

Proof. A set of points is in general position if no three lie on a line. The theorem states that if
the total number of points is sufficiently large, then one can always find m of them forming the
vertex set of a convex polygon.

The classical bounds satisfy

22 < N(m) < (2m ~4

<22m
m—Z)_ !

and it remains an open problem whether N (m) = 2"+o0m),

The proof is based on the following two lemmas.
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Lemma 27.8. Every set of five points in general position contains four points in convex
position.

Proof of lemma 1. Given any five points in general position, either one of them lies inside the
convex hull of the other four, or none of them does. In the first case, the remaining four already
form a convex quadrilateral. In the second case, all five points lie on the boundary of their
convex hull, and any four consecutive vertices again give four points in convex position. In
either case four convex-position points exist. ]

Lemma 27.9. If every four-element subset of a point set P of size m is in convex position,
then the entire set P is in convex position.

Proof of lemma 2. Assume for contradiction that P is not in convex position. Then some point of
P lies strictly inside the convex hull of the remaining points. Let v be such a point. Consider any
three points on the hull that form a triangle containing v. Together with v they form four points
that fail to be in convex position, contradicting the assumption that every four-subset is convex.
Therefore all points must lie on the boundary of the convex hull, and P is in convex position. O

To prove the theorem, consider N = R(m,5), the Ramsey number for red-blue colorings of m-
and 5-subsets. Given any N points in general position, color each 4-element subset red if it is in
convex position and blue otherwise. By the choice of N there is either a red m-set or a blue 5-set.

If there is a blue 5-set, Claim 1 shows this is impossible, since every five points contain four
convex-position points. Thus no blue 5-set exists. Therefore the Ramsey argument produces a
red m-set, meaning every 4-subset of these m points is in convex position. By Claim 2 the entire
set of m points is in convex position. This establishes the existence of N(m). |

27.5 Schur’s Theorem

Theorem 27.10 (Schur, 1916). Given k > 0, there exists an integer sx such that every
k-coloring of {1, 2, ..., Sk} has a monochromatic solution (x, y, z) to

X+y=z.

Proof. Let ry = Ri(3) be the Ramsey number such that every k-edge-coloring of K,, contains a
monochromatic triangle. We show that sy < ry.
Let

f{L2,..., =1} = [k]
be a k-coloring of the integers {1,2,...,rr — 1}. We use f to define a k-edge-coloring f’ of K,,
as follows. Let V(K;,) ={1,2,..., ¢}, and for each edge ij define

fGj) = f(i =D

By the definition of ¢, the coloring f’ contains a monochromatic triangle with vertices a, b, c.
Without loss of generality, assume
a<b<ec.
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Define
x=b-a, y=c-b, z=c—a.

Then x, y, z are positive integers, and
fx)=f(b—al)= f'(ab),  f(y)=flc=b)=f'(be),  f(z)=fllc—al)= f(ac).

Since the edges ab, bc, and ac form a monochromatic triangle under f’, we have

fx) = f(y) = f(2).

Finally, by construction,
x+y=0b-a)+(c-b)=c—-a=z.

Thus (x, y, z) is a monochromatic solution to the equation x + y = z.
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28 Probabilistic Method

The probabilistic method is an indirect strategy: to prove that a combinatorial object exists, we
define a random process that produces such objects and show that the probability of success is
positive. If Pr(success) > 0, then at least one successful outcome must exist.

28.1 Two basic tools: the first moment and alteration

Lemma 28.1 (First moment method). Let X be a nonnegative integer-valued random
variable. If E[X] < 1, then Pr(X = 0) > 0. In particular, there exists an outcome with X = 0.

Proof. 1f X > 1then X > 1-1x51), hence E[X] > Pr(X > 1). If E[X] < 1, thenPr(X > 1) <1, so
Pr(X = 0) > 0. 0

Lemma 28.2 (Alteration principle). Suppose a random structure contains “bad” substruc-
tures, and let X be the number of bad substructures. If we can destroy every bad substructure
by deleting at most one vertex per bad substructure, then there exists an outcome in which,
after deleting at most X vertices, no bad substructure remains. In particular, there exists an
outcome with at least n — X vertices and no bad substructure.

Proof. Given an outcome, delete one vertex from each bad substructure (choosing arbitrarily).
Then every bad substructure is destroyed, and we deleted at most X vertices. m|

28.2 Hypergraphs and Property B (2-colorability)

Definition 28.1 (Hypergraph, k-uniform). A hypergraph is a pair H = (V,E) where V is a
vertex set and E C 2 is a family of subsets called hyperedges. It is k-uniform if every edge
has size k.

Definition 28.2 (Proper 2-coloring / Property B). A proper 2-coloring of a hypergraph
H = (V,E)isamap ¢ : V — {red, blue} such that no edge is monochromatic (i.e. every
e € E contains at least one red and at least one blue vertex). A hypergraph is 2-colorable if it
admits such a coloring. This property is also called Property B.

Definition 28.3. Let f(k) be the minimum number of edges in a non-2-colorable k-uniform
hypergraph.

Theorem 28.3 (Erdés). For k > 2,

21 < (k) < (Zkk_ 1).
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Proof. Upper bound. Let V be a set of size 2k — 1, and let E be the set of all k-subsets of V. Then
|E| = (Zkk_ 1). In any red/blue coloring of V, one color class has size at least k, so it contains a
monochromatic k-subset, which is an edge of H. Hence this hypergraph is not 2-colorable, so

Fl) =< (5.

Lower bound. Let H = (V, E) be k-uniform with |E| = m. Color each vertex independently
red/blue, each with probability 1/2. For a fixed edge e (with |e| = k),

Pr(e is monochromatic) = Pr(e all red) + Pr(e all blue) = 2 - 27% = 21-F,
Let X be the number of monochromatic edges. By linearity of expectation,
E[X]=m -2k,

If m < 21 then E[X] < 1, so by Lemma 28.1 there exists a coloring with X = 0, i.e. with
no monochromatic edge. Thus any non-2-colorable k-uniform hypergraph must satisfy m >
2k=1, O

Remark 28.1 (Sharper, more recent bounds). The true order of magnitude of f(k) is still subtle.
There are significant improvements known on both sides, for example
k
f(k) < (1+0(1))-C K22k and flk) = c2k. L
log k
for absolute constants C,c¢ > 0. (These require deeper ideas beyond the basic first-moment
argument.)

Theorem 28.4 (Alteration-method bound for R(k, k)). For every n and k,
R(k k) > 1 (’;) 21-0),
Consequently, choosing n = (1 — o(1))ﬁ 2k yields

k
R(k, k 1- = ok/2
(k, k) > ( o(l))e\/E

Proof. Randomly 2-color the edges of K, (each edge independently red /blue with probability
1/2). For each k-set S € ([Z]), let As be the event that K,,[S] is monochromatic. A fixed S spans
(g) edges, so
i (11O iy
r(AS)—Z-(E) = 21-0),

Let X = )5 144 be the number of monochromatic Ki’s. By linearity of expectation,
E[X] = (Z) 21-(3).

Now alter the graph by deleting one vertex from each monochromatic Ki. After deleting at most
X vertices, the remaining induced subgraph has no monochromatic Ky. Therefore there exists
a coloring with at least n — X vertices and no monochromatic Ky, so R(k, k) > n — X. Taking
expectations gives

R(k, k) > n—E[X] = n—(Z)zl-@.
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The stated asymptotic choice of 7 comes from making the expected number of monochromatic
Ky’s smaller than n (and then optimizing using (}) ~ (ne/k)¥). |

28.3 Lovéasz Local Lemma (LLL) when union bound is too weak

Definition 28.4 (Dependency graph viewpoint). Let Ay, ..., Ay be events. A graph D on
[N]is a dependency graph if each A; is independent of the collection {A; : j € Np[i]} (i.e.
independent of all events outside its closed neighborhood).

Theorem 28.5 (Symmetric Lovédsz Local Lemma). Suppose Pr(A;) < p for all 7, and each A;
depends on at most d others (i.e. has degree < d in some dependency graph). If

ep(d+1)<1,

then

Pr(ﬁz)w.

i=1

Remark 28.2. Compare with the union bound: Pr(|J A;) < > Pr(A;). LLL is what you use when
the A; are not independent but are “locally dependent”: each bad event only interacts with a
bounded neighborhood of other bad events.

28.4 Spencer’s LLL proof idea for R(k, k)

Theorem 28.6 (Spencer, via LLL). For

n=~1+ 0(1))g L

there exists a red/blue edge-coloring of K,, with no monochromatic Ki. Equivalently,
R(k, k) > n.

Proof sketch with the key bookkeeping. Color edges of K, independently red /blue with probability
1/2. For each k-set S, let As be the event that S spans a monochromatic Ki. As before,

p = Pr(Ag) = 21-0).

Two events Ag and At are independent whenever Ks and Kt share no edges, which happens iff
|SNT| < 1. Thus As depends only on sets T with |S N T| > 2. A crude bound on the number of
such T is obtained by choosing the intersection size:

k
k\(n -k kK\( n , nk2
< = —|.
= 2067 = Bt = ol =)
Now apply Theorem 28.5. The condition e p (d + 1) < 1 becomes, up to lower-order factors, an

inequality of the form
k-2

(k—2)!) s L

e.21-() . (kZ
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and plugging n = (1 + 0(1))\/7§k2k/ 2 makes this true. Hence with positive probability none of
the As occur, i.e. no monochromatic Ky exists in the coloring, so R(k, k) > n. O

28.5 Erdds: large girth and large chromatic number

The girth g(G) of a graph G is the length of its shortest cycle (take ¢(G) = oo
if G is acyclic). The independence number a(G) is the maximum size of an independent set.

Theorem 28.7 (Erdés). For all integers ¢ > 3 and k > 2, there exists a graph G with

g(G) =g and X(G) = k.

Proof. We build G from a random graph and then alter it.

Step 1: choose a random graph. Let G ~ G(n, p), meaning each edge appears independently
with probability p. We choose

p=n" where 0 <t < —.

(So p is small: sparse enough to keep short cycles rare, but not so small that huge independent
sets become likely.)

Step 2: short cycles are rare. Fix j € {3,4, ..., g}. The number of (labeled) j-cycles is at most nl,
and each specific j-cycle appears with probability p/. Thus the expected number X; of j-cycles
satisfies

E[X;] < nipl =nit,

Let X = Z‘].g:3 X be the number of cycles of length < ¢. Then

g
E[X] < Z nit = o(n),
=3

]

since jt < 1 for every j < g. By Markov,

Pr(X >n/2) < 2E[X]

— 0,

so for large n there exists a realization with X < n/2.

Step 3: large independent sets are unlikely. Fix an integer r. The probability that a fixed r-set
is independent is (1 — p)(g) < e7(), By the union bound,

Pr(a(G) >r) < (1:)(1 - p)(;) < (%)r exp( - p(;))

rﬂnnw
r = .
p

Then p (;) < (Inn)?/p dominates the r In(en/r) term, and the RHS tends to 0 as n — co. Hence
for large n there exists a realization with a(G) < r.

Choose
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Step 4: alter to kill short cycles, and count colors. Pick a realization of G for which simultane-
ously X < n/2and a(G) < r. Delete one vertex from each cycle of length < g. This removes all
cycles of length < g, so the resulting graph G’ satisfies g(G’) > g. We deleted at most X < n/2
vertices, hence |V(G’)| > n/2. Also, deleting vertices cannot increase «, so a(G’) < a(G) < r.

Finally,
n oo VG n/2
> > L=
X6 = ey 2
Since r ~ 4(Inn)/p = 4(Inn)n'~, the ratio (1/2)/r tends to co with n. For n large enough we
have x(G’) > k. Thus G’ has girth at least ¢ and chromatic number at least k. O

28.6 Markov, Chebyshev, and the second moment method

Theorem 28.8 (Markov’s Inequality). Let X > 0 be a random variable and let 2 > 0. Then

Pr(X >a) < @.

Proof. Since X > aljxs4), taking expectations gives E[X] > a Pr(X > a). O

Theorem 28.9 (Chebyshev’s Inequality). Let X be a random variable with finite variance.
Then for every t > 0,
Var(X)

Pr (X -E[X]|>t) < 2

Proof. Apply Markov to the nonnegative random variable (X — E[X])*:

_ 2
Pr ((X _ E[X])z > tz) < E[(X t;E[X]) ] _ VaZEX).

Lemma 28.10 (Second moment method / Paley—Zygmund (useful form)). If X > 0 and
E[X?] < oo, then
E[X]?

Pr(X >0) > E[X2]

Proof. By Cauchy-Schwarz,

E[X] = E[X1(xs0y] < VE[X?] Pr(X > 0).

Rearrange. O

28.7 Caro-Wei proof of Turdn
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Theorem 28.11 (Caro-Wei bound). For every graph G,

Proof. Take a uniformly random ordering (permutation) 7t of V(G). Let S be the set of vertices
that appear before all their neighbors in 7. Then S is independent (two adjacent vertices cannot
both be first among the two). For a fixed vertex v, among the d(v) + 1 vertices in {v} U N(v),
each is equally likely to be the earliest in 77, so

1
Pr(v e $S) = TOFES
Thus by linearity,
1
E[|S|]]= ) PrveS)= ) ——.
Zy: Zv: d(v)+1
Since a(G) > |S| always, we get a(G) > E[|S|]. |

Corollary 28.12 (Jensen/Cauchy-Schwarz form). If G has n vertices and m edges, then

n2

2m+n’

a(G) >

Proof. By Cauchy-Schwarz applied to a, = d(v) +1 > 0,

1 n?
—_ 2> .
ay 20 Ao

Now },(d(v) + 1) = 2m + n and Caro-Wei gives the result. O

%

Theorem 28.13 (Turdn). If G is K,41-free on n vertices, then

e(G) < (1—%)%2

Proof. _Let G be the complement. “G is K,;1-free” means G has no independent set of size r + 1,
ie.a(G)<r.

Apply the corollary to G. Since
e(C) = (’;) - e(G),

we get

n? n? n?

«C) 2 2¢(G) +n T m2-n)-2e(G)+n  nZ-2e(G)

Since a(G) < r,

2 2 2
n 5 n ( 1)n
—— < - -2 > — = < (1-=)—.
n2-2e(G) ~ g " e(G) = r e(G) < r) 2

(This matches the Turdn density; the exact best bound t,(n) differs only by O(n).) O
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28.8 Random graphs G(n, p): thresholds for isolated vertices and connectivity

Definition 28.6 (G(n,p)). G(n,p) is the random graph on vertex set [n] = {1,...,n} in
which each of the () edges is present independently with probability p = p(n).

Theorem 28.14 (Isolated vertices threshold). Let X be the number of isolated vertices in
G ~ G(n, p) and set
_logn+c

p= — (c € R fixed).

Then X = Poisson(e™), and in particular

Pr(no isolated vertices) = Pr(X = 0) — ¢~ .

Proof sketch via factorial moments. For t > 1,let (X); = X(X —1)---(X —t + 1). Choose t vertices;
they are all isolated iff every edge incident to them is absent, including edges among the ¢
themselves. The number of forbidden edges is

t(n-—t)4—(;).

Hence t
E[(X),] = (n); (1 — p)!=0+C).

With p = (logn + ¢)/n and fixed t, one checks
(n); ~ nt, (1- p)t(n—t) ~ pPtn _ o—tlogn+e) _ n_te_Ct,

and (1 —p)(é) — 1. Thus E[(X);] — (e™¢)f, which are exactly the factorial moments of Poisson(e ).

Therefore X converges in distribution to that Poisson law, giving Pr(X = 0) — e~ . O

Theorem 28.15 (Connectivity threshold). Let G ~ G(n, p) with p = (logn + c¢)/n and fixed
¢ € R. Then

Pr(G is connected) — ¢~ "

In particular, the threshold for connectivity is p ~ (logn)/n.

Proof sketch: “only obstruction is isolated vertices”. Clearly,
Pr(G connected) < Pr(no isolated vertices) — ¢™¢ "
It remains to show that

Pr(no isolated vertices but disconnected) — 0.

If G is disconnected and has no isolated vertices, then it has a component S with size 2 < s :=
|S| < n/2. For a fixed set S of size s, the event “S is a component” implies: (i) there are no edges
from S to V' \ S and (ii) G[S] is connected. Thus by union bound,

Pr(3 component of size s) < (:) Pr(G[S] connected) (1 — p)s(n—s)_
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Bound Pr(G[S] connected) by spanning trees: if G[S] is connected it contains some spanning
tree; there are s°2 trees (Cayley) and each appears with probability p*~!, so

Pr(G[S] connected) < s°72p57L,

Hence

Pr(3 component of size s) < (:) sS72ps (1 = p)ystne),

Now plug p = (logn + c)/n. The factor (1 — p)*"=3) < e7Ps(1=s) < p=s(logn+0)/2 = yy=5/2¢=¢s/2 (for
s < n/2), which kills the (Z) < (en/s)® term strongly, and the remaining s*~?p*~! is at most
polynomial in log n times n~~D, Summing over s = 2,...,|n/2] gives a total o(1). Therefore
the probability of being disconnected without isolated vertices vanishes, and

Pr(G connected) ~ Pr(no isolated vertices) — e¢™¢
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29 Partially Ordered Sets

29.1 Structure of Posets

Definition 29.1 (Partially ordered set (poset)). A partially ordered set (or poset) is a pair (P, <)
where P is a set and < is a binary relation on P such that for all x, y,z € P:

1. (Reflexive) x < x.
2. (Antisymmetric) If x <y and y < x, then x = y.
3. (Transitive) If x <y and y < z, then x < z.

We say x and y are comparable if x < y or y < x. Otherwise, they are incomparable.

Example 29.1 (The divisibility poset). Let P = Zs1. Define a relation < on P by
a<b < alb.

Then (Z31, <) is a poset, called the divisibility poset. More generally, for a fixed n € Z51, the set of

positive divisors of ,
D(n)={d € Z>1 : d | n},

ordered by divisibility is a finite poset.

Definition 29.2 (Hasse diagram). Let (P, <) be a finite poset. The Hasse diagram of P is the
directed graph obtained from the relation < by drawing an edge x — y exactly when x <y
and y covers x (i.e. x < y and there is no z € P with x < z < y), and omitting all edges
implied by transitivity. By convention, the diagram is usually drawn with edges pointing
upward, so the arrows are often suppressed. When viewed as a directed graph, transitivity
means H has no directed cycles.

Example 29.2. The following diagram is a Hasse diagram for the poset ([12],|) restricted to
2,3,4,6,12).

We have 6 < 12 since 6 | 12.

We do not draw an edge between 3 and 12 since 6 lies between them in the order.

29.2 Dilworth’s Theorem

Definition 29.3 (Chain and antichain). Let (P, <) be a poset. A subset C C P is a chain if for
all x,y € C, we have x < y or y < x (i.e. every pair is comparable).

A subset A C P is an antichain if for all distinct x, y € A, neither x < y nor y < x (i.e. every
distinct pair is incomparable).
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Theorem 29.1 (Dilworth). Let (P, <) be a finite poset. Let
w = max{|A|: A C P is an antichain }

be the width of P. Then the minimum number of chains whose disjoint union is P (i.e. a
partition of P into chains) is exactly w.

Proof. Letn = |P|.

(1) Easy inequality. If P is partitioned into k chains, then any antichain meets each chain in at
most one element, so |A| < k for every antichain A. Hence w < k, and therefore

w S kmin/
where kpin denotes the minimum number of chains in a chain-partition of P.

(2) Build a bipartite graph. Form a bipartite graph G = (L U R, E) where L = {x; : x € P} and
R = {xg : x € P}, and put an edge

xLyr €E & x<yinP.

Let v(G) be the size of a maximum matching, and 7(G) the size of a minimum vertex cover. By
Kénig’s theorem for bipartite graphs,

v(G) = 1(G).

Chain partitions <= matchings. We claim
kmin = n—v(G).
Indeed, if P is partitioned into k chains, write each chain as
1 <Cp <<y

Add the edges c1,1.c2,r, C2,LC3,R, - - -, Ct—1,1.Ct,R tO @ set M. Across all chains this produces a
matching (each element appears in at most one chosen left endpoint and at most one chosen
right endpoint), and [M| = (t = 1) = n — k. Thus v(G) > n —k, so k > n — v(G), hence
kmin = n —v(G).

Conversely, given a matching M of size m, interpret each matched edge x; yr as a directed link
x — y. Because M is a matching, every vertex has outdegree < 1 and indegree < 1 under these
links, so the links decompose P into vertex-disjoint directed paths; each such path is a chain in P
(since every link respects <). Adding isolated vertices as length-1 paths, we get a chain-partition
with exactly n — m chains. Taking m = v(G) gives kmin < 1 — V(G). SO kmin = n — v(G), as
claimed.

(3) Extract a large antichain from a minimum vertex cover. Let C be a minimum vertex cover
in G, so |C| = 7(G). Define

A={xeP:xp¢Candxgr ¢C}.

Then A is an antichain: if x < y with x, y € A, the edge x_yr exists but neither endpoint lies in
C, contradicting that C covers all edges.
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LetT ={x €P:xy € Corxg e C}. Then |T| < |C| = ©(G) (since each vertex of C contributes to
at most one element of P, but some elements might contribute two vertices). Hence

Al = n—|T| = n—-1(G).
Therefore w > |A| > n — 7(G).
Using v(G) = t(G) and the formula for kmin,
kmin = n—=v(G) = n—-1(G) < w.

Combined with (1), w < kpin, we conclude kpin = w. O

29.3 LYM Inequality and Sperner’s Theorem

Definition 29.4 (Boolean lattice and Sperner family). Let[n] ={1,2,...,n} and let 2l pe
the family of all subsets of [1], ordered by inclusion C. A family # C 2["l is called a Sperner
family (or an antichain) if it contains no two distinct sets with one contained in the other:

VA, BEF,A+B — —=(ACB)and ~(B C A).

Equivalently, F is an antichain in the poset (2], €).

Theorem 29.2 (LYM inequality (Lubell-Yamamoto-Meshalkin)). If # c 2["l is a Sperner

family, then
1
D A sl
AeF (|A|)

Lubell’s proof. A maximal chain in (21"], C) is a chain of length 1 + 1 of the form
@=CcCyc---cCy,=[n], |Ck| = k.

Every permutation = (71, ..., ;) of [n] determines a maximal chain by Cy = {my,..., 7k},
and every maximal chain arises from exactly 1 permutation in this way (up to the obvious
correspondence), so choosing a uniformly random permutation is equivalent to choosing a
uniformly random maximal chain.

Fix A C [n] with |A| = k. We compute the probability that a random maximal chain contains A.
The chain contains A exactly when the first k elements of the random permutation are precisely
the elements of A (in some order). The number of permutations with this property is k!(n — k)!,
hence

k!(n —k)!
Pr(A lies on the random chain) = M = 1

n! Z)

Let X be the random variable counting how many sets of ¥ lie on the random maximal chain.
Since ¥ is Sperner, a chain can meet ¥ in at most one set, so X < 1 always. By linearity of

expectation,
1

E[X] = Z Pr(A lies on the random chain) = Z -
AeF AcF (|A|)
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But also E[X] < 1 because X < 1 surely. Therefore

1<1

AeF (IZI) -

which is the LYM inequality. m|

Theorem 29.3 (Sperner). If # C 2["l is a Sperner family, then

n
IF| < (I_n/ZJ)'

Moreover, equality is achieved by taking ¥ to be the entire middle level (L;E;]z J) (and also

([7[11;]21) when 7 is odd).

Proof. Let M = maxosksn (;) = (1)) For every A € ¥ we have () < M, hence

1 1
R vE
()
Summing over A € ¥ gives
1 1 ||

> = .
AeF (|1"11|) AeF M M

By the LYM inequality, the left-hand side is < 1, so

71 n
— <1 < = .
S = |F|<M 11/2)
Taking F = (L;£7]2 J) is clearly an antichain and has size M, so the bound is tight. O

29.4 Erdds-Ko-Rado Theorem and Katona circle method

Definition 29.5 (Intersecting family). A family # C ([z]) is intersecting if
VA,Be¥F, ANB+ @.

A star is an intersecting family of the form

S; = {Ae ([Z]):ieA} (i € [n]).

Theorem 29.4 (Erd6s—Ko—Rado). Assume n > 2k and let ¥ C ([Z]) be intersecting. Then

n-1
7| < (k—l)'

Moreover, equality is attained by a star S;.
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Katona's circle method. A cyclic order on [n] means a permutation written around a circle, where
rotations are identified. The number of cyclic orders is (n — 1)!.

Fix a cyclic order 0. After labeling the positions around the circle as 1,2, ..., n in clockwise
order, define the k-intervals (also called cyclic consecutive k-sets) by

I;(t) = {t,t+1,...,t+k -1} (mod n), t=1,2,...,n.

Let 7(0) ={I;(t) : 1 <t < n} be the set of all k-intervals in ¢.

Lemma 29.5. If n > 2k and G C 7 (o) is intersecting, then |G| < k.

Proof of Lemma. Rotate the labels so that some member of G is I;(1) = {1,2, ..., k}. Let [;(t) € G
be any other interval. If t e {k + 1,k +2,...,n — k + 1}, then

I,(ty={t,t+1,...,t+k-1}Cc{k+1,k+2,...,n}

and hence I,(t) N I;(1) = @, contradicting that G is intersecting. Therefore every t with I,(t) € G
must lie in
{,2,...,k} U{n-k+2,...,n}

But since we already forced 1 € {t : I,(t) € G} by rotation, we may keep the labels fixed so that 1
is the smallest start index among those in G, which rules out {n — k + 2, ..., n}. Hence all start
indicesin G liein {1,2,...,k}, so |G| < k. |

Now do a double count. Let

X = {(A,0):0acyclicorderon [n], AeF, Aec I(0)}.

Upper bound on |X|. For each fixed o, the subfamily # N 7 (o) is intersecting, so by the Lemma it
has size at most k. Since there are (n — 1)! cyclic orders,

X| = Y IFnI(o) < k(n-1).

Exact count of | X| by fixing A € ¥ . Fix a particular k-set A C [n]. Count cyclic orders o for which
A is consecutive, i.e. A € (o). Treat A as a single block plus the n — k remaining elements as
singletons. Then we have n — k + 1 objects arranged cyclically, giving (n — k)! cyclic orders on
the objects. Inside the block, the k elements of A can appear in any of k! linear orders around
the circle. Thus the number of cyclic orders with A consecutive is

k!'(n - k)!.

Therefore
|M::§:HM—kﬂ:ITMKn—HL

AeF

Combine the two counts.
[F1k!(n—-k)! = |X| < k(n-1),

SO

B e VA G VI U B
| I—kun—@!‘(k—nun—m!_(k—J'

Finally, the star S; = {A € ([Z]) : i € A} is intersecting and has size |S;| = ('Zj), so the bound is

tight. O
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