
MATH 580 Notes

These notes were taken during the Fall 2025 offering of the Combinatorics course taught by

Abhishek Methuku. They contain definitions, theorems, examples, and proofs written in class,

and some additional material not covered in lectures.

The primary reference for the course is the textbook Combinatorial Mathematics by Douglas B.

West. The course covers material from Chapters 1–9, as well as selected topics from Chapter 10

on Ramsey Theory, and Chapter 14 on the Probabilistic Method.

These notes are also partly based on Prof. Balogh’s notes from his offering of MATH 580, as

found here: https://sites.google.com/view/jozsefbaloghmath/teaching/math580

The material below follows the notation and terminology of the textbook whenever applicable.

2

A small ritual before continuing

Before we proceed to learn combinatorics and graph theory,
we pause to request the mandatory traditional blessing:

May Paul Erdős — itinerant monarch, patron saint of lemmas, from whatever celestial
couch he is currently borrowing, look upon these pages and not immediately close the PDF.
Wherever he is currently staying, may the coffee be strong.

We ask for the following blessings:

• taste: to prefer the sharp lemma over the bloated “generalization” nobody will use,
• nerve: to try the simple idea first and not hide behind machinery out of fear,
• precision: to keep definitions honest and hypotheses minimal (no decorative assump-

tions),
• stamina: to survive ugly computations without becoming the computation,
• humility: to notice when a “proof” is actually just vibes plus notation,
• ruthlessness: to delete a beloved argument the moment it stops pulling its weight,
• courage: to say “I don’t know” early, before the manuscript becomes a mausoleum,
• and luck: that the one miraculous trick we need is the one we actually think of.

If a lemma is ugly, may it at least be useful. If it is useless, may it at least be short. And if it
is long and useless, may it be struck from the manuscript without mercy.

Proceed only after paying your respects.

Contents 1

Contents

0 Contents 1

1 Basic Combinatorics 7

2 Binomial coefficients 11
2.1 Binomial coefficients . 11

2.2 Multisets, Stars and Bars . 11

2.3 Binomial Identities . 12

3 Combinatorial arguments 17
3.1 Delannoy numbers . 17

3.2 Lattice balls in Z𝑛 . 18

3.3 Delannoy identity . 20

3.4 Cayley’s Formula . 22

3.5 Multinomial coefficients . 26

3.6 Ballot Theorem . 29

3.7 Catalan numbers . 32

4 Recurrences 35
4.1 Fibonacci recurrences . 35

4.2 Derangements . 35

4.3 Simple words, set partitions and permutations with cycles 36

4.4 Delannoy recurrences . 37

5 Solution methods for linear recurrences 38
5.1 Recurrence relation . 38

5.2 Linear recurrences with constant coefficients . 39

5.3 General homogeneous recurrence with distinct roots 39

5.4 General solution with repeated roots . 40

5.5 Tower of Hanoi . 42

5.6 Non-homogeneous recurrences . 43

5.7 Regions of the plane . 45

6 Generating function methods for recurrences 47
6.1 The negative binomial / “stars and bars” generating function 48

6.2 Structure theorem for linear recurrences . 48

6.3 Example: Catalan numbers . 49

6.4 Main theorem of linear recurrences . 51

6.5 Substitution Method . 52

Contents 2

6.6 Stirling’s formula . 53

7 Ordinary generating functions 54
7.1 Why generating functions exist . 54

7.2 Combinatorial classes and weights . 54

7.3 Definition of the OGF . 54

7.4 Two fundamental combinatorial operations . 55

7.4.1 Disjoint union↔ addition . 55

7.4.2 Product construction↔multiplication (convolution) 55

7.5 Restricted multiplicities . 57

7.6 Bivariate OGFs (tracking two statistics) . 60

7.7 Extracting coefficients . 60

7.8 Shifting indices . 62

7.9 OGF Vandermonde convolution . 62

7.10 Catalan recurrence . 63

7.11 How to manipulate OGFs for coefficients? . 64

7.12 Snake Oil . 67

8 Permutations statistics 72
8.1 Inversions . 72

8.2 Permutation Cycles . 73

8.3 Eulerian numbers . 76

8.4 Worpitzky’s Identity . 76

9 Exponential generating functions 79
9.1 Why EGFs exist . 79

9.2 The labeled product construction . 80

9.3 Product rule for EGFs . 81

9.4 A tiny sanity-check example . 82

9.5 Basic examples . 82

9.6 Stirling numbers of the second kind . 84

9.7 Stirling numbers of the first kind . 86

9.8 Binomial inversion . 88

9.9 Exponential formula and connected structures . 90

9.10 Lagrange Inversion Formula . 93

9.11 Cayley’s Formula from Lagrange Inversion . 93

10 Integer Partitions 95
10.1 Partitions with restricted part sizes . 97

10.2 Hardy–Ramanujan asymptotics and a simple upper bound 97

10.3 Ferrers diagrams and conjugation . 97

Contents 3

10.4 Distinct parts versus odd parts (Frobenius 1882) 98

10.5 Integer triangles and partitions . 99

10.6 Euler’s identity for self-conjugate partitions . 100

11 Inclusion–Exclusion Principle (PIE) 102
11.1 Basic statement . 102

11.2 Derangements . 102

11.3 Euler’s totient function . 102

11.4 A PIE formula for Stirling numbers . 103

11.5 Multisets via inclusion–exclusion . 103

11.6 PIE as an evaluation tool for sums . 104

11.7 Generalization of derangements . 105

11.8 Rook polynomials . 105

11.9 Polynomial Inclusion–Exclusion . 106

11.10Fixed points of a random permutation . 107

12 Symmetric counting 108
12.1 Signed permutations, parity, and determinants . 108

12.2 Burnside’s Lemma . 110

12.3 Colorings and cycle structure . 110

12.4 Cycle index . 111

12.5 Pólya–Redfield counting . 112

12.6 Cube rotation group . 113

12.7 Action on vertices, faces, and edges . 113

12.8 Graphs up to isomorphism . 113

13 Basics of Graph Theory 114
13.1 Subgraphs and basic operations . 114

13.2 Complements, cliques and independent sets . 115

13.3 Bipartite and multipartite graphs . 116

13.4 Matrices associated to a graph . 116

13.5 Isomorphisms and automorphisms . 117

13.6 The Petersen graph . 117

13.7 Girth and circumference . 118

13.8 Kneser Graph . 119

13.9 The 𝑘-dimensional hypercube. 120

14 Vertex Degrees 122
14.1 Graphic Sequences . 123

14.2 Havel-Hakimi Theorem for graphic sequences . 125

14.3 Extremal problems . 127

Contents 4

14.4 Existence of large bipartite subgraph . 128

14.5 Turan’s Theorem . 129

15 Directed Graphs 133
15.1 Tournaments and Landau’s Theorem . 135

16 Connection and Decomposition 137
16.1 Walks and Paths . 137

16.2 Kőnig’s Theorem characterizing bipartite graphs 140

16.3 Cut vertices and edges . 141

16.4 Eulerian circuits . 142

17 Trees 146
17.1 Basic properties of trees . 146

17.2 Characterization of trees . 146

17.3 Distance in graphs . 149

18 Matchings in bipartite graphs 152
18.1 Hall’s Marriage Theorem . 153

18.2 Hakimi’s Theorem on orientations with given outdegrees 154

18.3 Birkhoff–von Neumann Theorem . 155

18.4 Defect formula in bipartite graphs . 157

18.5 Vertex covers and König–Egerváry . 157

18.6 Edge covers and Gallai’s Theorem . 159

19 Matchings in general graphs 161
19.1 Tutte’s 1-factor theorem . 161

19.2 Berge-Tutte formula . 168

19.3 Algorithmic aspects of matchings . 173

20 Connectivity 175
20.1 Vertex connectivity . 175

20.2 Edge connectivity . 179

20.3 Block decomposition . 184

21 Properties of 𝑘-connected graphs 186
21.1 Menger’s Theorem . 186

21.2 Network flows and Max-Flow Min-Cut Theorem 191

21.3 The Ford–Fulkerson algorithm . 192

21.4 Expansion and Fan Lemma . 194

21.5 Dirac’s theorem on 𝑘 vertices on common cycle . 195

21.6 Ford-Fulkerson CSDR . 197

Contents 5

21.7 Characterization of 2-connected graphs . 200

21.8 Whitney’s Ear Decomposition . 202

22 Hamiltonian Cycles 204
22.1 Necessary conditions . 204

22.2 Ore’s Lemma and Dirac’s Theorem on Hamiltonian graphs 205

22.3 Chvatal’s Theorem . 206

22.4 Erdős–Chvátal Theorem . 208

22.5 Erdős–Gallai Theorem . 209

23 Vertex Coloring 212
23.1 Basics of vertex coloring . 212

23.2 Greedy coloring . 214

23.3 Brooks Theorem . 216

23.4 Degeneracy and Szekeres-Wilf Theorem . 216

23.5 Gallai-Roy Theorem . 218

23.6 Mycielski’s Construction . 218

24 Color-critical graphs 222
24.1 Connectivity properties of color-critical graphs . 223

24.2 Hajós construction (building 𝑘-critical graphs of connectivity 2) 224

24.3 Proof of Brooks Theorem . 225

24.4 List coloring . 227

25 Edge Coloring 228
25.1 Basics of edge-coloring . 228

25.2 Shannon’s Theorem . 230

25.3 Vizing’s Theorem . 232

25.4 Konig’s Line Coloring Theorem . 234

26 Planar graphs 235
26.1 Basics of planar graphs . 235

26.2 Euler’s Formula . 236

26.3 Outerplanar graphs . 239

26.4 Maximal planar graphs . 240

26.5 Kuratowski and Wagner’s Theorems . 242

26.6 Four Color Theorem . 245

26.7 Five Color Theorem . 246

26.8 Discharging method . 248

27 Ramsey Theory 250
27.1 Graph Ramsey Theory . 250

Contents 6

27.2 Erdős lower bound for diagonal Ramsey numbers 252

27.3 General Ramsey’s Theorem . 253

27.4 Erdős–Szekeres on points in convex position . 255

27.5 Schur’s Theorem . 256

28 Probabilistic Method 258
28.1 Two basic tools: the first moment and alteration 258

28.2 Hypergraphs and Property B (2-colorability) . 258

28.3 Lovász Local Lemma (LLL) when union bound is too weak 260

28.4 Spencer’s LLL proof idea for 𝑅(𝑘, 𝑘) . 260

28.5 Erdős: large girth and large chromatic number . 261

28.6 Markov, Chebyshev, and the second moment method 262

28.7 Caro–Wei proof of Turán . 262

28.8 Random graphs 𝐺(𝑛, 𝑝): thresholds for isolated vertices and connectivity 264

29 Partially Ordered Sets 266
29.1 Structure of Posets . 266

29.2 Dilworth’s Theorem . 266

29.3 LYM Inequality and Sperner’s Theorem . 268

29.4 Erdős–Ko–Rado Theorem and Katona circle method 269

Basic Combinatorics 7

1 Basic Combinatorics

Theorem 1.1. Let 𝐴 be a finite set and suppose we can write

𝐴 = 𝐵1
¤∪ 𝐵2
¤∪ · · · ¤∪ 𝐵𝑘

as a disjoint union (a partition) of sets 𝐵1 , . . . , 𝐵𝑘 . Then

|𝐴| = |𝐵1| + |𝐵2| + · · · + |𝐵𝑘 |.

Theorem 1.2. Let 𝐵1 , . . . , 𝐵𝑘 be finite sets and consider their Cartesian product

𝐵1 × 𝐵2 × · · · × 𝐵𝑘 .

An element of this product is a 𝑘-tuple

(𝑎1 , . . . , 𝑎𝑘), 𝑎𝑖 ∈ 𝐵𝑖 .

If there are |𝐵𝑖 | choices for the 𝑖-th coordinate (for each 𝑖), then the total number of possible

𝑘-tuples is

|𝐵1 × · · · × 𝐵𝑘 | = |𝐵1| · |𝐵2| · · · |𝐵𝑘 |.

More generally, if 𝐴 ⊆ 𝐵1 × · · · × 𝐵𝑘 and for each 𝑖 the 𝑖-th coordinate can be chosen in 𝑐𝑖 ways

(possibly depending on earlier choices), then

|𝐴| = 𝑐1𝑐2 · · · 𝑐𝑘 .

Goal: Find a set 𝑋 that can be counted in two different ways⇒ we obtain an identity.

Equating the two expressions for |𝑋 | gives a (usually nontrivial) identity. Often, once we

guess the identity, it could also be proved by induction, but double counting gives a more

conceptual proof.

Example 1.1. We want to show

𝑛−1∑
𝑖=1

𝑖 =

(
𝑛

2

)
=
𝑛(𝑛 − 1)

2

.

Consider the set

𝑋 := {(𝑎, 𝑏) : 1 ≤ 𝑎 < 𝑏 ≤ 𝑛},
the set of all ordered pairs of distinct integers from {1, . . . , 𝑛}with 𝑎 < 𝑏.

First count. Any pair 1 ≤ 𝑎 < 𝑏 ≤ 𝑛 is determined by the unordered pair {𝑎, 𝑏}. There are

exactly

(
𝑛
2

)
unordered pairs of distinct elements of {1, . . . , 𝑛}, and each corresponds to exactly

one ordered pair (𝑎, 𝑏)with 𝑎 < 𝑏. Hence

|𝑋 | =
(
𝑛

2

)
.

Basic Combinatorics 8

Second count. For each 𝑖 = 1, . . . , 𝑛 − 1 define

𝐵𝑖+1 := {(𝑎, 𝑏) ∈ 𝑋 : 𝑏 = 𝑖 + 1},

the set of pairs whose second coordinate is 𝑖 + 1.

Fix 𝑖. Then 𝑏 = 𝑖 + 1 and 𝑎 must satisfy 1 ≤ 𝑎 < 𝑏 = 𝑖 + 1, so 𝑎 can be any of 1, 2, . . . , 𝑖. Thus

|𝐵𝑖+1| = 𝑖.

The sets 𝐵2 , 𝐵3 , . . . , 𝐵𝑛 form a partition of𝑋: every pair (𝑎, 𝑏) ∈ 𝑋 has a unique second coordinate

𝑏 ∈ {2, . . . , 𝑛}, so it lies in exactly one 𝐵𝑏 . Therefore, by the sum principle,

|𝑋 | =
𝑛−1∑
𝑖=1

|𝐵𝑖+1| =
𝑛−1∑
𝑖=1

𝑖.

Conclusion. We have counted the same set 𝑋 in two ways:

|𝑋 | =
(
𝑛

2

)
and |𝑋 | =

𝑛−1∑
𝑖=1

𝑖.

Hence

𝑛−1∑
𝑖=1

𝑖 =

(
𝑛

2

)
=
𝑛(𝑛 − 1)

2

.

Theorem 1.3 (Bĳection principle). If 𝑓 : 𝐴→ 𝐵 is a bĳection between finite sets, then

|𝐴| = |𝐵|.

Thus counting 𝐴 is equivalent to counting any set 𝐵 that is in bĳection with 𝐴.

Example 1.2. (
𝑛

𝑘

)
=

(
𝑛

𝑛 − 𝑘

)
.

Both sides count 𝑘-element subsets of an 𝑛-element set in different ways: choosing a 𝑘-subset is

equivalent to choosing its (𝑛 − 𝑘)-element complement.

Injections both ways imply bĳection. Let 𝐴, 𝐵 be finite sets. Suppose

𝑓 : 𝐴→ 𝐵, 𝑔 : 𝐵→ 𝐴

are both injective (one-to-one). Then necessarily |𝐴| = |𝐵|, and hence both 𝑓 and 𝑔 are bĳections.

So, for finite sets, injections in both directions already force a bĳection.

Theorem 1.4 (Pigeonhole principle). If more than 𝑘𝑛 objects are placed into 𝑛 boxes, then

at least one box contains at least 𝑘 + 1 objects. Equivalently: in any distribution of objects

into boxes,

max{occupancies of boxes} ≥ average occupancy,

with equality only when all boxes contain the same number of objects.

Basic Combinatorics 9

Theorem 1.5 (Polynomial principle). Let 𝑃(𝑥) and 𝑄(𝑥) be polynomials of degree at most 𝑑

over a field (e.g. R or C). If

𝑃(𝑥) = 𝑄(𝑥)
for at least 𝑑 + 1 distinct values of 𝑥, then in fact

𝑃(𝑥) ≡ 𝑄(𝑥)

as polynomials (all coefficients are equal).

Definition 1.1 (𝑘-word). Fix a finite set 𝐴 (the alphabet). A 𝑘-word over 𝐴 is an ordered list

of length 𝑘 of elements of 𝐴, i.e. an element of 𝐴𝑘 .

Definition 1.2 (Simple word). A simple 𝑘-word (or word with distinct letters) is a 𝑘-word in

which no letter repeats. Equivalently, it is an ordered 𝑘-tuple (𝑎1 , . . . , 𝑎𝑘)with 𝑎𝑖 ∈ 𝐴 and

𝑎𝑖 ≠ 𝑎 𝑗 for 𝑖 ≠ 𝑗.

Definition 1.3 (𝑘-set). A 𝑘-set from 𝐴 is a 𝑘-element subset of 𝐴 (order does not matter, no

repetition).

We use the standard shorthand

[𝑛] := {1, 2, . . . , 𝑛}.
Then (

[𝑛]
𝑘

)
denotes the collection of all 𝑘-subsets of [𝑛], and�� ([𝑛]

𝑘

) �� = (
𝑛

𝑘

)
is the number of 𝑘-element subsets of an 𝑛-element set.

We can classify size–𝑘 selections from an 𝑛-element set according to whether order matters and

whether repetitions are allowed:

no repetitions repetitions allowed

ordered simple 𝑘-words / 𝑘-permutations 𝑘-words

unordered subsets of size 𝑘 multisets of size 𝑘

A (possibly repeated) word of length 𝑘 from [𝑛] is just an ordered 𝑘-tuple

(𝑎1 , . . . , 𝑎𝑘) ∈ [𝑛]𝑘 .

By the product principle, each coordinate has 𝑛 choices independently, so

#{words of length 𝑘 from [𝑛]} = 𝑛𝑘 .

A simple 𝑘-word is a word of length 𝑘 with all entries distinct. To count them, choose the letters

one by one:

Basic Combinatorics 10

• position 1: 𝑛 choices;

• position 2: 𝑛 − 1 choices;

• . . .

• position 𝑘: 𝑛 − 𝑘 + 1 choices.

By the product principle,

#{simple 𝑘-words from [𝑛]} = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1) =
𝑘−1∏
𝑖=0

(𝑛 − 𝑖).

It is convenient to introduce shorthand notation.

Definition 1.4 (Falling and rising factorials). For integers 𝑘 ≥ 0 and 𝑛 we define the falling
factorial

𝑛𝑘 := 𝑛(𝑛 − 1)(𝑛 − 2) · · · (𝑛 − 𝑘 + 1) =
𝑘−1∏
𝑖=0

(𝑛 − 𝑖),

and the rising factorial

𝑛𝑘 := 𝑛(𝑛 + 1)(𝑛 + 2) · · · (𝑛 + 𝑘 − 1) =
𝑘−1∏
𝑖=0

(𝑛 + 𝑖).

When 𝑘 = 0 we use the empty product convention:

𝑛0 = 𝑛0 = 1.

With this notation,

#{simple 𝑘-words from [𝑛]} = 𝑛𝑘 .

Note that

𝑛! = 𝑛𝑛 , 𝑛𝑘 = (𝑛 + 𝑘 − 1)𝑘 .

Each simple 𝑘-word from [𝑛] corresponds to a 𝑘-element subset of [𝑛] together with an ordering

of its elements. Conversely, given any 𝑘-subset, there are exactly 𝑘! ways to order its elements.

Thus we can obtain the number of 𝑘-subsets of [𝑛] by either:

• forgetting order: many different simple words represent the same subset, or

• by the division principle: divide by 𝑘!.

Hence (
𝑛

𝑘

)
=

#{simple 𝑘-words from [𝑛]}
𝑘!

=
𝑛𝑘

𝑘!
.

Definition 1.5 (Binomial coefficient). For integers 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛, the binomial
coefficient (

𝑛

𝑘

)
denotes the number of ways to choose 𝑘 elements from an 𝑛-element set. Equivalently, it is

the number of 𝑘-subsets of [𝑛] = {1, . . . , 𝑛}.

Binomial coefficients 11

2 Binomial coefficients

Definition 2.1 (Binomial coefficient). For integers 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛, the binomial
coefficient (

𝑛

𝑘

)
denotes the number of ways to choose 𝑘 elements from an 𝑛-element set. Equivalently, it is

the number of 𝑘-subsets of [𝑛] = {1, . . . , 𝑛}.

2.1 Binomial coefficients

Theorem 2.1 (Binomial theorem). For every integer 𝑛 ≥ 0 and for all real (or complex)

numbers 𝑥, 𝑦,

(𝑥 + 𝑦)𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘𝑦𝑛−𝑘 .

Proof. Expand (𝑥 + 𝑦)𝑛 as

(𝑥 + 𝑦)(𝑥 + 𝑦) · · · (𝑥 + 𝑦)
(𝑛 factors). To get a monomial 𝑥𝑘𝑦𝑛−𝑘 in the expansion, we must choose 𝑥 from exactly 𝑘 of the

factors and 𝑦 from the remaining 𝑛 − 𝑘 factors.

The number of ways to choose which 𝑘 factors contribute 𝑥 is

(
𝑛
𝑘

)
(choose the set of positions

where we pick 𝑥). Thus the coefficient of 𝑥𝑘𝑦𝑛−𝑘 is

(
𝑛
𝑘

)
, which yields the stated identity. □

2.2 Multisets, Stars and Bars

Definition 2.2 (Multiset). A 𝑘-element multiset from [𝑛] is a multiset whose underlying set

is a subset of [𝑛] and whose total multiplicity (counting repetitions) is 𝑘. Equivalently, it is

a sequence of multiplicities

(𝑥1 , . . . , 𝑥𝑛) ∈ Z𝑛≥0

such that

𝑥1 + · · · + 𝑥𝑛 = 𝑘,

where 𝑥𝑖 is the multiplicity of 𝑖 in the multiset.

Thus we have a bĳection:

{𝑘-element multisets from [𝑛]} ←→ {(𝑥1 , . . . , 𝑥𝑛) ∈ Z𝑛≥0
: 𝑥1 + · · · + 𝑥𝑛 = 𝑘}.

Theorem 2.2 (Stars and Bars). The number of 𝑘-element multisets from [𝑛] equals(
𝑛 + 𝑘 − 1

𝑘

)
=

(
𝑛 + 𝑘 − 1

𝑛 − 1

)
.

Equivalently, the number of 𝑛-tuples (𝑥1 , . . . , 𝑥𝑛) of nonnegative integers with

∑𝑛
𝑖=1

𝑥𝑖 = 𝑘

is

(
𝑛+𝑘−1

𝑘

)
.

Binomial coefficients 12

Proof. Consider a solution (𝑥1 , . . . , 𝑥𝑛)with 𝑥𝑖 ≥ 0 and 𝑥1 + · · · + 𝑥𝑛 = 𝑘. Write a string of 𝑘 dots

(“stars”) and 𝑛 − 1 bars:

• • . . . •︸ ︷︷ ︸
𝑥1

�� • . . . •︸ ︷︷ ︸
𝑥2

�� . . . �� • . . . •︸ ︷︷ ︸
𝑥𝑛

.

The number of stars before the first bar is 𝑥1, between the first and second bar is 𝑥2, etc., and

after the last bar is 𝑥𝑛 .

Conversely, given any string of 𝑘 stars and 𝑛 − 1 bars, reading the numbers of stars in each

segment between consecutive bars recovers a unique 𝑛-tuple (𝑥1 , . . . , 𝑥𝑛) with sum 𝑘. Thus we

have a bĳection between such 𝑛-tuples and strings of length 𝑘 + 𝑛 − 1 with 𝑘 stars and 𝑛 − 1 bars.

The number of such strings is (
𝑘 + 𝑛 − 1

𝑘

)
=

(
𝑘 + 𝑛 − 1

𝑛 − 1

)
,

since we just choose the positions of the 𝑘 stars (or of the 𝑛−1 bars). This is the desired count. □

Definition 2.3 (Composition). A composition of a positive integer 𝑘 into 𝑛 parts is an ordered

𝑛-tuple (𝑦1 , . . . , 𝑦𝑛) of positive integers such that

𝑦1 + · · · + 𝑦𝑛 = 𝑘.

Corollary 2.3. The number of compositions of 𝑘 with 𝑛 parts is(
𝑘 − 1

𝑛 − 1

)
.

Proof. Write 𝑦𝑖 = 𝑥𝑖 + 1 where 𝑥𝑖 ≥ 0. Then

𝑦1 + · · · + 𝑦𝑛 = 𝑘 ⇐⇒ 𝑥1 + · · · + 𝑥𝑛 = 𝑘 − 𝑛.

So compositions of 𝑘with 𝑛 positive parts correspond bĳectively to solutions of 𝑥1+· · ·+𝑥𝑛 = 𝑘−𝑛
with 𝑥𝑖 ≥ 0. By the previous theorem, the number of such solutions is(

(𝑘 − 𝑛) + 𝑛 − 1

𝑛 − 1

)
=

(
𝑘 − 1

𝑛 − 1

)
.

□

We can view the following as correspondences:

• 𝑘-words over 𝑆←→ functions 𝑓 : [𝑘] → 𝑆;

• subsets of 𝑆←→ indicator functions 𝑓 : 𝑆→ {0, 1};
• multisets from 𝑆←→multiplicity functions 𝑓 : 𝑆→ N with a fixed total sum;

2.3 Binomial Identities

A double counting proof establishes an identity by counting the same finite set of objects in two

different ways.

Binomial coefficients 13

More precisely, suppose we want to prove an equality

LHS = RHS.

We look for a concrete finite set Ω such that:

• the left-hand side LHS counts |Ω| by one natural method (e.g. by choosing parameters,

splitting into cases, or summing over a statistic), and

• the right-hand side RHS counts |Ω| by a different method.

Since both expressions count the same quantity |Ω|, they must be equal.

Goal in practice: When we want to prove an identity (especially involving binomial

coefficients) using double counting, our job is to invent a set Ω so that each side becomes an

honest count of Ω under a different viewpoint.

Theorem 2.4 (Pascal). For 1 ≤ 𝑘 ≤ 𝑛,(
𝑛

𝑘

)
=

(
𝑛 − 1

𝑘

)
+

(
𝑛 − 1

𝑘 − 1

)
.

Proof. Interpret

(
𝑛
𝑘

)
as the number of 𝑘-subsets of [𝑛].

Partition all 𝑘-subsets of [𝑛] into two classes:

• those that do not contain 𝑛;

• those that do contain 𝑛.

The first class is in bĳection with 𝑘-subsets of [𝑛 − 1] (we just ignore 𝑛), so there are

(
𝑛−1

𝑘

)
of

them. The second class is in bĳection with (𝑘 − 1)-subsets of [𝑛 − 1]: if a 𝑘-subset contains 𝑛, the

remaining 𝑘 − 1 elements lie in [𝑛 − 1].
Hence the total number of 𝑘-subsets is(

𝑛 − 1

𝑘

)
+

(
𝑛 − 1

𝑘 − 1

)
,

which proves the formula. □

Theorem 2.5. For every 𝑛 ≥ 0,

𝑛∑
𝑘=0

(
𝑛

𝑘

)
= 2

𝑛 .

Proof. Right-hand side: 2
𝑛

is the number of subsets of [𝑛], since each of the 𝑛 elements may be

either in or out independently.

Left-hand side: group all subsets of [𝑛] by their size. For each 𝑘, there are

(
𝑛
𝑘

)
subsets of size 𝑘.

By the sum principle,

#{subsets of [𝑛]} =
𝑛∑
𝑘=0

(
𝑛

𝑘

)
.

Equating both counts gives the identity. □

Binomial coefficients 14

Fix integers 𝑛 ≥ 𝑟 ≥ 0.

Theorem 2.6 (Hockey-stick identity).

𝑛∑
𝑘=𝑟

(
𝑘

𝑟

)
=

(
𝑛 + 1

𝑟 + 1

)
.

Proof. Right-hand side:

(
𝑛+1

𝑟+1

)
counts (𝑟 + 1)-subsets of [𝑛 + 1] = {1, . . . , 𝑛 + 1}.

Left-hand side: partition all (𝑟 + 1)-subsets of [𝑛 + 1] by their largest element. For 𝑘 = 𝑟, . . . , 𝑛,

consider the group of subsets whose largest element is exactly 𝑘 + 1. Such a subset must contain

𝑘 + 1 and choose the remaining 𝑟 elements from {1, . . . , 𝑘}, so there are

(
𝑘
𝑟

)
of them.

Thus

#{(𝑟 + 1)-subsets of [𝑛 + 1]} =
𝑛∑
𝑘=𝑟

(
𝑘

𝑟

)
.

Equating the two expressions for this count gives the identity. □

Theorem 2.7. For each fixed 𝑑 ≥ 0, the functions 𝑓0 , 𝑓1 , . . . 𝑓𝑑 where 𝑓𝑖(𝑘) =
(
𝑘
𝑖

)
form a basis

of the real vector space 𝒫𝑑 of polynomials in 𝑘 of degree at most 𝑑.

Proof. First recall that 𝒫𝑑 has dimension 𝑑 + 1, since {1, 𝑘, 𝑘2 , . . . , 𝑘𝑑} are linearly independent.

Evaluate the binomial polynomials at the integer points 0, 1, . . . , 𝑑. We use that(
𝑚

𝑗

)
=

{
0, 𝑚 < 𝑗 ,

1, 𝑚 = 𝑗.

Form the (𝑑 + 1) × (𝑑 + 1)matrix 𝐴 = (𝑎𝑚𝑗)with 𝑎𝑚𝑗 =
(
𝑚
𝑗

)
, where 𝑚, 𝑗 = 0, 1, . . . , 𝑑. Then 𝐴 is

lower–triangular with all diagonal entries 𝑎 𝑗 𝑗 =
(𝑗
𝑗

)
= 1, so det𝐴 = 1 ≠ 0. Hence the functions(

𝑘
0

)
, . . . ,

(
𝑘
𝑑

)
are linearly independent.

Since we have 𝑑 + 1 linearly independent vectors in a vector space of dimension 𝑑 + 1, they form

a basis of 𝒫𝑑. □

Example 2.1. We use the above theorem to prove that

𝑛∑
𝑘=1

𝑘2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

.

Remark 2.1. This can be proved easily by induction if we have a conjecture for what the

expression would be.

Because {
(
𝑘
0

)
,
(
𝑘
1

)
,
(
𝑘
2

)
} is a basis of 𝒫2, we can write

𝑘2 = 𝑎0

(
𝑘

0

)
+ 𝑎1

(
𝑘

1

)
+ 𝑎2

(
𝑘

2

)
.

Comparing coefficients (or solving at 𝑘 = 0, 1, 2) gives 𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 2, so

𝑘2 = 2

(
𝑘

2

)
+

(
𝑘

1

)
.

Binomial coefficients 15

Summing this identity over 𝑘 = 1, . . . , 𝑛 and using

∑
𝑘

(
𝑘
1

)
=

(
𝑛+1

2

)
and

∑
𝑘

(
𝑘
2

)
=

(
𝑛+1

3

)
via

hockey-stick identity yields a combinatorial proof of the well-known formula

𝑛∑
𝑘=1

𝑘2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

.

This can be generalized to find expressions of the form

∑𝑛
𝑘=1

𝑃(𝑘) for some polynomial𝑃(𝑘)

Theorem 2.8 (Vandermonde, 1772). For nonnegative integers 𝑚, 𝑛, 𝑟,∑
𝑘

(
𝑚

𝑘

) (
𝑛

𝑟 − 𝑘

)
=

(
𝑚 + 𝑛
𝑟

)
,

where the sum is over all integers 𝑘 (terms with impossible parameters are interpreted as

0). In particular, for 𝑚 = 𝑛 and 𝑟 = 𝑛,

𝑛∑
𝑘=0

(
𝑛

𝑘

)
2

=

(
2𝑛

𝑛

)
.

Proof. Right-hand side:

(
𝑚+𝑛
𝑟

)
is the number of 𝑟-subsets of the set [𝑚 + 𝑛] = {1, . . . , 𝑚 + 𝑛}.

Interpret [𝑚 + 𝑛] as the disjoint union of two blocks

𝐴 = {1, . . . , 𝑚}, 𝐵 = {𝑚 + 1, . . . , 𝑚 + 𝑛}.

Any 𝑟-subset 𝑆 of 𝐴 ∪ 𝐵 has some number 𝑘 of elements from 𝐴 and 𝑟 − 𝑘 from 𝐵, where

0 ≤ 𝑘 ≤ 𝑟.
For a fixed 𝑘, the number of such subsets 𝑆 with |𝑆 ∩ 𝐴| = 𝑘 is(

𝑚

𝑘

) (
𝑛

𝑟 − 𝑘

)
(choose 𝑘 elements from 𝐴 and 𝑟 − 𝑘 from 𝐵). Summing over all 𝑘 gives the left-hand side, which

must equal the total number of 𝑟-subsets, namely

(
𝑚+𝑛
𝑟

)
. □

Definition 2.4 (Extended binomial coefficient). Let 𝑢 ∈ R (or C) and 𝑘 ∈ N. Define(
𝑢

𝑘

)
:=

1

𝑘!
𝑢(𝑢 − 1) · · · (𝑢 − 𝑘 + 1)

where the product is empty and equal to 1 when 𝑘 = 0. If 𝑘 is not a nonnegative integer, we

set

(
𝑢
𝑘

)
= 0.

Binomial coefficients 16

Example 2.2. For 𝑢 ∈ R and 𝑘 ≥ 0,(
−𝑢
𝑘

)
=
(−𝑢)(−𝑢 − 1) · · · (−𝑢 − 𝑘 + 1)

𝑘!
= (−1)𝑘

(
𝑢 + 𝑘 − 1

𝑘

)
.

Example 2.3. Take 𝑢 = 3 and 𝑘 = 5.(
−3

5

)
=
(−3)(−4)(−5)(−6)(−7)

5!

.

There are 5 negative factors in the numerator, so the numerator has sign (−1)5 = −1, and

(−3)(−4)(−5)(−6)(−7) = (−1)5 (3 · 4 · 5 · 6 · 7).
Thus (

−3

5

)
= (−1)5 3 · 4 · 5 · 6 · 7

5!

= (−1)5
(
7

5

)
= (−1)5

(
3 + 5 − 1

5

)
,

Theorem 2.9 (Newton’s generalized binomial theorem). Let 𝑢 ∈ R and 𝑥 ∈ R with |𝑥| < 1.

Then

(1 + 𝑥)𝑢 =

∞∑
𝑘=0

(
𝑢

𝑘

)
𝑥𝑘 .

For integer 𝑢 = 𝑛 ≥ 0 this reduces to the ordinary binomial theorem, since

(
𝑛
𝑘

)
= 0 for 𝑘 > 𝑛 and

the sum is finite.

Proof. Consider the function

𝑓 (𝑥) := (1 + 𝑥)𝑢

on (−1, 1). We first compute its derivatives. By the chain rule,

𝑓 ′(𝑥) = 𝑢(1 + 𝑥)𝑢−1.

Differentiating repeatedly and using induction on 𝑘 gives

𝑓 (𝑘)(𝑥) = 𝑢(𝑢 − 1) · · · (𝑢 − 𝑘 + 1) (1 + 𝑥)𝑢−𝑘 for all 𝑘 ≥ 0.

(For 𝑘 = 0 this is the definition of 𝑓 ; assuming the formula for 𝑘, differentiating once more yields

the formula for 𝑘 + 1.)

In particular, evaluating at 𝑥 = 0 we obtain

𝑓 (𝑘)(0) = 𝑢(𝑢 − 1) · · · (𝑢 − 𝑘 + 1) = 𝑘!

(
𝑢

𝑘

)
.

Now recall the Taylor expansion of a 𝐶∞ function around 0: if 𝑓 is analytic on (−1, 1), then for

|𝑥| < 1,

𝑓 (𝑥) =
∞∑
𝑘=0

𝑓 (𝑘)(0)
𝑘!

𝑥𝑘 ,

and this series converges to 𝑓 (𝑥). Our function 𝑓 (𝑥) = (1+ 𝑥)𝑢 is analytic on (−1, 1). Substituting

𝑓 (𝑘)(0) = 𝑘!
(
𝑢
𝑘

)
into the Taylor series gives

(1 + 𝑥)𝑢 =

∞∑
𝑘=0

𝑘!
(
𝑢
𝑘

)
𝑘!

𝑥𝑘 =

∞∑
𝑘=0

(
𝑢

𝑘

)
𝑥𝑘 ,

for all |𝑥| < 1, as claimed. □

Combinatorial arguments 17

3 Combinatorial arguments

3.1 Delannoy numbers

Definition 3.1. For integers 𝑚, 𝑛 ≥ 0, the Delannoy number 𝑑𝑚,𝑛 is the number of lattice

paths from (0, 0) to (𝑚, 𝑛) using only the three types of steps

(1, 0), (0, 1), (1, 1).

Example 3.1. Compute 𝑑2,2.

• Paths using only (1, 0) and (0, 1): we need 2 horizontal and 2 vertical steps, in any order:(
4

2

)
= 6.

• Paths using two diagonal steps (1, 1): the only possibility is (1, 1), (1, 1), so this contributes 1.

• Paths using exactly one diagonal step: then we need 1 horizontal step and 1 vertical step in

addition; there are 3! permutations of the multiset {(1, 1), (1, 0), (0, 1)}, so this contributes 6.

Thus

𝑑2,2 = 6 + 1 + 6 = 13.

EENN ENEN ENNE NEEN NENE NNEE DEN

DNE EDN END NDE NED DD

Theorem 3.1. For all 𝑚, 𝑛 ≥ 0,

𝑑𝑚,𝑛 =

∑
𝑗

(
𝑚

𝑗

) (
𝑛 + 𝑚 − 𝑗

𝑚

)
=

∑
𝑘

(
𝑚

𝑘

) (
𝑛 + 𝑘
𝑚

)
,

where the sums range over integers for which the binomial coefficients are defined, and

𝑘 = 𝑚 − 𝑗.

Proof. Partition all paths from (0, 0) to (𝑚, 𝑛) according to the number 𝑗 of diagonal steps (1, 1)
they use.

Fix 𝑗. Then:

• The path uses 𝑚 − 𝑗 horizontal steps (1, 0) and 𝑛 − 𝑗 vertical steps (0, 1), since the total

𝑥–increment is 𝑚 and the total 𝑦–increment is 𝑛.

• The total number of steps is

(𝑚 − 𝑗) + (𝑛 − 𝑗) + 𝑗 = 𝑚 + 𝑛 − 𝑗.

Combinatorial arguments 18

Among these steps, exactly 𝑚 of them increase the 𝑥–coordinate: the (𝑚 − 𝑗) horizontal steps

and the 𝑗 diagonal steps. Choosing the positions of these 𝑚 steps among the 𝑚 + 𝑛 − 𝑗 total

steps gives (
𝑚 + 𝑛 − 𝑗

𝑚

)
possibilities.

• Among those 𝑚 𝑥–increasing steps, we must decide which 𝑗 are diagonal and which 𝑚 − 𝑗
are horizontal. This can be done in (

𝑚

𝑗

)
ways.

Therefore, for fixed 𝑗, the number of paths with exactly 𝑗 diagonal steps is(
𝑚

𝑗

) (
𝑚 + 𝑛 − 𝑗

𝑚

)
.

Summing over all admissible 𝑗 gives

𝑑𝑚,𝑛 =

∑
𝑗

(
𝑚

𝑗

) (
𝑚 + 𝑛 − 𝑗

𝑚

)
.

Finally, substituting 𝑘 = 𝑚 − 𝑗 yields the equivalent form

𝑑𝑚,𝑛 =

∑
𝑘

(
𝑚

𝑘

) (
𝑛 + 𝑘
𝑚

)
.

□

3.2 Lattice balls in Z𝑛

Definition 3.2 (Lattice ball). Fix integers 𝑛 ≥ 1 and 𝑚 ≥ 0. The lattice ball of radius 𝑚 in Z𝑛

is

𝐵
(𝑛)
𝑚 :=

{
𝑥 = (𝑥1 , . . . , 𝑥𝑛) ∈ Z𝑛 : |𝑥1| + · · · + |𝑥𝑛 | ≤ 𝑚

}
.

Equivalently, 𝐵
(𝑛)
𝑚 is the set of lattice points that can be reached from 0 = (0, . . . , 0) in at

most 𝑚 steps of the form ±𝑒𝑖 (where 𝑒𝑖 are the standard basis vectors).

Example 3.2. In Z2
with radius 𝑚 = 2, the ball consists of the 13 points

(0, 0), (±1, 0), (0,±1), (±2, 0), (0,±2), (±1,±1).

Theorem 3.2. For integers 𝑛 ≥ 1 and 𝑚 ≥ 0, the size of the lattice ball is

|𝐵(𝑛)𝑚 | =
min{𝑛,𝑚}∑

𝑘=0

(
𝑛

𝑘

) (
𝑚

𝑘

)
2
𝑘 .

Combinatorial arguments 19

Proof. Counting lattice points in 𝐵
(𝑛)
𝑚 is the same as counting integer solutions of

|𝑥1| + · · · + |𝑥𝑛 | ≤ 𝑚.

We group solutions according to the number 𝑘 of nonzero coordinates.

Step 1: choose which coordinates are nonzero. If a solution has exactly 𝑘 nonzero coordinates,

there are (
𝑛

𝑘

)
ways to choose their positions.

Step 2: choose signs. Once the positions of the 𝑘 nonzero coordinates are fixed, each of those

coordinates can be positive or negative independently, giving

2
𝑘

choices of signs.

Thus it remains to count, for fixed 𝑘, the number of solutions with positive values in those 𝑘

chosen coordinates.

Step 3: positive solutions. Let 𝑦1 , . . . , 𝑦𝑘 be the absolute values of the 𝑘 nonzero coordinates;

these are integers with 𝑦𝑖 > 0 and

𝑦1 + · · · + 𝑦𝑘 ≤ 𝑚.
The number of such 𝑘-tuples is the same as the number of nonnegative integer solutions to a

single equality, via a “slack variable” trick.

First shift 𝑦𝑖 = 𝑥𝑖 + 1, where 𝑥𝑖 ≥ 0. Then

𝑦1 + · · · + 𝑦𝑘 ≤ 𝑚 ⇐⇒ (𝑥1 + 1) + · · · + (𝑥𝑘 + 1) ≤ 𝑚 ⇐⇒ 𝑥1 + · · · + 𝑥𝑘 ≤ 𝑚 − 𝑘.

Introduce one extra nonnegative variable 𝑥𝑘+1 and write

𝑥1 + · · · + 𝑥𝑘 + 𝑥𝑘+1 = 𝑚 − 𝑘, 𝑥𝑖 ≥ 0.

By stars and bars, the number of nonnegative integer solutions is(
(𝑚 − 𝑘) + (𝑘 + 1) − 1

𝑘

)
=

(
𝑚

𝑘

)
.

Hence, for fixed 𝑘, there are

(
𝑚
𝑘

)
ways to choose the absolute values of the 𝑘 nonzero coordinates.

Step 4: combine the choices. For a fixed 𝑘, we have(
𝑛

𝑘

)
· 2𝑘 ·

(
𝑚

𝑘

)
solutions with exactly 𝑘 nonzero coordinates. Summing over all admissible 𝑘 (i.e. 0 ≤ 𝑘 ≤
min{𝑛, 𝑚}) gives

|𝐵(𝑛)𝑚 | =
min{𝑛,𝑚}∑

𝑘=0

(
𝑛

𝑘

) (
𝑚

𝑘

)
2
𝑘 ,

as claimed. □

Combinatorial arguments 20

3.3 Delannoy identity

Theorem 3.3 (Delannoy identity). For all 𝑚, 𝑛 ∈ N we have∑
𝑘

(
𝑚

𝑘

) (
𝑛 + 𝑘
𝑚

)
=

∑
𝑘

(
𝑛

𝑘

) (
𝑚

𝑘

)
2
𝑘 .

Proof. Recall our two combinatorial interpretations:

• Let 𝐴 be the set of Delannoy paths from (0, 0) to (𝑚, 𝑛). |𝐴| = 𝑑𝑚,𝑛 =
∑
𝑘

(
𝑚
𝑘

) (
𝑛+𝑘
𝑚

)
.

• Let 𝐵 be the lattice ball of radius 𝑚 in Z𝑛 , so |𝐵| = ∑
𝑘

(
𝑛
𝑘

) (
𝑚
𝑘

)
2
𝑘
.

We will demonstrate a bĳection 𝐴↔ 𝐵 between Delannoy paths and lattice balls.

Map 𝜙 : 𝐴→ 𝐵 (Delannoy path→ lattice ball point). Take a path 𝑃 ∈ 𝐴. For each 𝑖 ∈ {1, . . . , 𝑛}
look at the portion of 𝑃 between the horizontal lines 𝑦 = 𝑖 − 1 and 𝑦 = 𝑖.

Because all steps have vertical component 0 or 1, the path crosses from 𝑦 = 𝑖 − 1 to 𝑦 = 𝑖 exactly

once. Before that crossing it may use some horizontal steps 𝐻 at height 𝑦 = 𝑖 − 1; the crossing

itself is precisely one step, either 𝑉 or 𝐷. Thus the segment from height 𝑖 − 1 to height 𝑖 has the

form

𝐻 𝐻 . . . 𝐻 𝑈,

where𝑈 is either 𝑉 or 𝐷.

Let ℎ𝑖 be the number of those 𝐻’s at height 𝑦 = 𝑖 − 1. Define

𝑏𝑖 :=


ℎ𝑖 , if 𝑆𝑖 = 𝑉,

−(ℎ𝑖 + 1), if 𝑆𝑖 = 𝐷.

Intuitively |𝑏𝑖 | is the number of steps that increase the 𝑥–coordinate between 𝑦 = 𝑖 − 1 and 𝑦 = 𝑖

(the 𝐻’s and possibly one 𝐷), and the sign records whether the step that actually raises the

𝑦–coordinate is vertical (+) or diagonal (−).

Doing this for each 𝑖 = 1, . . . , 𝑛 gives a vector 𝑏 = (𝑏1 , . . . , 𝑏𝑛) ∈ Z𝑛 .

The total increase in the 𝑥–coordinate while the path rises from 𝑦 = 0 to 𝑦 = 𝑛 is therefore

𝑛∑
𝑖=1

|𝑏𝑖 |.

After the path reaches height 𝑦 = 𝑛, it may take additional horizontal steps 𝐻 at height 𝑛;

suppose there are 𝑟 such steps. Then the endpoint (𝑚, 𝑛) satisfies

𝑚 =

(𝑛∑
𝑖=1

|𝑏𝑖 |
)
+ 𝑟, 𝑟 ≥ 0,

so

∑
𝑖 |𝑏𝑖 | ≤ 𝑚. Hence 𝑏 ∈ 𝐵, and we set 𝜙(𝑃) = 𝑏.

Map 𝜓 : 𝐵→ 𝐴 (Lattice ball point→ Delannoy path). Now take 𝑏 = (𝑏1 , . . . , 𝑏𝑛) ∈ 𝐵 with

𝑛∑
𝑖=1

|𝑏𝑖 | ≤ 𝑚.

Combinatorial arguments 21

We construct a path 𝜓(𝑏) from (0, 0) to (𝑚, 𝑛).
Start at (0, 0) and for 𝑖 = 1, . . . , 𝑛 repeat the following step.

Assume we currently are at (𝑥, 𝑖 − 1).

• If 𝑏𝑖 ≥ 0: take 𝑏𝑖 horizontal steps 𝐻 at height 𝑦 = 𝑖 − 1, then one vertical step 𝑉 to reach

(𝑥 + 𝑏𝑖 , 𝑖).
• If 𝑏𝑖 < 0: let 𝑡 := |𝑏𝑖 | = −𝑏𝑖 > 0. Take 𝑡 − 1 horizontal steps 𝐻 at height 𝑦 = 𝑖 − 1, then one

diagonal step 𝐷 to reach (𝑥 + 𝑡 , 𝑖).

In either case, between heights 𝑖 − 1 and 𝑖 we use exactly |𝑏𝑖 | steps that increase the 𝑥–coordinate

(all the 𝐻’s plus possibly one 𝐷), so after finishing the 𝑛th layer we are at(𝑛∑
𝑖=1

|𝑏𝑖 |, 𝑛
)
.

Finally, add

𝑚 −
𝑛∑
𝑖=1

|𝑏𝑖 | ≥ 0

additional horizontal steps 𝐻 at height 𝑦 = 𝑛. The resulting path ends at (𝑚, 𝑛) and uses only

𝐻,𝑉, 𝐷 steps, so 𝜓(𝑏) ∈ 𝐴. □

Combinatorial arguments 22

3.4 Cayley’s Formula

Definition 3.3 (Graph). Let 𝑉 be a finite set. A (simple) graph on 𝑉 is a pair 𝐺 = (𝑉, 𝐸)
with

𝐸 ⊆
(
𝑉

2

)
(the edges are unordered pairs of distinct vertices).

On the fixed vertex set 𝑉 = [𝑛] = {1, 2, . . . , 𝑛}, each of the

(
𝑛
2

)
possible edges is either present or

absent, independently. Hence

#{graphs on [𝑛]} = 2
(𝑛

2
).

Definition 3.4 (Tree). A tree is a connected, acyclic graph.

How many trees on [𝑛]?

• Any 𝑛-vertex tree has exactly 𝑛 − 1 edges. Therefore the number of labelled trees on [𝑛] is at

most the number of (𝑛 − 1)-edge subsets of the edge set of 𝐾𝑛 :

#{trees on [𝑛]} ≤
((

𝑛
2

)
𝑛 − 1

)
.

Using the crude bounds (
𝑛

2

)
≤ 𝑛

2

2

,

(
𝑎

𝑏

)
≤

(
𝑒𝑎

𝑏

)𝑏
(𝑎 ≥ 𝑏),

we obtain

#{trees on [𝑛]} ≤
(
𝑛2

2

𝑛

)
≤

(
𝑒 (𝑛2/2)

𝑛

)𝑛
=

(
𝑒

2

)𝑛
𝑛𝑛 .

So up to the multiplicative factor

(
𝑒
2

)𝑛
, the upper bound behaves like 𝑛𝑛 .

• Every path on [𝑛] is a tree. A labelled path on [𝑛] is determined by an ordering of the vertices

up to reversal, so the number of labelled paths is

𝑛!

2

.

Thus

#{trees on [𝑛]} ≥ 𝑛!

2

≈
(
𝑛

𝑒

)𝑛
(by Stirling’s formula).

So the true number of labelled 𝑛-vertex trees lies between about (𝑛/𝑒)𝑛 and

(
𝑒
2

)𝑛
𝑛𝑛 . Cayley’s

formula (1889) gives the exact value:

#{labelled trees on [𝑛]} = 𝑛 𝑛−2.

Combinatorial arguments 23

Definition 3.5 (Functional Digraph). Given a function 𝑓 : [𝑛] → [𝑛], define its functional
digraph 𝐷 𝑓 by

𝑉(𝐷 𝑓) = [𝑛], 𝐸(𝐷 𝑓) = { 𝑥 → 𝑓 (𝑥) : 𝑥 ∈ [𝑛] }.
Every vertex has out-degree exactly 1.

Each weakly connected component of 𝐷 𝑓 contains exactly one directed cycle, and every other

vertex in that component lies on a (directed) tree whose edges are oriented towards that cycle.

Theorem 3.4 (Cayley). The number of labelled trees on the vertex set [𝑛] is 𝑛 𝑛−2
.

We will follow Joyal’s “functional digraph” proof.

Strategy (The Roadmap): We are establishing a bĳection between the set of functions 𝑓 : [𝑛] →
[𝑛] subject to the constraints 𝑓 (1) = 1 and 𝑓 (𝑛) = 𝑛 (a set of size 𝑛𝑛−2

) and the set of all labelled
trees on [𝑛] (which we want to prove has size 𝑛𝑛−2

).

The transformation proceeds in three phases:

1. Digraph Interpretation: We view 𝑓 as a directed graph. Since 𝑓 (1) = 1 and 𝑓 (𝑛) = 𝑛,

the vertices 1 and 𝑛 are "fixed points" (loops). Any other cycles in the graph are floating

components.

2. Cycle Sorting: We identify all cycles in the graph (including the loops at 1 and 𝑛). We define

a canonical ordering for these cycles based on their smallest elements.

3. Building the Spine: We "cut" these cycles and stitch them together in that specific sorted

order to form a unique simple path from 1 to 𝑛. This path becomes the "spine" of the tree,

and all non-cycle vertices hang off this spine as subtrees, resulting in a valid tree structure.

Proof. There are 𝑛𝑛 functions 𝑓 : [𝑛] → [𝑛]. We want 𝑛𝑛−2
trees, so we will fix two values.

Consider all functions 𝑓 : [𝑛] → [𝑛]with 𝑓 (1) = 1, 𝑓 (𝑛) = 𝑛.. We will construct a bĳection to

all labelled trees on [𝑛]. Let 𝑓 be such a function and consider its functional digraph 𝐷 𝑓 .

Step 1: Each component of 𝐷 𝑓 has a unique directed cycle. List these cycles: 𝐶1 , . . . , 𝐶𝑟

Step 2: For each cycle 𝐶𝑖 , choose a cyclic order

𝐶𝑖 = (𝑣𝑖 ,1 → 𝑣𝑖 ,2 → · · · → 𝑣𝑖 ,ℓ𝑖 → 𝑣𝑖 ,1)

and let 𝑚𝑖 be the smallest label on that cycle. Rotate the notation so that 𝑚𝑖 is written last:

𝐶𝑖 = (𝑐𝑖 ,1 → 𝑐𝑖 ,2 → · · · → 𝑐𝑖 ,ℓ𝑖−1 → 𝑚𝑖 → 𝑐𝑖 ,1).

Thus the edge leaving 𝑚𝑖 is 𝑚𝑖 → 𝑐𝑖 ,1. Because 𝑓 (1) = 1 and 𝑓 (𝑛) = 𝑛, the vertices 1 and 𝑛 are

1-cycles, so there are cycles {1} and {𝑛}.

Step 3: Now order the cycles so that 𝑚1 < 𝑚2 < · · · < 𝑚𝑟 , i.e. the smallest label is increasing. In

this order we necessarily have 𝑚1 = 1 and 𝑚𝑟 = 𝑛.

Step 4: Forget the orientations of the edges and turn 𝐷 𝑓 into an undirected graph by ignoring

arrow directions. This has 𝑛 vertices and 𝑛 edges. We now modify the edges lying on the

cycles, keeping all tree-edges (the edges not belonging to any cycle) as they are. For each 𝑖 with

1 ≤ 𝑖 ≤ 𝑟 − 1:

Combinatorial arguments 24

• delete the edge 𝑚𝑖—𝑐𝑖 ,1 from 𝐶𝑖 ;

• add a new edge 𝑚𝑖—𝑐𝑖+1,1 connecting cycle 𝐶𝑖 to the next cycle 𝐶𝑖+1.

For the last cycle 𝐶𝑟 we simply delete the edge 𝑚𝑟𝑐𝑟,1 (which is the loop from 𝑛 to 𝑛).

In the above procedure, for each 𝑖 = 1, . . . , 𝑟 − 1 we remove one edge and add one edge, and

for 𝑖 = 𝑟 we remove one edge and add none. Thus the total number of edges decreases by

exactly 1, so the graph has 𝑛 − 1 edges. Each component of 𝐷 𝑓 originally contained one cycle;

by inserting edges 𝑚𝑖—𝑐𝑖+1,1 we link the cycles (and hence their attached trees) into a single

connected component.

Combinatorial arguments 25

How to reverse reverse the construction:

• Given a tree 𝑇 on [𝑛], there is a unique simple path from 1 to 𝑛. Write it as

𝑃 : 𝑣0 = 1, 𝑣1 , . . . , 𝑣ℓ = 𝑛.

Call 𝑃 the spine of 𝑇. Every vertex 𝑥 ∉ 𝑉(𝑃) lies in a unique subtree attached to some vertex

of 𝑃. This path is where all the cycle minimum labels will lie.

• For 0 < 𝑖 < ℓ call 𝑣𝑖 a local minimum on 𝑃 if 𝑣𝑖 < 𝑣𝑖−1 and 𝑣𝑖 < 𝑣𝑖+1 We also declare the

endpoints 𝑣0 = 1 and 𝑣ℓ = 𝑛 to be local minima. List all local minima along 𝑃 in order:

𝑚1 , 𝑚2 , . . . , 𝑚𝑟 , where 𝑚1 = 1 and 𝑚𝑟 = 𝑛.

In the forward construction we start from 𝐷 𝑓 , whose components each consist of one directed

cycle with rooted trees feeding into it. When we perform the “cycle surgery” (cut the edge

leaving the minimum of each cycle and connect these minima in increasing order), only edges

belonging to cycles are affected. All vertices that did not lie on cycles keep the same unique

neighbour that lies closer to the cycle and therefore cannot lie on the path between 1 and 𝑛,

because both 1 and 𝑛 are cycle vertices. Hence the spine 𝑃 is exactly the union of all cycle-vertices.

On each original cycle 𝐶, the chosen minimum𝑚 is the unique vertex whose label is smaller than

the labels of its two neighbours on the cycle. After cutting at 𝑚 and reconnecting the cycles in

increasing order of their minima, the local picture around 𝑚 on the spine is unchanged: its two

neighbours on 𝑃 are still vertices belonging either to its own cycle or to a later cycle, and all of

those vertices have label > 𝑚. Conversely, no other vertex on 𝑃 can have both neighbours larger,

since within each cycle there is only one such vertex (the minimum), and the spine traverses the

vertices of each cycle in a contiguous block. Thus the local minima on 𝑃 are precisely the cycle

minima used in the forward map.

For 1 ≤ 𝑗 ≤ 𝑟 − 1, define the 𝑗-th block of 𝑃 by

𝐵 𝑗 := (𝑣𝑖(𝑗) , 𝑣𝑖(𝑗)+1
, . . . , 𝑣𝑖(𝑗+1)),

and set 𝐵𝑟 := {𝑚𝑟}. So 𝐵1 , . . . , 𝐵𝑟 are pairwise disjoint and their union is 𝑉(𝑃). If 𝑇 came from

𝑓 , then:

• the vertices in 𝐵 𝑗 are exactly those of the 𝑗-th directed cycle of 𝐷 𝑓 ;

• 𝑚 𝑗 is the minimum of that cycle.

We now define a directed cycle on each block.

• For 1 ≤ 𝑗 ≤ 𝑟 − 1: write 𝐵 𝑗 as 𝐵 𝑗 = (𝑥0 , 𝑥1 , . . . , 𝑥𝑡) with 𝑥0 = 𝑚 𝑗 , 𝑥𝑡 = 𝑚 𝑗+1. On this set we

put the edges 𝑥1 → 𝑥2 → · · · → 𝑥𝑡 → 𝑥0 → 𝑥1, obtaining a directed cycle 𝐶 𝑗 whose vertices

are the elements of 𝐵 𝑗 and whose minimum is 𝑥0 = 𝑚𝑗 .

• For the last block 𝐵𝑟 = {𝑚𝑟}we put the trivial cycle 𝑚𝑟 → 𝑚𝑟 , i.e. we set 𝑓 (𝑚𝑟) = 𝑚𝑟 .

Note that each vertex on the spine now has out-degree 1 coming from its cycle.

Consider a vertex 𝑢 ∉ 𝑉(𝑃). In 𝑇 there is a unique simple path from 𝑢 to the spine 𝑃; let 𝑝(𝑢) be

the neighbour of 𝑢 on this path (the “parent” of 𝑢 with respect to 𝑃). We now define a directed

edge

𝑢 → 𝑝(𝑢),
for every such vertex 𝑢. This produces directed trees with all edges oriented towards the spine.

Now interpret this as a functional digraph. □

Combinatorial arguments 26

3.5 Multinomial coefficients

Proposition 3.5 (Multinomial coefficient). Let 𝑘1 , . . . , 𝑘𝑟 be nonnegative integers with

𝑘1 + · · · + 𝑘𝑟 = 𝑚.

The number of words of length 𝑚 over an alphabet {1, . . . , 𝑟} in which the letter 𝑖 appears

exactly 𝑘𝑖 times is

𝑚!

𝑘1! · · · 𝑘𝑟 !
.

Proof. Consider a multiset with 𝑘𝑖 copies of the symbol 𝑖 for each 𝑖 = 1, . . . , 𝑟, so in total

𝑚 = 𝑘1 + · · · + 𝑘𝑟 symbols.

Every word of length 𝑚 in which symbol 𝑖 appears exactly 𝑘𝑖 times is just a permutation of this

multiset, and conversely every permutation of the multiset gives such a word.

If all 𝑚 symbols were distinct, there would be 𝑚! permutations. But permuting the 𝑘𝑖 identical

copies of symbol 𝑖 does not change the word, so we divide by 𝑘𝑖! for each 𝑖. Hence the number

of distinct words is

𝑚!

𝑘1!𝑘2! · · · 𝑘𝑟 !
.

□

Corollary 3.6. Let 𝑇 be a labelled tree on [𝑛] = {1, . . . , 𝑛} and let 𝑑𝑖 be the degree of vertex

𝑖 in 𝑇. Assume 𝑑1 , . . . , 𝑑𝑛 are positive integers with

𝑛∑
𝑖=1

𝑑𝑖 = 2(𝑛 − 1)

(so they are a possible degree sequence for a tree on [𝑛]). Then the number of labelled trees

on [𝑛]with deg𝑇(𝑖) = 𝑑𝑖 for every 𝑖 is

(𝑛 − 2)!∏𝑛
𝑖=1
(𝑑𝑖 − 1)! .

Proof. For any tree 𝑇 on [𝑛]we have

∑𝑛
𝑖=1

𝑑𝑖 = 2|𝐸(𝑇)| = 2(𝑛 − 1) by the handshake lemma.

Recall the bĳection between labelled trees on [𝑛] and words of length 𝑛 − 2 over the alphabet

[𝑛]. Under this bĳection, the number of occurrences of the letter 𝑖 in the word equals 𝑑𝑖 − 1,

where 𝑑𝑖 is the degree of vertex 𝑖 in the tree.

Hence, if we want all trees with degree sequence (𝑑1 , . . . , 𝑑𝑛), we must count all words of length

𝑛 − 2 in which letter 𝑖 appears exactly 𝑑𝑖 − 1 times. Since

𝑛∑
𝑖=1

(𝑑𝑖 − 1) =
(𝑛∑
𝑖=1

𝑑𝑖

)
− 𝑛 = 2(𝑛 − 1) − 𝑛 = 𝑛 − 2,

the multinomial coefficient applies with

𝑚 = 𝑛 − 2, 𝑘𝑖 = 𝑑𝑖 − 1.

Combinatorial arguments 27

By the proposition, the number of such words is

(𝑛 − 2)!∏𝑛
𝑖=1
(𝑑𝑖 − 1)! .

□

Definition 3.6 (Multinomial coefficient). For nonnegative integers 𝑘1 , . . . , 𝑘𝑡 with 𝑘1 + · · · +
𝑘𝑡 = 𝑘, the multinomial coefficient is(

𝑘

𝑘1 , . . . , 𝑘𝑡

)
:=

𝑘!

𝑘1! · · · 𝑘𝑡 !
.

Theorem 3.7 (Multinomial theorem). Let 𝑥1 , . . . , 𝑥𝑛 be variables and 𝑘 ∈ N. Then(𝑛∑
𝑖=1

𝑥𝑖

) 𝑘
=

∑
𝑘1 ,...,𝑘𝑛≥0

𝑘1+···+𝑘𝑛=𝑘

(
𝑘

𝑘1 , . . . , 𝑘𝑛

) 𝑛∏
𝑖=1

𝑥
𝑘𝑖
𝑖
,

Proof. Expand the product

(𝑥1 + · · · + 𝑥𝑛) · · · (𝑥1 + · · · + 𝑥𝑛)
(𝑘 factors) by distributivity. Each term in the expansion is a monomial 𝑥

𝑘1

1
· · · 𝑥𝑘𝑛𝑛 with 𝑘1+· · ·+𝑘𝑛 =

𝑘, obtained by choosing 𝑥𝑖 from exactly 𝑘𝑖 of the 𝑘 factors. The number of ways to make such a

choice is the multinomial coefficient

(
𝑘

𝑘1 ,...,𝑘𝑛

)
, giving the stated formula. □

Theorem 3.8 (Fermat’s Little Theorem). Let 𝑝 be prime and 𝑛 ∈ Z. Then if 𝑝 ∤ 𝑛, then

𝑛𝑝 ≡ 𝑛 (mod 𝑝).

Proof. Apply the multinomial theorem with 𝑥1 = · · · = 𝑥𝑛 = 1 and 𝑘 = 𝑝:

𝑛𝑝 =
∑

𝑘1 ,...,𝑘𝑛≥0

𝑘1+···+𝑘𝑛=𝑝

(
𝑝

𝑘1 , . . . , 𝑘𝑛

)
1
𝑘1 · · · 1𝑘𝑛 =

∑
𝑘1 ,...,𝑘𝑛≥0

𝑘1+···+𝑘𝑛=𝑝

(
𝑝

𝑘1 , . . . , 𝑘𝑛

)
.

Claim. If (𝑘1 , . . . , 𝑘𝑛) ≠ (𝑝, 0, . . . , 0) and not a permutation of it, then(
𝑝

𝑘1 , . . . , 𝑘𝑛

)
≡ 0 (mod 𝑝).

Indeed, for such a (𝑘1 , . . . , 𝑘𝑛)we have 0 ≤ 𝑘𝑖 ≤ 𝑝 − 1 for every 𝑖, so none of the factorials 𝑘𝑖! is

divisible by 𝑝, while 𝑝! is divisible by 𝑝. Hence 𝑝 divides the numerator but not the denominator

of (
𝑝

𝑘1 , . . . , 𝑘𝑛

)
=

𝑝!

𝑘1! · · · 𝑘𝑛!

,

so the multinomial coefficient is 0 (mod 𝑝).

Combinatorial arguments 28

The only multi-indices that can give a nonzero term modulo 𝑝 are therefore those with one

𝑘𝑖 = 𝑝 and all others 0. For each 𝑖 ∈ {1, . . . , 𝑛}we have(
𝑝

0, . . . , 0,
𝑖
𝑝, 0, . . . , 0

)
=

𝑝!

𝑝! 0! · · · 0!

= 1,

so modulo 𝑝 the sum reduces to

𝑛𝑝 ≡ 1 + · · · + 1︸ ︷︷ ︸
𝑛 times

= 𝑛 (mod 𝑝),

□

Combinatorial arguments 29

3.6 Ballot Theorem

Theorem 3.9 (Ballot theorem). Let candidates 𝐴 and 𝐵 receive 𝑎 and 𝑏 votes respectively,

with 𝑎 ≥ 𝑏. Assume that the (𝑎 + 𝑏) votes are revealed in a uniformly random order. Then

the number of vote sequences in which, after every initial segment, the number of votes for

𝐴 is not less than the number of votes for 𝐵 (i.e. 𝐴 never trails) is(
𝑎 + 𝑏
𝑎

)
−

(
𝑎 + 𝑏
𝑎 + 1

)
.

Strategy: Directly counting "good" paths (those that stay below the diagonal) is hard because

the constraint is global—it applies at every step. Instead, we use the complementary counting
strategy:

1. Count all paths from (0, 0) to (𝑎, 𝑏).
2. Count the "bad" paths (those that touch or cross the forbidden line 𝑦 = 𝑥 + 1).

3. Subtract bad from all.

The genius of André’s Reflection Principle is a bĳection for step 2: if a path hits the forbidden line,

we reflect the remainder of the path across that line. This creates a one-to-one correspondence

between "bad paths to (𝑎, 𝑏)" and "all paths to a specific reflected endpoint," which are easy to

count.

Proof. Represent a vote for 𝐴 by a right step (1, 0) and a vote for 𝐵 by an up step (0, 1). Then

each ordering of the 𝑎 votes for 𝐴 and 𝑏 votes for 𝐵 corresponds to a lattice path from (0, 0) to
(𝑎, 𝑏) using only steps (1, 0) and (0, 1).

• The total number of such paths is (
𝑎 + 𝑏
𝑎

)
,

since we must choose which 𝑎 of the 𝑎 + 𝑏 steps are the horizontal ones (the remaining 𝑏 are

vertical).

• A ballot path (a good sequence) is one that never goes above the diagonal 𝑦 = 𝑥; equivalently,

for every prefix of the sequence, we have #𝐴 ≥ #𝐵.

• A non-ballot path is one for which at some point #𝐵 > #𝐴, i.e. the path goes strictly above the

diagonal.

Fix a non-ballot path from (0, 0) to (𝑎, 𝑏)with 𝑎 ≥ 𝑏. Let 𝑘 be the smallest integer such that at

the point (𝑥, 𝑦) = (𝑘, 𝑘 + 1). This is exactly the first time the path has 𝐵 strictly leads ahead of 𝐴,

so such 𝑘 exists for every non-ballot path).

Up to this time the vote counts are

A-votes = 𝑘, B-votes = 𝑘 + 1.

After this time, along the original path, we must still reach (𝑎, 𝑏), so the remaining steps

contribute

A-votes = 𝑎 − 𝑘, B-votes = 𝑏 − 𝑘 − 1.

We now reflect the path after (𝑘, 𝑘 + 1) across the diagonal 𝑦 = 𝑥 + 1, which just interchanges the

roles of horizontal and vertical steps in the suffix.

In terms of vote counts this gives a new path with:

Combinatorial arguments 30

up to (𝑘, 𝑘 + 1) after (𝑘, 𝑘 + 1) endpoint

original path 𝐴 : 𝑘 𝐵 : 𝑘 + 1 𝐴 : 𝑎 − 𝑘 𝐵 : 𝑏 − 𝑘 − 1 (𝑎, 𝑏)
new path 𝐴 : 𝑘 𝐵 : 𝑘 + 1 𝐴 : 𝑏 − 𝑘 − 1 𝐵 : 𝑎 − 𝑘 (𝑏 − 1, 𝑎 + 1)

Thus the image of our non-ballot path ends at(
𝑘 + (𝑏 − 𝑘 − 1), (𝑘 + 1) + (𝑎 − 𝑘)

)
= (𝑏 − 1, 𝑎 + 1).

So this construction defines a map

Φ : {non-ballot paths from (0, 0) to (𝑎, 𝑏)} −→ {all paths from (0, 0) to (𝑏 − 1, 𝑎 + 1)}.

Claim. Φ is a bĳection.

Injective: given the image path, the first time it hits the line 𝑦 = 𝑥 + 1 is again the point (𝑘, 𝑘 + 1);
reflecting the suffix back across this line recovers the original path. Thus we can invert Φ.

Surjective: every path from (0, 0) to (𝑏 − 1, 𝑎 + 1)must at some point reach a point with 𝑦 = 𝑥 + 1

(since 𝑏 − 1 < 𝑎 + 1 we end strictly below the diagonal). Let (𝑘, 𝑘 + 1) be the first such point;

reflecting the suffix across 𝑦 = 𝑥 + 1 produces a path from (0, 0) to (𝑎, 𝑏) whose first visit to

𝑦 = 𝑥 + 1 is exactly (𝑘, 𝑘 + 1), and hence 𝐵 leads there and the path is non-ballot. This is the

inverse of Φ.

Therefore

#{non-ballot paths from (0, 0) to (𝑎, 𝑏)} = #{paths from (0, 0) to (𝑏 − 1, 𝑎 + 1)} =

(
𝑎 + 𝑏
𝑎 + 1

)
.

Substituting into

#{ballot paths} =
(
𝑎 + 𝑏
𝑎

)
− #{non-ballot paths}

gives the Ballot theorem:

#{ballot paths} =
(
𝑎 + 𝑏
𝑎

)
−

(
𝑎 + 𝑏
𝑎 + 1

)
.

□

Lemma 3.10. Let 𝑚 ≥ 1. Consider lattice paths in Z2
that start at (0, 0) and use only steps

(1, 0) (right) and (0, 1) (up), and have total length 2𝑚. Then the following three families of

paths all have the same cardinality, namely

(
2𝑚
𝑚

)
:

1. paths that end at (𝑚, 𝑚);
2. paths that never go strictly above the diagonal 𝑦 = 𝑥;

3. paths that never return to the diagonal 𝑦 = 𝑥 after time 0.

Proof. (i) A path of length 2𝑚 ends at (𝑚, 𝑚) iff it has exactly 𝑚 right-steps and 𝑚 up-steps.

Choosing the positions of the 𝑚 right-steps gives

#{paths ending at (𝑚, 𝑚)} =
(
2𝑚

𝑚

)
.

Combinatorial arguments 31

(ii) Fix integers 𝑎 ≥ 𝑏 ≥ 0 and let ℓ = 𝑎 + 𝑏. By the ballot / reflection argument, the number of

paths from (0, 0) to (𝑎, 𝑏) that never go above 𝑦 = 𝑥 is(
ℓ

𝑎

)
−

(
ℓ

𝑎 + 1

)
.

(Among all

(
ℓ
𝑎

)
paths to (𝑎, 𝑏), exactly

(
ℓ
𝑎+1

)
go above the diagonal; reflect those at the first step

above 𝑦 = 𝑥 to obtain a bĳection with paths to (𝑎 + 1, 𝑏 − 1).)
Now take ℓ = 2𝑚 and sum over all admissible endpoints (𝑎, 𝑏) with 𝑎 ≥ 𝑏 and 𝑎 + 𝑏 = 2𝑚, i.e.

over 𝑎 = 𝑚, 𝑚 + 1, . . . , 2𝑚:

2𝑚∑
𝑎=𝑚

[(
2𝑚

𝑎

)
−

(
2𝑚

𝑎 + 1

)]
=

(
2𝑚

𝑚

)
−

(
2𝑚

2𝑚 + 1

)
=

(
2𝑚

𝑚

)
,

since the sum telescopes. This is exactly the number of paths of length 2𝑚 from (0, 0) that never

go above 𝑦 = 𝑥.

(iii) We count paths of length 2𝑚 from (0, 0) that never return to 𝑦 = 𝑥 after time 0.

Such a path must leave the diagonal immediately, so its first step is either (1, 0) or (0, 1). By

symmetry, the numbers of paths with first step (1, 0) and with first step (0, 1) are equal. Hence

#{paths of length 2𝑚 never returning to 𝑦 = 𝑥} = 2 · 𝑁,

where 𝑁 is the number of such paths whose first step is (1, 0).
After the first step (1, 0) the path is at (1, 0) and has 2𝑚 − 1 steps remaining. The condition

“never return to 𝑦 = 𝑥” is equivalent to “never cross the line 𝑦 = 𝑥”, i.e. staying strictly below

𝑦 = 𝑥. Shifting the coordinate system by (−1, 0), this is the same as a path of length 2𝑚 − 1

starting at (0, 0) that never goes above the line 𝑦 = 𝑥 − 1, which (after another shift) is equivalent

to a path that never goes above the diagonal.

Thus, by part (ii) with 2𝑚 − 1 in place of 2𝑚, we have

𝑁 =

(
2𝑚 − 1

𝑚

)
,

so

#{paths of length 2𝑚 never returning to 𝑦 = 𝑥} = 2

(
2𝑚 − 1

𝑚

)
=

(
2𝑚

𝑚

)
,

using the identity 2

(
2𝑚−1

𝑚

)
=

(
2𝑚
𝑚

)
.

Combining (i)–(iii) shows that all three families have size

(
2𝑚
𝑚

)
. □

Theorem 3.11. For every integer 𝑛 ≥ 0,

𝑛∑
𝑘=0

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

)
= 4

𝑛 .

Proof. Interpret the right-hand side combinatorially. A lattice path of length 2𝑛 with steps (1, 0)
and (0, 1) is determined by the choice of each step, so there are 2

2𝑛 = 4
𝑛

such paths starting at

(0, 0).
Group these paths according to the last time they are on the diagonal 𝑦 = 𝑥. For a given

𝑘 ∈ {0, . . . , 𝑛}, consider those paths whose last visit to the diagonal is at the point (𝑘, 𝑘).

Combinatorial arguments 32

• The prefix from (0, 0) to (𝑘, 𝑘) is an arbitrary path of length 2𝑘 ending at (𝑘, 𝑘), so there are(
2𝑘
𝑘

)
choices.

• The suffix of length 2𝑛 − 2𝑘 starts at (𝑘, 𝑘) and never returns to 𝑦 = 𝑥. Translating (𝑘, 𝑘) to the

origin, the number of such suffixes equals, by the lemma with 𝑚 = 𝑛 − 𝑘 and property (iii),(
2(𝑛 − 𝑘)
𝑛 − 𝑘

)
=

(
2𝑛 − 2𝑘

𝑛 − 𝑘

)
.

Thus the number of paths whose last visit to the diagonal is at (𝑘, 𝑘) is
(
2𝑘
𝑘

) (
2𝑛−2𝑘
𝑛−𝑘

)
. Summing

over all possible 𝑘 gives

𝑛∑
𝑘=0

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

)
paths in total, which must equal the total number 4

𝑛
of length-2𝑛 paths. This proves the

identity. □

Definition 3.7 (Ballot path and ballot sequence). A ballot path of length 2𝑛 is a lattice path

from (0, 0) to (𝑛, 𝑛) using steps (1, 0) (east) and (0, 1) (north) that never goes strictly above

the diagonal 𝑥 = 𝑦.

Equivalently, a ballot sequence of length 2𝑛 is a word in {0, 1} containing 𝑛 zeros and 𝑛 ones

such that in every initial segment the number of 1’s is at least the number of 0’s.

3.7 Catalan numbers

Definition 3.8 (Catalan numbers). The 𝑛th Catalan number 𝐶𝑛 is the number of ballot paths

(or ballot sequences) of length 2𝑛.

Theorem 3.12 (Closed form for Catalan numbers). For every 𝑛 ≥ 0,

𝐶𝑛 =
1

𝑛 + 1

(
2𝑛

𝑛

)
=

(
2𝑛

𝑛

)
−

(
2𝑛

𝑛 + 1

)
.

Definition 3.9.

• A rooted tree is a tree together with a distinguished vertex called the root.

• In a rooted tree, the parent of a vertex 𝑣 ≠ root is the previous vertex on the unique path

from the root to 𝑣.

• A leaf is a vertex of degree 1 (except in the trivial tree).

• An ordered rooted tree is a rooted tree in which, for every vertex, the children are linearly

ordered (from “left” to “right”). The vertices themselves are not labeled.

• A rooted ordered binary tree is an ordered rooted tree in which each vertex has either 0 or 2

children. (If there are two children, one is designated “left” and one “right”.)

Combinatorial arguments 33

Theorem 3.13. 1. The number of rooted ordered binary trees with 𝑛 + 1 leaves is 𝐶𝑛 .

2. The number of triangulations of a convex (𝑛 + 2)-gon is 𝐶𝑛 .

Proof. (i) Binary trees and ballot sequences. We describe a bĳection between rooted ordered

binary trees with 𝑛 + 1 leaves and ballot sequences of length 2𝑛.

Given such a tree 𝑇, perform the following depth-first (preorder) traversal, starting at the root:

• When a vertex is first visited, mark it visited, write a 1 if it has children (i.e. it is an internal

vertex) or 0 if it is a leaf.

• Then recursively visit the left subtree, then the right subtree, returning upwards along edges

as usual. When we return to a visited vertex we do not write anything new.

Let the sequence obtained be 𝑏1𝑏2 . . . 𝑏2𝑛 ∈ {0, 1}2𝑛 .

A rooted ordered binary tree with 𝑛 + 1 leaves has 𝑛 internal vertices, so we write 𝑛 ones and 𝑛

zeros. Thus the sequence has length 2𝑛 with 𝑛 1’s and 𝑛 0’s.

We claim that this is a ballot sequence. Consider any initial segment of the traversal. Whenever

we write a 1 we “create” two new children; whenever we write a 0 we finish a leaf and effectively

close off one child. A short induction on the steps of the traversal shows that after any initial

segment, the number of 1’s is at least the number of 0’s: otherwise we would have closed more

leaves than the number of child positions created, and there would not be any vertex to continue

the traversal from. Hence the sequence never goes below the line “#1’s = #0’s”, so it is ballot.

Conversely, given a ballot sequence of length 2𝑛 with 𝑛 ones and 𝑛 zeros, one can reconstruct

a unique rooted ordered binary tree by the reverse procedure: scan the sequence from left to

right, starting with a root whose two child positions are “open”. Whenever a 1 appears, we

replace one open child position by an internal vertex with two new open child positions; when a

0 appears we close one open child position by making it a leaf. The ballot condition guarantees

that we never run out of open child positions, and the total number of zeros ensures we finish

with no open positions left. This reconstructs a unique tree with 𝑛 + 1 leaves.

Hence we have a bĳection, and the number of such trees is 𝐶𝑛 .

(ii) Triangulations of a convex polygon. Fix a convex (𝑛 + 2)-gon and choose one side as a

distinguished “root side”. Given any triangulation, place a new vertex in the interior of each

triangle and connect it to the midpoints of the three edges of that triangle. The graph formed by

the new vertices and the segments across edges of the triangulation is a rooted ordered binary

tree with 𝑛 + 1 leaves, rooted at the triangle adjacent to the root side, and with leaves in bĳection

with the sides of the polygon.

Thus triangulations of a convex (𝑛 + 2)-gon are in bĳection with rooted ordered binary trees

with 𝑛 + 1 leaves; part (i) now gives the result. □

Theorem 3.14 (Catalan recurrence). For 𝑛 ≥ 1 we have the recurrence

𝐶𝑛 =

𝑛−1∑
𝑘=0

𝐶𝑘 𝐶𝑛−1−𝑘 .

Proof. We use the interpretation of 𝐶𝑛 as the number of rooted ordered full binary trees with 𝑛

internal vertices.

Combinatorial arguments 34

Fix 𝑛 ≥ 1 and consider such a tree 𝑇 with 𝑛 internal vertices.

The root is an internal vertex and therefore has exactly two children: a left child and a right

child. Each child is the root of a (possibly empty) full binary subtree.

Let

𝐿 = left subtree, 𝑅 = right subtree.

Suppose 𝐿 has 𝑘 internal vertices. Then:

#internal vertices in 𝑅 = 𝑛 − 1 − 𝑘,

since the total is 𝑛, and we have already counted the root and the 𝑘 internal vertices in 𝐿.

Thus every tree 𝑇 with 𝑛 internal vertices determines a unique integer 𝑘 ∈ {0, 1, . . . , 𝑛 − 1} and

a pair of trees

(𝐿, 𝑅) with 𝐿 having 𝑘 internal vertices, 𝑅 having 𝑛 − 1 − 𝑘 internal vertices.

• There are 𝐶𝑘 choices for the left subtree 𝐿 (any full binary tree with 𝑘 internal vertices).

• Independently, there are 𝐶𝑛−1−𝑘 choices for the right subtree 𝑅 (any full binary tree with

𝑛 − 1 − 𝑘 internal vertices).

Once 𝐿 and 𝑅 are chosen, attaching them as left and right subtrees of a new root produces a

unique full binary tree with 𝑛 internal vertices. Conversely, any such tree arises in exactly this

way from its left and right subtrees.

Summing over all 𝑘,

𝐶𝑛 =

𝑛−1∑
𝑘=0

(
trees with 𝑘 internal vertices in the left subtree

)
=

𝑛−1∑
𝑘=0

𝐶𝑘 𝐶𝑛−1−𝑘 ,

as claimed. □

Recurrences 35

4 Recurrences

4.1 Fibonacci recurrences

Example 4.1 (Smarts and Cadillacs). Consider a linear parking lot of size 𝑛 in a row. We

have Smarts (cars of length 1) and Cadillacs (cars of length 2). Let 𝐹𝑛 be the number of ways

to occupy the 𝑛 spots (every spot is either occupied by a car or empty, with no overlaps).

Can we determine an expression for 𝐹𝑛?

If we look at the leftmost car:

• Either it is occupied by a Smart; remove it and we obtain a configuration of size 𝑛 − 1.

• Or it begins a Cadillac; remove the Cadillac and we obtain a configuration of size 𝑛 − 2.

Then

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 (𝑛 ≥ 2),
with initial conditions 𝐹0 = 1 (empty lot) and 𝐹1 = 1 (only one Smart). Hence the number

of configurations satisfies the Fibonacci recurrence. Thus 𝐹𝑛 is the 𝑛th Fibonacci number

(1, 1, 2, 3, 5, . . .).

Lemma 4.1. For 𝑛 ≥ 0,

𝑛∑
𝑖=0

𝐹2

𝑖 = 𝐹𝑛𝐹𝑛+1.

Proof. Consider two parallel lots: the top of length 𝑛 and the bottom of length 𝑛 + 1. A pair of

fillings is counted by 𝐹𝑛𝐹𝑛+1.

Given such a pair, scan from the right and let 𝑖 be the rightmost position 0 ≤ 𝑖 ≤ 𝑛 at which one

may place a vertical barrier without cutting a Cadillac in either lot. This 𝑖 is well-defined and

unique.

Then in both lots the segment to the left of the barrier has length 𝑖, hence each left segment is an

arbitrary filling of length 𝑖. These classes for 𝑖 = 0, 1, . . . , 𝑛 partition all 𝐹𝑛𝐹𝑛+1 pairs, so

𝐹𝑛𝐹𝑛+1 =

𝑛∑
𝑖=0

𝐹2

𝑖 . □

4.2 Derangements

Definition 4.1 (Derangement). A derangement of [𝑛] is a permutation 𝜎 ∈ 𝑆𝑛 with no fixed

point, i.e. 𝜎(𝑖) ≠ 𝑖 for all 𝑖. Let 𝐷𝑛 be the number of derangements of [𝑛].

Theorem 4.2 (Derangements). For 𝑛 ≥ 1 the numbers 𝐷𝑛 satisfy:

𝐷𝑛 = 𝑛!

𝑛∑
𝑘=0

(−1)𝑘
𝑘!

.

𝐷𝑛 = (𝑛 − 1)
(
𝐷𝑛−1 + 𝐷𝑛−2

)
, 𝑛 ≥ 2,

with initial values 𝐷0 = 1 and 𝐷1 = 0.

Recurrences 36

Proof of the recurrence. Fix 𝑛 ≥ 2 and consider a derangement 𝜎 of [𝑛]. Look at the functional

digraph of 𝑛. Since 𝜎 is a derangement, the functional digraph has no loops (1-cycles)

• Case 1: 𝑛 is in a 2-cycle {𝑖 , 𝑛}, i.e. 𝜎(𝑛) = 𝑖 and 𝜎(𝑖) = 𝑛 for some 𝑖 < 𝑛. There are 𝑛 − 1 choices

for 𝑖, and after fixing this 2-cycle the remaining 𝑛 − 2 elements must form a derangement.

Thus we obtain (𝑛 − 1)𝐷𝑛−2 derangements.

• Case 2: 𝑛 is in a cycle of length at least 3. Then 𝜎(𝑛) = 𝑖 for some 𝑖 < 𝑛 and 𝜎(𝑖) ≠ 𝑛. If we

delete 𝑛 from the cycle and “splice” the edges appropriately, we obtain a derangement of

[𝑛 − 1], and conversely we can insert 𝑛 into any cycle of a derangement of [𝑛 − 1] in (𝑛 − 1)
different ways. Hence we obtain (𝑛 − 1)𝐷𝑛−1 derangements.

Adding the two cases gives

𝐷𝑛 = (𝑛 − 1)𝐷𝑛−2 + (𝑛 − 1)𝐷𝑛−1 = (𝑛 − 1)(𝐷𝑛−1 + 𝐷𝑛−2).
□

4.3 Simple words, set partitions and permutations with cycles

We collect three classical families with similar recurrences.

Example 4.2. Let 𝑃(𝑛, 𝑘) denote the number of simple 𝑘-words on [𝑛], i.e. words of length 𝑘

over alphabet [𝑛]with no repeated letters in a word. Clearly 𝑃(𝑛, 𝑘) = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1).
Can we obtain an recurrence relation for 𝑃(𝑛, 𝑘)?

In a simple 𝑘-word on [𝑛],

1. either the letter 𝑛 does not appear, giving 𝑃(𝑛 − 1, 𝑘) possibilities

2. 𝑛 appears in some position 1 ≤ 𝑖 ≤ 𝑘 (choose the position for 𝑛 in 𝑘 ways) and the remaining

𝑘 − 1 positions contain a simple (𝑘 − 1)-word on [𝑛 − 1], giving 𝑘𝑃(𝑛 − 1, 𝑘 − 1) possibilities.

The recurrence (valid for 𝑛 ≥ 1, 𝑘 ≥ 1) is

𝑃(𝑛, 𝑘) = 𝑃(𝑛 − 1, 𝑘) + 𝑘 𝑃(𝑛 − 1, 𝑘 − 1),
with initial condition 𝑃(𝑛, 0) = 1 and 𝑃(0, 𝑘) = 0 for 𝑘 ≥ 1.

Example 4.3. Let 𝑆(𝑛, 𝑘) denote the number of ways to partition [𝑛] into 𝑘 (nonempty,
unlabeled) blocks. These are the Stirling numbers of the second kind. Derive an recurrence

relation for 𝑆(𝑛, 𝑘).

Consider where the element 𝑛 goes. There are 2 case:

1. It forms a singleton block (contributing 𝑆(𝑛 − 1, 𝑘 − 1))
2. It joins one of the existing 𝑘 blocks of a partition of [𝑛 − 1] into 𝑘 blocks (contributing

𝑘𝑆(𝑛 − 1, 𝑘)).

The recurrence (again for 𝑛 ≥ 1, 𝑘 ≥ 1) is

𝑆(𝑛, 𝑘) = 𝑘 𝑆(𝑛 − 1, 𝑘) + 𝑆(𝑛 − 1, 𝑘 − 1),
with initial conditions 𝑆(0, 0) = 1, 𝑆(𝑛, 0) = 0 for 𝑛 ≥ 1, 𝑆(0, 𝑘) = 0 for 𝑘 ≥ 1.

Recurrences 37

Example 4.4. Let 𝐶(𝑛, 𝑘) denote the number of permutations of [𝑛]with exactly 𝑘 disjoint

cycles in their cycle decomposition (these are called the “signless” Stirling numbers of the

first kind). Derive an recurrence relation for 𝐶(𝑛, 𝑘).

Given a permutation of [𝑛]with 𝑘 cycles, look at 𝑛. There are 2 cases:

1. 𝑛 is a fixed point, in which case removing 𝑛 gives a permutation of [𝑛 − 1] with 𝑘 − 1 cycles.

2. 𝑛 lies in a cycle of length at least 2, in which case deleting 𝑛 and splicing the cycle gives a

permutation of [𝑛 − 1]with 𝑘 cycles, and conversely 𝑛 can be inserted into any of the 𝑛 − 1

positions in any cycle.

The recurrence (for 𝑛 ≥ 1, 𝑘 ≥ 1) is

𝐶(𝑛, 𝑘) = (𝑛 − 1)𝐶(𝑛 − 1, 𝑘) + 𝐶(𝑛 − 1, 𝑘 − 1),

with initial conditions 𝐶(0, 0) = 1, 𝐶(𝑛, 0) = 0 for 𝑛 ≥ 1, 𝐶(0, 𝑘) = 0 for 𝑘 ≥ 1.

4.4 Delannoy recurrences

Example 4.5. With Delannoy numbers, we have 𝑑0,0 = 1 and 𝑑𝑚,0 = 𝑑0,𝑛 = 1 for all 𝑚, 𝑛 ≥ 1.

Removing the last step of a path gives the recursion

𝑑𝑚,𝑛 = 𝑑𝑚−1,𝑛 + 𝑑𝑚,𝑛−1 + 𝑑𝑚−1,𝑛−1 (𝑚, 𝑛 ≥ 1).

Example 4.6. Let 𝑎𝑚,𝑛 be number of points in the lattice ball of radius 𝑚 in Z𝑛 Derive an

recurrence relation for 𝑎𝑚,𝑛 .

Consider a point (𝑥1 , . . . , 𝑥𝑛)with |𝑥1| + · · · + |𝑥𝑛 | ≤ 𝑚. Partition these points according to the

last coordinate 𝑥𝑛 .

• If 𝑥𝑛 = 0, then (𝑥1 , . . . , 𝑥𝑛−1) is a point in the (𝑛−1)-dimensional ball of radius𝑚, contributing

𝑎𝑚,𝑛−1 points.

• If 𝑥𝑛 > 0, write 𝑥′𝑛 = 𝑥𝑛 − 1 ≥ 0; then |𝑥1| + · · · + |𝑥𝑛−1| + 𝑥′𝑛 ≤ 𝑚 − 1, so we obtain a point

counted by 𝑎𝑚−1,𝑛 .

• If 𝑥𝑛 < 0, write 𝑥′′𝑛 = −𝑥𝑛 − 1 ≥ 0; again we get a point with sum of absolute values at most

𝑚 − 1. This gives another 𝑎𝑚−1,𝑛 points, but the two cases together can be encoded as a

contribution 𝑎𝑚−1,𝑛−1 when we treat the sign separately and focus on the positions of nonzero

coordinates.

Then 𝑎𝑚,𝑛 satisfy

𝑎0,𝑛 = 1, 𝑎𝑚,0 = 1 (𝑚, 𝑛 ≥ 0),
and for 𝑚, 𝑛 ≥ 1,

𝑎𝑚,𝑛 = 𝑎𝑚,𝑛−1 + 𝑎𝑚−1,𝑛 + 𝑎𝑚−1,𝑛−1.

Comparing with the recursion and initial conditions for 𝑑𝑚,𝑛 , we obtain another proof that the

number of points in the lattice-ball of radius 𝑚 in Z𝑛 equals the number of Delannoy paths from

(0, 0) to (𝑚, 𝑛).

Solution methods for linear recurrences 38

5 Solution methods for linear recurrences

5.1 Recurrence relation

Definition 5.1 (Sequence). A (real) sequence is a list

(𝑎𝑛)𝑛≥0 = (𝑎0 , 𝑎1 , 𝑎2 , . . .),

where 𝑎𝑛 ∈ R for each integer 𝑛 ≥ 0.

Definition 5.2 (Recurrence relation, order, linear, homogeneous). Let (𝑎𝑛)𝑛≥0 be a sequence.

• A recurrence relation of order 𝑘 for (𝑎𝑛) is a rule of the form

𝑎𝑛 = 𝑔
(
𝑛, 𝑎𝑛−1 , 𝑎𝑛−2 , . . . , 𝑎𝑛−𝑘

)
(𝑛 ≥ 𝑘),

where 𝑔 is some function of 𝑛 and the previous 𝑘 terms.

• The recurrence is called linear if it can be written

𝑎𝑛 = 𝑔1(𝑛)𝑎𝑛−1 + 𝑔2(𝑛)𝑎𝑛−2 + · · · + 𝑔𝑘(𝑛)𝑎𝑛−𝑘 + 𝑓 (𝑛),

for some functions 𝑔1 , . . . , 𝑔𝑘 , 𝑓 of 𝑛.

• A linear recurrence is called homogeneous if 𝑓 (𝑛) ≡ 0 for all 𝑛; otherwise it is non-
homogeneous.

Example 5.1 (Some recurrences).

• Order 1, homogeneous:

𝑎𝑛 = 3𝑎𝑛−1.

• Order 2, homogeneous:

𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2.

• Order 2, non-homogeneous:

𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑛2.

• General homogeneous linear recurrence of finite order:

𝑎𝑛 =

𝑚∑
𝑘=1

𝑐𝑘(𝑛) 𝑎𝑛−𝑘 ,

where 𝑐𝑘(𝑛) are given coefficient functions.

Example 5.2 (Catalan numbers). The Catalan numbers (𝐶𝑛)𝑛≥0 are defined by

𝐶0 = 1, 𝐶𝑛 =

𝑛−1∑
𝑘=0

𝐶𝑘 𝐶𝑛−1−𝑘 (𝑛 ≥ 1).

Partition by the last time each Catalan lattice path touches the line 𝑦 = 𝑥

Solution methods for linear recurrences 39

5.2 Linear recurrences with constant coefficients

We now focus on linear recurrences with constant coefficients.

Definition 5.3 (Linear constant-coefficient recurrence). A recurrence of the form

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + · · · + 𝑐𝑘𝑎𝑛−𝑘 + 𝑓 (𝑛), 𝑛 ≥ 𝑘,

where 𝑐1 , . . . , 𝑐𝑘 are fixed real constants and 𝑓 (𝑛) is a given function, is called a linear
constant-coefficient recurrence of order 𝑘. It is homogeneous if 𝑓 (𝑛) ≡ 0.

Definition 5.4 (Characteristic polynomial and equation). For the homogeneous relation

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + · · · + 𝑐𝑘𝑎𝑛−𝑘 ,

the characteristic polynomial is

𝜙(𝑥) = 𝑥𝑘 − 𝑐1𝑥
𝑘−1 − 𝑐2𝑥

𝑘−2 − · · · − 𝑐𝑘 .

The equation 𝜙(𝑥) = 0 is called the characteristic equation; its roots are the characteristic roots.

Example 5.3. Consider

𝑎𝑛 = 𝛼𝑎𝑛−1 , 𝑛 ≥ 1,

with initial value 𝑎0 = 𝑐. The characteristic equation is 𝑥 = 𝛼, so 𝛼 is the only characteristic root.

It is easy to check by induction that

𝑎𝑛 = 𝑐 𝛼𝑛

for all 𝑛 ≥ 0.

More generally, any sequence of the form 𝑎𝑛 = 𝐶𝛼𝑛 (with 𝐶 arbitrary) is a solution of the

recurrence; the initial condition picks out the particular value 𝐶 = 𝑐.

5.3 General homogeneous recurrence with distinct roots

Now consider the homogeneous recurrence of order 𝑘:

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + · · · + 𝑐𝑘𝑎𝑛−𝑘 , 𝑛 ≥ 𝑘,

and let its characteristic polynomial be

𝜙(𝑥) = 𝑥𝑘 − 𝑐1𝑥
𝑘−1 − · · · − 𝑐𝑘 .

Suppose 𝛼 is a root of 𝜙(𝑥). Then the sequence 𝑎𝑛 = 𝛼𝑛 satisfies the recurrence: substituting

𝑎𝑛 = 𝛼𝑛 gives

𝛼𝑛 = 𝑐1𝛼
𝑛−1 + · · · + 𝑐𝑘𝛼𝑛−𝑘 ⇐⇒ 𝛼𝑘 = 𝑐1𝛼

𝑘−1 + · · · + 𝑐𝑘 ,

which is exactly 𝜙(𝛼) = 0.

Thus, for any constant 𝐶, the sequence 𝑎𝑛 = 𝐶𝛼𝑛 is a solution. If 𝛽 is another root, then 𝑏𝑛 = 𝐶′𝛽𝑛

is also a solution. Because the recurrence is linear, any linear combination

𝑎𝑛 = 𝐶1𝛼
𝑛 + 𝐶2𝛽

𝑛

Solution methods for linear recurrences 40

is again a solution.

More generally, if 𝛼1 , . . . , 𝛼𝑘 are 𝑘 distinct characteristic roots, then each sequence 𝛼𝑛
𝑖

is a solution,

and any linear combination

𝑎𝑛 = 𝐶1𝛼
𝑛
1
+ 𝐶2𝛼

𝑛
2
+ · · · + 𝐶𝑘𝛼𝑛𝑘

is also a solution. Initial conditions 𝑎0 , . . . , 𝑎𝑘−1 determine the constants 𝐶1 , . . . , 𝐶𝑘 uniquely

(the 𝑘 sequences 𝛼𝑛
𝑖

are linearly independent), so this already gives the general solution when

all roots are distinct.

Example 5.4 (Fibonacci sequence). The Fibonacci numbers are defined by

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 (𝑛 ≥ 2), 𝐹0 = 0, 𝐹1 = 1.

The characteristic polynomial is

𝜙(𝑥) = 𝑥2 − 𝑥 − 1,

with roots

𝛼 =
1 +
√

5

2

, 𝛽 =
1 −
√

5

2

.

Thus every solution of the recurrence has the form

𝑎𝑛 = 𝐶1𝛼
𝑛 + 𝐶2𝛽

𝑛 .

Imposing 𝑎0 = 𝐹0 = 0 and 𝑎1 = 𝐹1 = 1 gives

𝐶1 + 𝐶2 = 0, 𝐶1𝛼 + 𝐶2𝛽 = 1,

so 𝐶1 =
1√
5

and 𝐶2 = − 1√
5

. Hence

𝐹𝑛 =
1√
5

(
𝛼𝑛 − 𝛽𝑛

)
,

the usual closed form (Binet formula).

This example illustrates a more general phenomenon: the set of all solutions of a linear

homogeneous recurrence of order 𝑘 is a 𝑘-dimensional vector space, and suitably many distinct

characteristic roots produce a basis of this space.

5.4 General solution with repeated roots

We now describe what happens when the characteristic polynomial has repeated roots.

Solution methods for linear recurrences 41

Theorem 5.1 (General solution with multiple roots). Let

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + · · · + 𝑐𝑘𝑎𝑛−𝑘

be a linear homogeneous recurrence of order 𝑘 with constant coefficients, and let its

characteristic polynomial factor as

𝜙(𝑥) = 𝑥𝑘 − 𝑐1𝑥
𝑘−1 − · · · − 𝑐𝑘 =

𝑡∏
𝑗=1

(𝑥 − 𝛼 𝑗)𝑑𝑗 ,

where the 𝛼 𝑗 are distinct and 𝑑1 + · · · + 𝑑𝑡 = 𝑘.

Then the space of all solutions (𝑎𝑛)𝑛≥0 is spanned by the 𝑘 sequences

𝑛𝑠𝛼 𝑛
𝑗 (1 ≤ 𝑗 ≤ 𝑡 , 0 ≤ 𝑠 ≤ 𝑑 𝑗 − 1).

Equivalently, every solution can be written in the form

𝑎𝑛 =

𝑡∑
𝑗=1

𝑃𝑗(𝑛) 𝛼 𝑛
𝑗 ,

where each 𝑃𝑗(𝑛) is a polynomial in 𝑛 of degree at most 𝑑 𝑗 − 1.

Proof sketch. Write the recurrence as a linear operator equation

𝑎𝑛 − 𝑐1𝑎𝑛−1 − · · · − 𝑐𝑘𝑎𝑛−𝑘 = 0.

Introduce the shift operator 𝐸 acting on sequences by (𝐸𝑎)𝑛 = 𝑎𝑛+1. The recurrence becomes(
𝐸𝑘 − 𝑐1𝐸

𝑘−1 − · · · − 𝑐𝑘
)
𝑎 = 0,

i.e. 𝜙(𝐸)𝑎 = 0.

Factor 𝜙(𝑥) = ∏𝑡
𝑗=1
(𝑥 − 𝛼 𝑗)𝑑𝑗 ; formally this gives

𝑡∏
𝑗=1

(𝐸 − 𝛼 𝑗)𝑑𝑗 𝑎 = 0.

For a fixed 𝑗, the solutions of (𝐸 − 𝛼 𝑗)𝑎 = 0 are exactly the geometric sequences 𝑎𝑛 = 𝐶𝛼𝑛
𝑗
.

Solutions of (𝐸 − 𝛼 𝑗)𝑑𝑗 𝑎 = 0 are then obtained by taking derivatives with respect to 𝛼 𝑗 ; this

produces the additional factors of 𝑛 and leads to the 𝑑 𝑗 linearly independent sequences 𝑛𝑠𝛼 𝑛
𝑗

for 0 ≤ 𝑠 ≤ 𝑑 𝑗 − 1.

Taking the product over 𝑗 shows that the full solution space has dimension 𝑑1 + · · · + 𝑑𝑡 = 𝑘 and

is spanned by these sequences. Finally, any choice of initial values 𝑎0 , . . . , 𝑎𝑘−1 yields a unique

linear combination of these basis solutions, so every solution has the claimed form. □

Consider a sequence (𝑎𝑛)𝑛≥0 satisfying a homogeneous linear recurrence of order 𝑘 with constant

coefficients

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + · · · + 𝑐𝑘𝑎𝑛−𝑘 (𝑛 ≥ 𝑘),
where 𝑐𝑘 ≠ 0. The characteristic polynomial is

𝜒(𝑥) = 𝑥𝑘 − 𝑐1𝑥
𝑘−1 − · · · − 𝑐𝑘−1𝑥 − 𝑐𝑘 .

Solution methods for linear recurrences 42

If the roots of 𝜒 are 𝜆1 , . . . ,𝜆𝑟 with multiplicities 𝑑1 , . . . , 𝑑𝑟 , then every solution has the form

𝑎𝑛 =

𝑟∑
𝑗=1

𝑃𝑗(𝑛)𝜆 𝑛
𝑗 ,

where 𝑃𝑗 is a polynomial of degree at most 𝑑 𝑗 − 1. The coefficients of the 𝑃𝑗’s are determined

from the 𝑘 initial values 𝑎0 , . . . , 𝑎𝑘−1.

5.5 Tower of Hanoi

Example 5.5 (Tower of Hanoi). Let ℎ𝑛 be the minimum number of moves required to move

a tower of 𝑛 disks from one peg to another according to the following rules.

Rules of the Tower of Hanoi. We are given three pegs (often called source, auxiliary, and target)
and 𝑛 disks of distinct sizes. Initially, all 𝑛 disks are stacked on the source peg in increasing

order of size from top to bottom (i.e., the smallest disk is on top and the largest disk is on the

bottom).

A legal move consists of taking the top disk from one peg and placing it onto the top of another

peg, subject to the following constraints:

1. Only one disk may be moved at a time.

2. You may only move the top disk of any peg.

3. At all times, no disk may be placed on top of a smaller disk. Equivalently, on each peg the

disks must always appear in increasing order of size from top to bottom.

The goal is to start from the initial configuration on the source peg and end with all 𝑛 disks

stacked in the same order on the target peg, using only legal moves.

• We clearly have ℎ0 = 0 and ℎ1 = 1.

• To move a tower of size 𝑛:

1. move the top 𝑛 − 1 disks to the spare peg (takes ℎ𝑛−1 moves),

2. move the largest disk (one move),

3. move the tower of 𝑛−1 disks from the spare peg onto the largest disk (another ℎ𝑛−1 moves).

Therefore

ℎ𝑛 = 2ℎ𝑛−1 + 1 (𝑛 ≥ 1).

We solve this recurrence.

Homogeneous part:

ℎ
(ℎ)
𝑛 = 2ℎ

(ℎ)
𝑛−1

=⇒ ℎ
(ℎ)
𝑛 = 𝐶 · 2𝑛 .

For a particular solution we try a constant ℎ
(𝑝)
𝑛 = 𝐴:

𝐴 = 2𝐴 + 1 =⇒ 𝐴 = −1.

Thus the general solution is

ℎ𝑛 = 𝐶 · 2𝑛 − 1.

Solution methods for linear recurrences 43

Using ℎ0 = 0 gives 𝐶 = 1, so

ℎ𝑛 = 2
𝑛 − 1.

5.6 Non-homogeneous recurrences

We now consider recurrences of the form

𝑎𝑛 = 𝑐1𝑎𝑛−1 + · · · + 𝑐𝑘𝑎𝑛−𝑘 + 𝐹(𝑛), 𝑛 ≥ 𝑘, (1)

where 𝐹(𝑛) is a polynomial in 𝑛.

Theorem 5.2. Let 𝐹(𝑛) be a polynomial of degree 𝑑. Let 𝜒(𝑥) be the characteristic polynomial

of the associated homogeneous recurrence (obtained from (1) by deleting 𝐹(𝑛)), and suppose

𝑟 is a root of 𝜒 of multiplicity 𝑤 ≥ 0.

Then there exists a particular solution of the form

𝑎
(𝑝)
𝑛 = 𝑛𝑤𝑃(𝑛) 𝑟 𝑛 ,

where 𝑃 is a polynomial of degree at most 𝑑.

Remark 5.1. In particular, if 𝑟 = 1 is a root of multiplicity 𝑤 then there is a particular solution

of the form

𝑎
(𝑝)
𝑛 = 𝑛𝑤𝑃(𝑛)

with deg𝑃 ≤ 𝑑. The full solution is then

𝑎𝑛 = 𝑎
(ℎ)
𝑛 + 𝑎

(𝑝)
𝑛 ,

where 𝑎
(ℎ)
𝑛 is the general solution of the homogeneous recurrence.

Proof. For clarity, consider the non–homogeneous recurrence

𝑎𝑛 − 𝑐1𝑎𝑛−1 − · · · − 𝑐𝑘𝑎𝑛−𝑘 = 𝐹(𝑛)𝑟𝑛 ,

where 𝐹 is a polynomial of degree 𝑑, and let

𝜒(𝑥) = 𝑥𝑘 − 𝑐1𝑥
𝑘−1 − · · · − 𝑐𝑘

be the characteristic polynomial. Assume that 𝑟 is a root of 𝜒 of multiplicity 𝑤.

First reduce to the case 𝑟 = 1. Put

𝑏𝑛 := 𝑟−𝑛𝑎𝑛 .

Then (𝑏𝑛) satisfies

𝑏𝑛 − 𝑐1𝑏𝑛−1 − · · · − 𝑐𝑘𝑏𝑛−𝑘 = 𝐹(𝑛),
and the characteristic polynomial is still 𝜒, but now we are interested only in the root 1

of multiplicity 𝑤 (corresponding to 𝑟). Once a particular solution 𝑏
(𝑝)
𝑛 is found, we obtain

𝑎
(𝑝)
𝑛 = 𝑟𝑛𝑏

(𝑝)
𝑛 . Hence it suffices to prove the theorem for 𝑟 = 1.

Let 𝐸 be the shift operator (𝐸𝑎)𝑛 = 𝑎𝑛+1 and put

𝐿 := 𝐸𝑘 − 𝑐1𝐸
𝑘−1 − · · · − 𝑐𝑘 ,

Solution methods for linear recurrences 44

so that the recurrence is 𝐿(𝑎)𝑛 = 𝐹(𝑛). Since 1 is a root of 𝜒 of multiplicity 𝑤, we can factor

𝜒(𝑥) = (𝑥 − 1)𝑤𝜓(𝑥), 𝜓(1) ≠ 0,

and correspondingly

𝐿 = (𝐸 − 1)𝑤𝜓(𝐸).

Let Δ := 𝐸 − 1 be the forward–difference operator. We work on the finite-dimensional vector

spaces

𝒫≤𝑚 := {polynomials in 𝑛 of degree ≤ 𝑚 }.

In the basis {1, 𝑛, 𝑛2 , . . . , 𝑛𝑚}, the matrix of 𝜓(𝐸) is upper–triangular with diagonal entries all

equal to 𝜓(1) ≠ 0 (the leading term of 𝜓(𝐸)𝑃 is 𝜓(1) times the leading term of 𝑃). Hence 𝜓(𝐸)
restricts to an invertible linear map

𝜓(𝐸) : 𝒫≤𝑚 → 𝒫≤𝑚
for every 𝑚.

For any polynomial 𝑃, degΔ𝑃 = deg𝑃 − 1, so Δ𝑤 maps 𝒫≤𝑑+𝑤 into 𝒫≤𝑑. In the binomial basis

{
(
𝑛
0

)
,
(
𝑛
1

)
, . . . ,

(
𝑛

𝑑+𝑤
)
} one has Δ

(
𝑛
𝑘

)
=

(
𝑛
𝑘−1

)
, so

Δ𝑤

(
𝑛

𝑘 + 𝑤

)
=

(
𝑛

𝑘

)
(𝑘 ≥ 0).

Thus Δ𝑤 sends the (𝑑 + 1)–dimensional subspace span{
(
𝑛
𝑤

)
, . . . ,

(
𝑛

𝑑+𝑤
)
} ⊂ 𝒫≤𝑑+𝑤 onto 𝒫≤𝑑, so it is

surjective from 𝒫≤𝑑+𝑤 to 𝒫≤𝑑.
Given 𝐹 ∈ 𝒫≤𝑑, as shown above, there is a unique 𝐺 ∈ 𝒫≤𝑑 with

𝜓(𝐸)𝐺 = 𝐹.

As shown, there exists 𝑄 ∈ 𝒫≤𝑑+𝑤 such that

Δ𝑤𝑄 = 𝐺.

Hence

𝐿𝑄 = (𝐸 − 1)𝑤𝜓(𝐸)𝑄 = Δ𝑤𝜓(𝐸)𝑄 = Δ𝑤𝐺 = 𝐹.

So 𝑏
(𝑝)
𝑛 := 𝑄(𝑛) is a particular solution of the recurrence with 𝑟 = 1, and 𝑄 has degree at most

𝑑 + 𝑤.

Write 𝑄(𝑛) uniquely as

𝑄(𝑛) = 𝑛𝑤𝑃(𝑛) + 𝑅(𝑛),
with deg𝑃 ≤ 𝑑 and deg𝑅 < 𝑤 (polynomial division by 𝑛𝑤). Consider the sequence 𝑐𝑛 := 𝑅(𝑛).
Since deg𝑅 < 𝑤, one checks that

(𝐸 − 1)𝑤𝑐 = 0,

so (𝐸 − 1)𝑤 annihilates 𝑐, and hence 𝐿𝑐 = 0 (because 𝐿 = (𝐸 − 1)𝑤𝜓(𝐸)). Thus 𝑐 is a solution of

the homogeneous recurrence.

Now

𝐿(𝑛𝑤𝑃(𝑛)) = 𝐿𝑄 − 𝐿𝑅 = 𝐹 − 0 = 𝐹,

so 𝑏
(𝑝)
𝑛 := 𝑛𝑤𝑃(𝑛) is also a particular solution.

Finally, returning to the original sequence 𝑎𝑛 = 𝑟𝑛𝑏𝑛 , we obtain a particular solution of the form

𝑎
(𝑝)
𝑛 = 𝑛𝑤𝑃(𝑛) 𝑟𝑛

with deg𝑃 ≤ 𝑑, as desired. □

Solution methods for linear recurrences 45

5.7 Regions of the plane

Example 5.6. Let 𝑅𝑛 denote the maximum number of regions into which 𝑛 distinct lines can

divide the plane, if no two lines are parallel and no three lines meet in a single point. Derive

a recurrence relation for 𝐻𝑛

When we add the 𝑛-th line, it intersects each of the previous 𝑛 − 1 lines in a distinct point, so it

is chopped into 𝑛 segments. Each segment lies entirely inside a single region determined by

the first 𝑛 − 1 lines and splits that region into two new regions. Thus the number of regions

increases by exactly 𝑛:

𝑅𝑛 = 𝑅𝑛−1 + 𝑛 (𝑛 ≥ 1).
Clearly 𝑅0 = 1 (with no lines, the plane is one region).

This is a first–order non-homogeneous recurrence with constant coefficients and polynomial

forcing 𝐹(𝑛) = 𝑛.

The homogeneous recurrence is

𝑅
(ℎ)
𝑛 = 𝑅

(ℎ)
𝑛−1

,

so the characteristic equation is 𝑥 − 1 = 0, with root 𝑟 = 1 of multiplicity 1. Hence

𝑅
(ℎ)
𝑛 = 𝐶 · 1𝑛 = 𝐶.

Here 𝐹(𝑛) = 𝑛 has degree 𝑑 = 1 and 𝑟 = 1 has multiplicity 𝑤 = 1, so the theorem tells us to look

for a particular solution of the form

𝑅
(𝑝)
𝑛 = 𝑃(𝑛),

where 𝑃 is a polynomial of degree at most 𝑑 + 𝑤 = 2. Write

𝑃(𝑛) = 𝑎𝑛2 + 𝑏𝑛 + 𝑐

and substitute into the recurrence:

𝑎𝑛2 + 𝑏𝑛 + 𝑐 = 𝑎(𝑛 − 1)2 + 𝑏(𝑛 − 1) + 𝑐 + 𝑛.

Expand the right-hand side:

𝑎(𝑛2 − 2𝑛 + 1) + 𝑏(𝑛 − 1) + 𝑐 + 𝑛 = 𝑎𝑛2 + (−2𝑎 + 𝑏 + 1)𝑛 + (𝑎 − 𝑏 + 𝑐).

Equating coefficients of 𝑛2
, 𝑛, and the constant term gives

𝑎 = 𝑎,

𝑏 = −2𝑎 + 𝑏 + 1,

𝑐 = 𝑎 − 𝑏 + 𝑐.

Thus

−2𝑎 + 1 = 0 ⇒ 𝑎 =
1

2

,

and

𝑎 − 𝑏 = 0 ⇒ 𝑏 =
1

2

.

The constant 𝑐 is not determined by the recurrence; it will be fixed using the initial condition.

So

𝑅𝑛 = 𝐶 + 1

2

𝑛2 + 1

2

𝑛 + 𝑐.

Solution methods for linear recurrences 46

Using 𝑅0 = 1,

1 = 𝐶 + 𝑐.
We may absorb 𝐶 into 𝑐 and simply write

𝑅𝑛 =
1

2

𝑛2 + 1

2

𝑛 + 1 = 1 +
(
𝑛

1

)
+

(
𝑛

2

)
.

Example 5.7. Consider the recurrence

𝑎0 = 0, 𝑎𝑛 = 2𝑎𝑛−1 + 𝑛 (𝑛 ≥ 1).

The homogeneous part 𝑎
(ℎ)
𝑛 = 2𝑎

(ℎ)
𝑛−1

has solution 𝑎
(ℎ)
𝑛 = 𝐶 · 2𝑛 .

Here 𝐹(𝑛) = 𝑛 is degree 1, and the characteristic root is 𝑟 = 2, which is not a root of multiplicity

≥ 1 at 𝑟 = 2 for the polynomial 𝑥 − 2 = 0 besides the obvious single root. Thus 𝑤 = 0, and we

seek a particular solution of the form

𝑎
(𝑝)
𝑛 = 𝑎𝑛 + 𝑏.

Substituting into the recurrence:

𝑎𝑛 + 𝑏 = 2(𝑎(𝑛 − 1) + 𝑏) + 𝑛 = 2𝑎𝑛 − 2𝑎 + 2𝑏 + 𝑛.

Equating coefficients: {
𝑎 = 2𝑎 + 1,

𝑏 = −2𝑎 + 2𝑏.

Hence −𝑎 = 1 so 𝑎 = −1, and then 𝑏 = −2(−1) + 2𝑏 gives 𝑏 = −2.

So 𝑎
(𝑝)
𝑛 = −𝑛 − 2, and the general solution is

𝑎𝑛 = 𝐶 · 2𝑛 − 𝑛 − 2.

Using 𝑎0 = 0,

0 = 𝐶 · 1 − 0 − 2 ⇒ 𝐶 = 2,

so

𝑎𝑛 = 2
𝑛+1 − 𝑛 − 2.

Generating function methods for recurrences 47

6 Generating function methods for recurrences

Definition 6.1 (Ordinary generating function). Let (𝑎𝑛)𝑛≥0 be a sequence of complex

numbers. The ordinary generating function (OGF) of (𝑎𝑛) is the formal power series

𝐴(𝑥) :=

∑
𝑛≥0

𝑎𝑛𝑥
𝑛 ∈ C[[𝑥]].

For a formal power series 𝐹(𝑥) = ∑
𝑛≥0

𝑓𝑛𝑥
𝑛

we write

[𝑥𝑛]𝐹(𝑥) := 𝑓𝑛

for the coefficient of 𝑥𝑛 in 𝐹(𝑥). Thus 𝑎𝑛 = [𝑥𝑛]𝐴(𝑥).

Example 6.1 (Solving a simple recurrence). Let (𝑎𝑛)𝑛≥0 be defined by

𝑎0 = 1, 𝑎𝑛 = 𝑎𝑛−1 + 𝑛 (𝑛 ≥ 1).

. Determine an expression for 𝑎𝑛 .

Let 𝐴(𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥
𝑛

be its generating function. Multiply the recurrence by 𝑥𝑛 and sum over

𝑛 ≥ 1: ∑
𝑛≥1

𝑎𝑛𝑥
𝑛 =

∑
𝑛≥1

𝑎𝑛−1𝑥
𝑛 +

∑
𝑛≥1

𝑛𝑥𝑛 .

The left-hand side is 𝐴(𝑥)− 𝑎0 = 𝐴(𝑥)−1. The first sum on the right is 𝑥𝐴(𝑥). Using the standard

series ∑
𝑛≥1

𝑛𝑥𝑛 =
𝑥

(1 − 𝑥)2 ,

we get

𝐴(𝑥) − 1 = 𝑥𝐴(𝑥) + 𝑥

(1 − 𝑥)2 .

Thus

(1 − 𝑥)𝐴(𝑥) = 1 + 𝑥

(1 − 𝑥)2 , 𝐴(𝑥) = 1

1 − 𝑥 +
𝑥

(1 − 𝑥)3 .

If we want an explicit formula for 𝑎𝑛 , we expand each term:

1

1 − 𝑥 =

∑
𝑛≥0

𝑥𝑛 ,
1

(1 − 𝑥)3 =

∑
𝑛≥0

(
𝑛 + 2

2

)
𝑥𝑛 .

Hence

𝐴(𝑥) =
∑
𝑛≥0

𝑥𝑛 +
∑
𝑛≥0

(
𝑛 + 2

2

)
𝑥𝑛+1 =

∑
𝑛≥0

(
1 +

(
𝑛 + 1

2

))
𝑥𝑛 .

Therefore

𝑎𝑛 = 1 +
(
𝑛 + 1

2

)
= 1 + 𝑛(𝑛 + 1)

2

,

in agreement with solving the recurrence by summation.

Generating function methods for recurrences 48

6.1 The negative binomial / “stars and bars” generating function

Proposition 6.1 (Negative binomial generating function). Let 𝑘 ∈ N and 𝑐 ∈ C. Then

1

(1 − 𝑐𝑥)𝑘 =

∑
𝑛≥0

(
𝑛 + 𝑘 − 1

𝑘 − 1

)
𝑐𝑛𝑥𝑛 .

Proof. Consider the product

1

(1 − 𝑐𝑥)𝑘 =
1

1 − 𝑐𝑥 · · ·
1

1 − 𝑐𝑥︸ ︷︷ ︸
𝑘 copies

=

𝑘∏
𝑗=1

(
1 + 𝑐𝑥 + 𝑐2𝑥2 + · · ·

)
.

To obtain a term 𝑐𝑛𝑥𝑛 in the product, we must choose from the 𝑗-th factor a term 𝑐ℓ 𝑗𝑥ℓ 𝑗 for some

nonnegative integers ℓ1 , . . . , ℓ𝑘 with

ℓ1 + · · · + ℓ𝑘 = 𝑛.

Each such 𝑘-tuple contributes 𝑐𝑛𝑥𝑛 to the product, and (??) follows once we count how many

𝑘-tuples (ℓ1 , . . . , ℓ𝑘) of nonnegative integers have sum 𝑛.

By the standard “stars and bars” argument, the number of solutions to ℓ1 + · · · + ℓ𝑘 = 𝑛

in nonnegative integers is

(
𝑛+𝑘−1

𝑘−1

)
, so the coefficient of 𝑥𝑛 on the right-hand side is exactly(

𝑛+𝑘−1

𝑘−1

)
𝑐𝑛 . □

Corollary 6.2 (Number of weak compositions). For fixed 𝑘, the number of 𝑘-tuples of

nonnegative integers (ℓ1 , . . . , ℓ𝑘)with ℓ1 + · · · + ℓ𝑘 = 𝑛 is(
𝑛 + 𝑘 − 1

𝑘 − 1

)
= [𝑥𝑛] 1

(1 − 𝑥)𝑘 .

6.2 Structure theorem for linear recurrences

Let (𝑎𝑛)𝑛≥0 satisfy a linear recurrence with constant coefficients of order 𝑡:

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + · · · + 𝑐𝑡𝑎𝑛−𝑡 (𝑛 ≥ 𝑡),

where 𝑐𝑡 ≠ 0, and let 𝑄(𝑥) be the associated polynomial

𝑄(𝑥) := 1 − 𝑐1𝑥 − 𝑐2𝑥
2 − · · · − 𝑐𝑡𝑥𝑡 .

Suppose 𝑄(𝑥) has the factorization

𝑄(𝑥) =
𝑠∏
𝑖=1

(1 − 𝛼𝑖𝑥)𝑑𝑖

with distinct 𝛼𝑖 and positive integers 𝑑𝑖 .

Generating function methods for recurrences 49

Theorem 6.3 (Main structure theorem for recurrences). Let 𝐴(𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥
𝑛

be the

generating function of (𝑎𝑛)𝑛≥0. The following are equivalent:

1. The sequence (𝑎𝑛) satisfies the recurrence 𝑎𝑛 = 𝑐1𝑎𝑛−1 + · · · + 𝑐𝑡𝑎𝑛−𝑡 for all 𝑛 ≥ 𝑡.
2. 𝐴(𝑥) is a rational function of the form

𝐴(𝑥) = 𝑃(𝑥)
𝑄(𝑥)

for some polynomial 𝑃(𝑥) of degree < 𝑡.

3. 𝐴(𝑥) can be written as a linear combination of the basic generating functions

1

(1 − 𝛼𝑖𝑥)𝑗
, 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑑𝑖 .

4. The terms 𝑎𝑛 admit a closed form

𝑎𝑛 =

𝑠∑
𝑖=1

𝑃𝑖(𝑛) 𝛼 𝑛
𝑖 ,

where each 𝑃𝑖 is a polynomial of degree < 𝑑𝑖 .

Remark 6.1. The proof is a systematic version of what we did in the example: writing 𝐴(𝑥) as

a rational function, performing partial fraction decomposition into powers of (1 − 𝛼𝑖𝑥)−1
, and

then reading off coefficients using the negative binomial expansion.

6.3 Example: Catalan numbers

Recall that the Catalan numbers (𝐶𝑛)𝑛≥0 are defined recursively by

𝐶0 = 1, 𝐶𝑛 =

𝑛∑
𝑘=1

𝐶𝑘−1 𝐶𝑛−𝑘 (𝑛 ≥ 1).

Proposition 6.4. Let

𝐶(𝑥) :=

∑
𝑛≥0

𝐶𝑛𝑥
𝑛

be the generating function of the Catalan sequence. Then

𝐶(𝑥) = 1 −
√

1 − 4𝑥

2𝑥
,

and hence

𝐶𝑛 =
1

𝑛 + 1

(
2𝑛

𝑛

)
(𝑛 ≥ 0).

Proof. Multiply the recurrence 𝐶𝑛 =
∑𝑛
𝑘=1

𝐶𝑘−1𝐶𝑛−𝑘 by 𝑥𝑛 and sum over 𝑛 ≥ 1:∑
𝑛≥1

𝐶𝑛𝑥
𝑛 =

∑
𝑛≥1

𝑛∑
𝑘=1

𝐶𝑘−1𝐶𝑛−𝑘𝑥
𝑛 .

Generating function methods for recurrences 50

The left-hand side is 𝐶(𝑥) − 𝐶0 = 𝐶(𝑥) − 1. On the right-hand side, make the change of variables

𝑖 = 𝑘 − 1, 𝑗 = 𝑛 − 𝑘. Then 𝑖 , 𝑗 ≥ 0 and 𝑖 + 𝑗 = 𝑛 − 1, so∑
𝑛≥1

𝑛∑
𝑘=1

𝐶𝑘−1𝐶𝑛−𝑘𝑥
𝑛 =

∑
𝑖 , 𝑗≥0

𝐶𝑖𝐶 𝑗𝑥
𝑖+𝑗+1 = 𝑥

(∑
𝑖≥0

𝐶𝑖𝑥
𝑖
) (∑

𝑗≥0

𝐶 𝑗𝑥
𝑗
)
= 𝑥𝐶(𝑥)2.

Thus

𝐶(𝑥) − 1 = 𝑥𝐶(𝑥)2 , i.e. 𝑥𝐶(𝑥)2 − 𝐶(𝑥) + 1 = 0.

This is a quadratic equation for 𝐶(𝑥):

𝐶(𝑥) = 1 ±
√

1 − 4𝑥

2𝑥
.

As a formal power series, 𝐶(𝑥) has constant term 𝐶0 = 1, whereas
1+
√

1−4𝑥
2𝑥 has a pole at 𝑥 = 0, so

we must take the minus sign:

𝐶(𝑥) = 1 −
√

1 − 4𝑥

2𝑥
.

To extract the coefficients 𝐶𝑛 we expand

√
1 − 4𝑥 using the binomial series with exponent

1

2
:

√
1 − 4𝑥 = (1 − 4𝑥)1/2 =

∑
𝑚≥0

(
1/2
𝑚

)
(−4𝑥)𝑚 .

It is more convenient to expand (1 − 4𝑥)−1/2
and then integrate, or directly note that

1 −
√

1 − 4𝑥 = 1 −
∑
𝑚≥0

(
1/2
𝑚

)
(−4𝑥)𝑚 =

∑
𝑚≥1

(
−
(
1/2
𝑚

)
(−4)𝑚

)
𝑥𝑚 .

Dividing by 2𝑥 and simplifying the binomial coefficients yields the well-known closed form

𝐶𝑛 =
1

𝑛 + 1

(
2𝑛

𝑛

)
, 𝑛 ≥ 0.

(One standard way is to use the identity

(
1/2
𝑚

)
=
(−1)𝑚−1

4
𝑚

1

𝑚

(
2𝑚
𝑚

)
.) □

Generating function methods for recurrences 51

6.4 Main theorem of linear recurrences

Let 𝑐1 , . . . , 𝑐𝑘 ∈ C with 𝑐𝑘 ≠ 0, and set

𝑄(𝑥) = 1 − 𝑐1𝑥 − · · · − 𝑐𝑘𝑥𝑘 =
𝑡∏
𝑖=1

(1 − 𝑑𝑖𝑥)𝑒𝑖 ,

where the 𝑑𝑖 are distinct complex numbers and the 𝑒𝑖 ≥ 1 are their multiplicities.

Theorem 6.5 (Main theorem). For a complex sequence 𝑎0 , 𝑎1 , . . ., the following are equiva-

lent.

(A) The sequence satisfies the linear recurrence

𝑎𝑛 = 𝑐1𝑎𝑛−1 + · · · + 𝑐𝑘𝑎𝑛−𝑘 (𝑛 ≥ 𝑘).

(B) The ordinary generating function 𝐴(𝑥) = ∑
𝑛≥0

𝑎𝑛𝑥
𝑛

is a rational function of the form

𝐴(𝑥) = 𝑃(𝑥)
𝑄(𝑥)

where 𝑃(𝑥) is a polynomial of degree < 𝑘.

(C) 𝐴(𝑥) can be written as a finite linear combination

𝐴(𝑥) =
𝑡∑
𝑖=1

𝑒𝑖∑
ℓ=1

𝛼𝑖 ,ℓ
(1 − 𝑑𝑖𝑥)ℓ

with complex coefficients 𝛼𝑖 ,ℓ .

(D) There are polynomials 𝑃𝑖 ,ℓ (𝑛)with deg𝑃𝑖 ,ℓ ≤ 𝑒𝑖 − 1 such that

𝑎𝑛 =

𝑡∑
𝑖=1

𝑒𝑖∑
ℓ=1

𝑃𝑖 ,ℓ (𝑛) 𝑑 𝑛𝑖 (𝑛 ≥ 0).

Example 6.2 (Catalan numbers). Let 𝐶0 = 1 and for 𝑛 ≥ 0,

𝐶𝑛+1 =

𝑛∑
𝑖=0

𝐶𝑖𝐶𝑛−𝑖 .

Let 𝐶(𝑥) = ∑
𝑛≥0

𝐶𝑛𝑥
𝑛
. Then

𝐶(𝑥) − 1 = 𝑥𝐶(𝑥)2 ,
so 𝑥𝐶(𝑥)2 − 𝐶(𝑥) + 1 = 0. Solving this quadratic for 𝐶(𝑥) gives

𝐶(𝑥) = 1 −
√

1 − 4𝑥

2𝑥
,

where we choose the minus sign so that 𝐶(0) = 1. Expand

√
1 − 4𝑥 using the extended binomial

theorem:

(1 − 4𝑥)1/2 =

∑
𝑛≥0

(
1/2
𝑛

)
(−4𝑥)𝑛 =

∑
𝑛≥0

(
2𝑛

𝑛

)
(−1)𝑛

4
𝑛
(4𝑥)𝑛 =

∑
𝑛≥0

(−1)𝑛
(
2𝑛

𝑛

)
𝑥𝑛 .

Generating function methods for recurrences 52

From

𝐶(𝑥) = 1 −
√

1 − 4𝑥

2𝑥
=

∑
𝑛≥0

1

𝑛 + 1

(
2𝑛

𝑛

)
𝑥𝑛

we read off the closed form

𝐶𝑛 =
1

𝑛 + 1

(
2𝑛

𝑛

)
.

6.5 Substitution Method

Recall a derangement of [𝑛] = {1, 2, . . . , 𝑛} is a permutation with no fixed points. Let 𝐷𝑛 denote

the number of derangements of [𝑛]. We proved previously that 𝐷𝑛 satisfies

𝐷0 = 1, 𝐷1 = 0, 𝐷𝑛 = (𝑛 − 1)
(
𝐷𝑛−1 + 𝐷𝑛−2

)
(𝑛 ≥ 2).

We will obtain a closed form solution for 𝐷𝑛 . First, we convert this into a first order recurrence.

Lemma 6.6 (A first-order recurrence). For all 𝑛 ≥ 1,

𝐷𝑛 = 𝑛𝐷𝑛−1 + (−1)𝑛 .

Proof. We prove the identity by induction on 𝑛.

For 𝑛 = 1, we have 𝐷1 = 0 and 1 · 𝐷0 + (−1)1 = 1 − 1 = 0, so the formula holds.

Assume 𝑛 ≥ 2 and that the statement holds for 𝑛 − 1, i.e. 𝐷𝑛−1 = (𝑛 − 1)𝐷𝑛−2 + (−1)𝑛−1
. We have

𝐷𝑛 = (𝑛 − 1)𝐷𝑛−1 + (𝑛 − 1)𝐷𝑛−2.

Now substitute (𝑛 − 1)𝐷𝑛−2 = 𝐷𝑛−1 − (−1)𝑛−1
from the induction hypothesis:

𝐷𝑛 = (𝑛 − 1)𝐷𝑛−1 +
(
𝐷𝑛−1 − (−1)𝑛−1

)
= 𝑛𝐷𝑛−1 − (−1)𝑛−1 = 𝑛𝐷𝑛−1 + (−1)𝑛 ,

as desired. □

We will now demonstrate the substitution method to convert this first order recurrence relation

for 𝐷𝑛 into a closed form.

Define 𝑏𝑛 := 𝐷𝑛/𝑛!. Then for all 𝑛 ≥ 1,

𝑏𝑛 = 𝑏𝑛−1 +
(−1)𝑛
𝑛!

, 𝑏0 = 1.

Consequently,

𝑏𝑛 =

𝑛∑
𝑘=0

(−1)𝑘
𝑘!

and hence 𝐷𝑛 = 𝑛!

𝑛∑
𝑘=0

(−1)𝑘
𝑘!

.

Divide the first-order recurrence from the lemma by 𝑛!:

𝐷𝑛

𝑛!

=
𝑛𝐷𝑛−1

𝑛!

+ (−1)𝑛
𝑛!

=⇒ 𝑏𝑛 = 𝑏𝑛−1 +
(−1)𝑛
𝑛!

.

Now telescope from 0 to 𝑛:

𝑏𝑛 = 𝑏0 +
𝑛∑
𝑘=1

(−1)𝑘
𝑘!

= 1 +
𝑛∑
𝑘=1

(−1)𝑘
𝑘!

=

𝑛∑
𝑘=0

(−1)𝑘
𝑘!

.

Multiplying by 𝑛! gives the closed form for 𝐷𝑛 .

Generating function methods for recurrences 53

6.6 Stirling’s formula

From the exact closed form

𝐷𝑛

𝑛!

=

𝑛∑
𝑘=0

(−1)𝑘
𝑘!

,

we immediately see what happens as 𝑛 →∞: the partial sums converge to the full exponential

series

∞∑
𝑘=0

(−1)𝑘
𝑘!

= 𝑒−1.

Hence

𝐷𝑛

𝑛!

−→ 1

𝑒
and therefore 𝐷𝑛 ∼

𝑛!

𝑒
.

In words: a uniformly random permutation of [𝑛] has probability tending to 1/𝑒 of having no fixed
points. Equivalently, 𝐷𝑛 is asymptotically 𝑛!/𝑒.
This naturally raises the next question: how large is 𝑛! itself? The answer is given by Stirling’s
formula, which provides an extremely accurate approximation to factorial growth:

𝑛! ∼
√

2𝜋𝑛
(
𝑛

𝑒

)𝑛
.

Remark 6.2. Moreover, one can refine this to an asymptotic expansion (see the book):

𝑛! ∼
√

2𝜋𝑛
(
𝑛

𝑒

)𝑛 (
1 + 1

12𝑛
+ 1

288𝑛2

+ · · ·
)
.

Example 6.3. Flip 2𝑛 fair coins independently, and let 𝐻 be the number of heads. Then the

probability of getting exactly 𝑛 heads is

P(𝐻 = 𝑛) =
(
2𝑛
𝑛

)
2

2𝑛
.

Stirling’s formula gives an asymptotic approximation for the probability

(
2𝑛

𝑛

)
=
(2𝑛)!
(𝑛!)2 ∼

√
2𝜋(2𝑛)

(
2𝑛
𝑒

)
2𝑛(√

2𝜋𝑛
(
𝑛
𝑒

)𝑛)2

.

(
2𝑛
𝑒

)
2𝑛(

𝑛
𝑒

)
2𝑛

= 2
2𝑛 = 4

𝑛

√
4𝜋𝑛

2𝜋𝑛
=

1√
𝜋𝑛

.

Therefore (
2𝑛

𝑛

)
∼ 4

𝑛

√
𝜋𝑛

.

Dividing by 2
2𝑛 = 4

𝑛
gives the desired asymptotic for the probability:

P(𝐻 = 𝑛) =
(
2𝑛
𝑛

)
4
𝑛
∼ 1√

𝜋𝑛
.

Ordinary generating functions 54

7 Ordinary generating functions

7.1 Why generating functions exist

In counting problems, we often have a family of numbers

𝑎0 , 𝑎1 , 𝑎2 , . . .

where 𝑎𝑛 counts “how many objects of size 𝑛” we have. A generating function is a way to

package this entire infinite list into one algebraic object so that:

• algebraic operations (like adding or multiplying series) correspond to natural combinatorial

operations (like disjoint union or building composite objects),

• extracting the coefficient of 𝑥𝑛 recovers the quantity we care about.

The key idea is: instead of storing the number 𝑎𝑛 in a sequence indexed by 𝑛, we store it as the

coefficient of 𝑥𝑛 in a formal series.

7.2 Combinatorial classes and weights

Definition 7.1 (Combinatorial class and weight). A combinatorial class is just a set 𝒮 whose

elements we think of as combinatorial objects (strings, subsets, graphs, partitions, etc.). A

weight function on 𝒮 is a map

𝑤 : 𝒮 → Z≥0.

The intended meaning is that 𝑤(𝑠)measures the “size” of an object 𝑠.

We assume a mild finiteness condition: for every 𝑛 ≥ 0, there are only finitely many 𝑠 ∈ 𝒮 with

𝑤(𝑠) = 𝑛.

7.3 Definition of the OGF

Definition 7.2 (Ordinary generating function (OGF)). Let (𝒮 , 𝑤) be a weighted combinato-

rial class. Its ordinary generating function is

𝑆(𝑥) :=

∑
𝑠∈𝒮

𝑥𝑤(𝑠).

Define

𝑎𝑛 :=
��{𝑠 ∈ 𝒮 : 𝑤(𝑠) = 𝑛}

��.
Then grouping terms in the sum by weight gives the equivalent form

𝑆(𝑥) =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛 .

So the coefficient [𝑥𝑛]𝑆(𝑥) is exactly the number of objects of weight 𝑛.

Ordinary generating functions 55

Definition 7.3 (Formal power series). A formal power series over a ring 𝑅 is an expression

𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛 (𝑎𝑛 ∈ 𝑅),

where we treat 𝑥 as an indeterminate and manipulate the series purely algebraically (we do

not care about convergence).

We write [𝑥𝑛]𝐴(𝑥) for the coefficient of 𝑥𝑛 .

The set of all formal power series in 𝑥 with coefficients in R (or C) forms an infinite-

dimensional vector space and a commutative ring under coefficientwise addition and Cauchy

product.

• The multiplicative identity is 1 = 1 + 0𝑥 + 0𝑥2 +
• A series 𝐴(𝑥) has a multiplicative inverse 𝐴(𝑥)−1

(i.e., there exists 𝐵(𝑥) with 𝐴(𝑥)𝐵(𝑥) = 1)

iff its constant term is nonzero:

[𝑥0]𝐴(𝑥) ≠ 0.

7.4 Two fundamental combinatorial operations

The real power of OGFs is that basic constructions on classes correspond to simple algebra on

generating functions.

7.4.1 Disjoint union↔ addition

Definition 7.4 (Disjoint union of classes). If𝒜 and ℬ are weighted classes with the same

weight rule, their disjoint union𝒜⊔ℬ consists of objects from either class, tagged by which

class they came from, and the weight is preserved.

Proposition 7.1 (Addition rule). If 𝐴(𝑥) and 𝐵(𝑥) are the OGFs of𝒜 and ℬ, then the OGF

of𝒜 ⊔ℬ is

𝐴(𝑥) + 𝐵(𝑥).

Proof. By definition, ∑
𝑠∈𝒜⊔ℬ

𝑥𝑤(𝑠) =
∑
𝑎∈𝒜

𝑥𝑤(𝑎) +
∑
𝑏∈ℬ

𝑥𝑤(𝑏).

□

7.4.2 Product construction↔multiplication (convolution)

Ordinary generating functions 56

Definition 7.5 (Product of classes). Given weighted classes 𝒜,ℬ, define their product

𝒜 ×ℬ to be the class of ordered pairs (𝑎, 𝑏) with 𝑎 ∈ 𝒜, 𝑏 ∈ ℬ, equipped with the additive

weight

𝑤(𝑎, 𝑏) = 𝑤(𝑎) + 𝑤(𝑏).
Think: “build a composite object by choosing one 𝐴-object and one 𝐵-object, and size adds.”

Proposition 7.2 (Multiplication rule / convolution). If 𝐴(𝑥) = ∑
𝑎𝑛𝑥

𝑛
and 𝐵(𝑥) = ∑

𝑏𝑛𝑥
𝑛

are the OGFs of𝒜 and ℬ, then the OGF of𝒜 ×ℬ is

𝐴(𝑥)𝐵(𝑥) =
∑
𝑛≥0

𝑐𝑛𝑥
𝑛

where 𝑐𝑛 =

𝑛∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘 .

Equivalently, 𝑐𝑛 counts pairs (𝑎, 𝑏)with 𝑤(𝑎) + 𝑤(𝑏) = 𝑛.

Proof. Start from the definition of OGF:∑
(𝑎,𝑏)∈𝒜×ℬ

𝑥𝑤(𝑎,𝑏) =
∑
𝑎∈𝒜

∑
𝑏∈ℬ

𝑥𝑤(𝑎)+𝑤(𝑏) =

(∑
𝑎∈𝒜

𝑥𝑤(𝑎)
) (∑

𝑏∈ℬ
𝑥𝑤(𝑏)

)
= 𝐴(𝑥)𝐵(𝑥).

If we now write 𝐴(𝑥) = ∑
𝑎𝑛𝑥

𝑛
and 𝐵(𝑥) = ∑

𝑏𝑛𝑥
𝑛

and expand, the coefficient of 𝑥𝑛 is exactly∑𝑛
𝑘=0

𝑎𝑘𝑏𝑛−𝑘 . □

Example 7.1. Fix 𝑛. Let 𝒮 be the class of all subsets 𝑆 ⊆ [𝑛], and assign weight 𝑤(𝑆) = |𝑆|.

Step 1: describe a subset as a product of independent choices. For each element 𝑖 ∈ [𝑛], we

make an independent binary decision: either we do not include 𝑖 (weight contribution 0), or we

do include 𝑖 (weight contribution 1). Thus, for a single element 𝑖, the local class is

𝒮𝑖 = {exclude 𝑖 , include 𝑖}, 𝑆𝑖(𝑥) = 1 + 𝑥.

Step 2: combine the 𝑛 choices using the Product Rule. A subset of [𝑛] is exactly a choice from

𝒮1 × · · · × 𝒮𝑛 , and weights add under products:

𝒮 = 𝒮1 × · · · × 𝒮𝑛 .

Therefore, by the Product Rule,

𝑆(𝑥) =
𝑛∏
𝑖=1

𝑆𝑖(𝑥) = (1 + 𝑥)𝑛 .

Step 3: read off coefficients. Since [𝑥𝑘]𝑆(𝑥) counts weight-𝑘 objects, we get

[𝑥𝑘]𝑆(𝑥) =
(
𝑛

𝑘

)
,

the number of 𝑘-element subsets of [𝑛].

Ordinary generating functions 57

Example 7.2. Fix 𝑛. Letℳ be the class of all multisets of elements from [𝑛]. Define the

weight 𝑤(𝑀) to be the total size of the multiset (counting multiplicity).

Step 1: describe a multiset as 𝑛 independent multiplicity choices. For each element type

𝑖 ∈ [𝑛], we choose a multiplicity

𝑚𝑖 ∈ {0, 1, 2, . . . }.
Choosing multiplicity 𝑚𝑖 contributes weight 𝑚𝑖 . So the local class for a single type 𝑖 is

ℳ𝑖 = {0, 1, 2, . . . }, 𝑀𝑖(𝑥) =
∑
𝑚≥0

𝑥𝑚 =
1

1 − 𝑥 .

Step 2: combine types using the Product Rule. A multiset is exactly the data of (𝑚1 , . . . , 𝑚𝑛),
i.e.

ℳ = ℳ1 × · · · ×ℳ𝑛 ,

and the total size is 𝑚1 + · · · + 𝑚𝑛 . Hence, by the Product Rule,

𝑀(𝑥) =
𝑛∏
𝑖=1

𝑀𝑖(𝑥) =
(

1

1 − 𝑥
)𝑛
.

Step 3: interpret the coefficient (stars and bars). The coefficient [𝑥𝑘]𝑀(𝑥) counts 𝑛-tuples

(𝑚1 , . . . , 𝑚𝑛) of nonnegative integers with sum 𝑘, i.e. the number of 𝑘-multisets from [𝑛]. Thus

[𝑥𝑘]𝑀(𝑥) =
(
𝑛 + 𝑘 − 1

𝑛 − 1

)
.

7.5 Restricted multiplicities

Up to now, a multiset on [𝑛] = {1, 2, . . . , 𝑛} can be encoded by an 𝑛-tuple of multiplicities

(𝑚1 , 𝑚2 , . . . , 𝑚𝑛), 𝑚𝑖 ∈ {0, 1, 2, . . . },

where 𝑚𝑖 is how many copies of element 𝑖 appear. We use the weight

𝑤(𝑚1 , . . . , 𝑚𝑛) = 𝑚1 + · · · + 𝑚𝑛

(the total size, counting multiplicity). The ordinary generating function is

𝑀(𝑥) =
∑

(𝑚1 ,...,𝑚𝑛)
𝑥𝑤(𝑚1 ,...,𝑚𝑛).

Why the “one-type factor” works. If we fix a single type 𝑖, and we allow it to appear with

multiplicity in some set 𝐵𝑖 ⊆ N = {0, 1, 2, . . . }, then the contribution of type 𝑖 alone is the series

𝐴𝑖(𝑥) =
∑
𝑏∈𝐵𝑖

𝑥𝑏 ,

because choosing multiplicity 𝑏 contributes weight 𝑏.

Ordinary generating functions 58

Now the crucial point: the 𝑛 choices of multiplicities are independent across types, and the

total weight is the sum of the individual weights. Therefore, by the Product Rule (for weighted

classes),

𝐴(𝑥) =
𝑛∏
𝑖=1

𝐴𝑖(𝑥).

The coefficient [𝑥𝑘]𝐴(𝑥) counts the number of allowed multisets of total size 𝑘.

Special case: the same restriction for every type. If every element type has the same allowed

multiplicity set 𝐵, then 𝐴𝑖(𝑥) = 𝐴one(𝑥) for all 𝑖, and

𝐴(𝑥) =
(
𝐴one(𝑥)

)𝑛
.

Example 7.3 (Even multiplicities). Suppose each type must appear an even number of times:

𝐵 = {0, 2, 4, 6, . . . }.

For one type,

𝐴one(𝑥) =
∑
𝑡≥0

𝑥2𝑡 = 1 + 𝑥2 + 𝑥4 + · · · = 1

1 − 𝑥2

.

Hence, by the Product Rule,

𝐴(𝑥) =
(

1

1 − 𝑥2

)𝑛
.

Equivalently, [𝑥𝑘]𝐴(𝑥) = 0 for odd 𝑘, and for even 𝑘 it counts the number of ways to write 𝑘 as a

sum of 𝑛 even nonnegative integers.

Example 7.4 (Multiplicity at least 2). Suppose each type must appear at least twice:

𝐵 = {2, 3, 4, . . . }.

For one type,

𝐴one(𝑥) =
∑
𝑏≥2

𝑥𝑏 = 𝑥2(1 + 𝑥 + 𝑥2 + · · ·) = 𝑥2

1 − 𝑥 .

Therefore

𝐴(𝑥) =
(
𝑥2

1 − 𝑥
)𝑛
.

Here the factor 𝑥2𝑛
is doing exactly what you think: it forces a baseline of 2 copies of each of the

𝑛 types before any “extra” copies are distributed.

Fully general restriction. If each type 𝑖 has its own allowed multiplicity set 𝐵𝑖 ⊆ N, then the

one-type series is

𝐴𝑖(𝑥) =
∑
𝑏∈𝐵𝑖

𝑥𝑏 ,

and the total OGF for multisets respecting all restrictions is

𝐴(𝑥) =
𝑛∏
𝑖=1

𝐴𝑖(𝑥).

Ordinary generating functions 59

Example 7.5 (Making change (order does not matter)). Fix a finite set of coin denominations

𝐷 = {𝑑1 , 𝑑2 , . . . , 𝑑𝑟} ⊆ Z>0.

We want to count the number of ways to make total value 𝑛 using these coins, where a way
means: for each denomination 𝑑 ∈ 𝐷, we choose how many coins of value 𝑑 we use (order is

irrelevant).

Step 1: Define the combinatorial class. A choice of coins is exactly an 𝑟-tuple of nonnegative

integers

(𝑚𝑑1
, 𝑚𝑑2

, . . . , 𝑚𝑑𝑟) ∈ Z𝑟≥0
,

where 𝑚𝑑 means “how many 𝑑-coins we take.” So define the class

𝒞 = {(𝑚𝑑)𝑑∈𝐷 : 𝑚𝑑 ∈ Z≥0}.

Step 2: Define the weight function. The most natural weight is the total value of the chosen

coins:

𝑤
(
(𝑚𝑑)𝑑∈𝐷

)
=

∑
𝑑∈𝐷

𝑑 𝑚𝑑 .

For example, if 𝐷 = {1, 2, 5} and we choose (𝑚1 , 𝑚2 , 𝑚5) = (2, 1, 1), then

𝑤(2, 1, 1) = 1 · 2 + 2 · 1 + 5 · 1 = 9.

Step 3: Define the OGF from the class and the weight. By definition, the ordinary generating

function of (𝒞 , 𝑤) is
𝐶(𝑥) =

∑
𝑐∈𝒞

𝑥𝑤(𝑐).

So the coefficient [𝑥𝑛]𝐶(𝑥) counts how many choices of coin multiplicities produce total value

exactly 𝑛.

Step 4: Break the class into independent pieces (Product Rule). For each denomination 𝑑 ∈ 𝐷,

define the single-denomination class

𝒞𝑑 = {𝑚𝑑 : 𝑚𝑑 ∈ Z≥0},
with weight 𝑤𝑑(𝑚𝑑) = 𝑑 𝑚𝑑.

Choosing a full coin-multiset is the same as choosing 𝑚𝑑 independently for each 𝑑 ∈ 𝐷, and

the total value is the sum of the values contributed by each denomination. This is exactly the

condition for the Product Rule.

Step 5: Compute each factor. For a fixed 𝑑, the OGF is

𝐶𝑑(𝑥) =
∑
𝑚𝑑≥0

𝑥𝑤𝑑(𝑚𝑑) =
∑
𝑚𝑑≥0

𝑥𝑑𝑚𝑑 = 1 + 𝑥𝑑 + 𝑥2𝑑 + 𝑥3𝑑 + · · · = 1

1 − 𝑥𝑑 .

Step 6: Multiply the factors (Product Rule). Therefore the total OGF is

𝐶(𝑥) =
∏
𝑑∈𝐷

𝐶𝑑(𝑥) =
∏
𝑑∈𝐷

1

1 − 𝑥𝑑 .

Conclusion:

[𝑥𝑛]
∏
𝑑∈𝐷

1

1 − 𝑥𝑑

equals the number of ways to make value 𝑛 using denominations 𝐷, where order does not
matter.

Ordinary generating functions 60

7.6 Bivariate OGFs (tracking two statistics)

Sometimes objects have two natural statistics (say size and number of parts). Then we use two

variables and track both at once.

Definition 7.6 (Bivariate OGF). Let 𝒮 be a class with two weight functions 𝑤1 : 𝒮 → Z≥0

and 𝑤2 : 𝒮 → Z≥0. Its bivariate OGF is

𝑆(𝑥, 𝑦) =
∑
𝑠∈𝒮

𝑥𝑤1(𝑠)𝑦𝑤2(𝑠).

Equivalently, if 𝑎𝑛,𝑘 counts objects with 𝑤1 = 𝑛 and 𝑤2 = 𝑘, then

𝑆(𝑥, 𝑦) =
∑
𝑛,𝑘≥0

𝑎𝑛,𝑘𝑥
𝑛𝑦𝑘 .

Example 7.6 (Pascal’s identity via a bivariate OGF). Let 𝒮 be the class of pairs (𝑛, 𝑆) where

𝑛 ≥ 0 and 𝑆 ⊆ [𝑛]. Define two weights:

𝑤1(𝑛, 𝑆) = 𝑛, 𝑤2(𝑛, 𝑆) = |𝑆|.

Then the bivariate OGF is

𝑆(𝑥, 𝑦) =
∑
𝑛≥0

∑
𝑆⊆[𝑛]

𝑥𝑛𝑦 |𝑆| =
∑
𝑛≥0

𝑥𝑛(1 + 𝑦)𝑛 =
1

1 − 𝑥(1 + 𝑦) .

Expanding coefficients gives [𝑥𝑛𝑦𝑘]𝑆(𝑥, 𝑦) =
(
𝑛
𝑘

)
.

Now the identity

(1 − 𝑥 − 𝑥𝑦) 𝑆(𝑥, 𝑦) = 1

implies that the coefficient of 𝑥𝑛𝑦𝑘 for 𝑛, 𝑘 ≥ 1 is zero, i.e.(
𝑛

𝑘

)
−

(
𝑛 − 1

𝑘

)
−

(
𝑛 − 1

𝑘 − 1

)
= 0,

which is Pascal’s identity.

7.7 Extracting coefficients

Definition 7.7. Let

𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛

be an ordinary generating function. The formal derivative of 𝐴 is defined term-by-term by

𝐴′(𝑥) =
∑
𝑛≥1

𝑛𝑎𝑛𝑥
𝑛−1.

Everything here is purely algebraic: we are differentiating a formal power series, so there are no

convergence assumptions.

Ordinary generating functions 61

Basic rules. The formal derivative satisfies the usual identities:

(𝐴 + 𝐵)′ = 𝐴′ + 𝐵′ , (𝐴𝐵)′ = 𝐴′𝐵 + 𝐴𝐵′.

Multiplying by 𝑥 shifts the exponents back up:

𝑥𝐴′(𝑥) =
∑
𝑛≥1

𝑛𝑎𝑛𝑥
𝑛 .

So for every 𝑛 ≥ 0,

[𝑥𝑛]
(
𝑥𝐴′(𝑥)

)
= 𝑛 𝑎𝑛 .

In words: 𝑥 𝑑
𝑑𝑥 multiplies the 𝑛th coefficient by 𝑛.

Example 7.7 (Differentiating the geometric series).

𝑥

(1 − 𝑥)2 =

∑
𝑛≥1

𝑛𝑥𝑛 .

Start with the geometric series identity

1

1 − 𝑥 =

∑
𝑛≥0

𝑥𝑛 .

Differentiate formally:(
1

1 − 𝑥

) ′
=

1

(1 − 𝑥)2 and

(∑
𝑛≥0

𝑥𝑛

) ′
=

∑
𝑛≥1

𝑛𝑥𝑛−1.

Hence

1

(1 − 𝑥)2 =

∑
𝑛≥1

𝑛𝑥𝑛−1.

Multiplying by 𝑥 gives the cleaner, more commonly used form

𝑥

(1 − 𝑥)2 =

∑
𝑛≥1

𝑛𝑥𝑛 .

(And if you want the sum from 𝑛 ≥ 0, the 𝑛 = 0 term is just 0 anyway.)

Example 7.8. For each integer 𝑚 ≥ 1,

1

(1 − 𝑥)𝑚 =

∑
𝑛≥0

(
𝑛 + 𝑚 − 1

𝑚 − 1

)
𝑥𝑛 .

One way to prove this is by induction on 𝑚: the case 𝑚 = 1 is the geometric series, and

differentiating both sides of the 𝑚th case produces the (𝑚 + 1)st case after a short coefficient

simplification.

Ordinary generating functions 62

7.8 Shifting indices

Given an OGF

𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛 ,

multiplication by a power of 𝑥 shifts the coefficients:

𝑥𝑘𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛𝑥
𝑛+𝑘 =

∑
𝑡≥𝑘

𝑎𝑡−𝑘𝑥
𝑡 .

Thus

[𝑥𝑡]
(
𝑥𝑘𝐴(𝑥)

)
=


𝑎𝑡−𝑘 , 𝑡 ≥ 𝑘,

0, 𝑡 < 𝑘.

Example 7.9. ∑
𝑡≥𝑘

(
𝑡

𝑘

)
𝑥𝑡 =

𝑥𝑘

(1 − 𝑥)𝑘+1

.

Recall

1

1 − 𝑥 = 1 + 𝑥 + 𝑥2 + · · · ,
so

1

(1 − 𝑥)𝑘+1

=
(
1 + 𝑥 + 𝑥2 + · · ·

) 𝑘+1

.

When we expand this product, choosing 𝑥𝑎𝑖 from the 𝑖th factor produces the monomial

𝑥𝑎0+···+𝑎𝑘
. Hence the coefficient of 𝑥𝑛 counts the number of (𝑘 + 1)-tuples (𝑎0 , . . . , 𝑎𝑘) ∈ Z𝑘+1

≥0
with

𝑎0 + · · · + 𝑎𝑘 = 𝑛, which is

(
𝑛+𝑘
𝑘

)
by stars and bars. Therefore

1

(1 − 𝑥)𝑘+1

=

∑
𝑛≥0

(
𝑛 + 𝑘
𝑘

)
𝑥𝑛 .

Multiplying by 𝑥𝑘 shifts every exponent up by 𝑘:

𝑥𝑘

(1 − 𝑥)𝑘+1

=

∑
𝑛≥0

(
𝑛 + 𝑘
𝑘

)
𝑥𝑛+𝑘 .

Writing 𝑡 = 𝑛 + 𝑘 (so 𝑡 ≥ 𝑘) gives

(
𝑛+𝑘
𝑘

)
=

(
𝑡
𝑘

)
, so∑

𝑡≥𝑘

(
𝑡

𝑘

)
𝑥𝑡 =

𝑥𝑘

(1 − 𝑥)𝑘+1

.

7.9 OGF Vandermonde convolution

Theorem 7.3 (Vandermonde convolution). For all integers 𝑚, 𝑛, 𝑟 ≥ 0,∑
𝑘

(
𝑚

𝑘

) (
𝑛

𝑟 − 𝑘

)
=

(
𝑚 + 𝑛
𝑟

)
.

Ordinary generating functions 63

Generating functions as subset-counters. Let 𝐴 and 𝐵 be disjoint sets with |𝐴| = 𝑚 and |𝐵| = 𝑛. For

a set 𝐴, the polynomial

(1 + 𝑥)𝑚 =

∏
𝑎∈𝐴
(1 + 𝑥)

encodes choosing a subset of 𝐴: from each element we either choose it (contributing a factor 𝑥)

or do not choose it (contributing 1). Thus [𝑥𝑘](1 + 𝑥)𝑚 =
(
𝑚
𝑘

)
counts 𝑘-subsets of 𝐴.

Similarly, [𝑥 𝑗](1+ 𝑥)𝑛 =
(
𝑛
𝑗

)
counts 𝑗-subsets of 𝐵. Therefore the product (1+ 𝑥)𝑚(1+ 𝑥)𝑛 encodes

choosing a subset of 𝐴∪ 𝐵 by choosing independently a subset of 𝐴 and a subset of 𝐵. To obtain

a subset of total size 𝑟, we must choose 𝑘 elements from 𝐴 and 𝑟 − 𝑘 elements from 𝐵, which can

be done in

(
𝑚
𝑘

) (
𝑛
𝑟−𝑘

)
ways. Summing over all 𝑘 gives

[𝑥𝑟]
(
(1 + 𝑥)𝑚(1 + 𝑥)𝑛

)
=

∑
𝑘

(
𝑚

𝑘

) (
𝑛

𝑟 − 𝑘

)
.

On the other hand, 𝐴 ∪ 𝐵 has 𝑚 + 𝑛 elements, so

(1 + 𝑥)𝑚+𝑛 =

∏
𝑢∈𝐴∪𝐵

(1 + 𝑥)

and [𝑥𝑟](1 + 𝑥)𝑚+𝑛 =
(
𝑚+𝑛
𝑟

)
counts 𝑟-subsets of 𝐴 ∪ 𝐵. Since (1 + 𝑥)𝑚(1 + 𝑥)𝑛 = (1 + 𝑥)𝑚+𝑛 , the

coefficients of 𝑥𝑟 agree, yielding Vandermonde’s identity. □

7.10 Catalan recurrence

Let (𝐶𝑛)𝑛≥0 be the Catalan numbers defined by 𝐶0 = 1 and the recurrence

𝐶𝑛+1 =

𝑛∑
𝑘=0

𝐶𝑘𝐶𝑛−𝑘 .

Theorem 7.4. The OGF 𝐶(𝑥) = ∑
𝑛≥0

𝐶𝑛𝑥
𝑛

satisfies

𝐶(𝑥) = 1 + 𝑥𝐶(𝑥)2.

Equivalently, the recurrence above holds for all 𝑛 ≥ 0.

Proof. Using the product rule for OGFs, we have

𝐶(𝑥)2 =

∑
𝑛≥0

(𝑛∑
𝑘=0

𝐶𝑘𝐶𝑛−𝑘
)
𝑥𝑛 .

Multiplying by 𝑥 shifts indices:

𝑥𝐶(𝑥)2 =

∑
𝑛≥0

(𝑛∑
𝑘=0

𝐶𝑘𝐶𝑛−𝑘
)
𝑥𝑛+1 =

∑
𝑚≥1

(𝑚−1∑
𝑘=0

𝐶𝑘𝐶𝑚−1−𝑘
)
𝑥𝑚 .

Now

𝐶(𝑥) = 𝐶0 +
∑
𝑚≥1

𝐶𝑚𝑥
𝑚 = 1 +

∑
𝑚≥1

𝐶𝑚𝑥
𝑚 .

Ordinary generating functions 64

Hence the functional equation 𝐶(𝑥) = 1 + 𝑥𝐶(𝑥)2 is equivalent (by coefficient comparison) to

𝐶𝑚 =

𝑚−1∑
𝑘=0

𝐶𝑘𝐶𝑚−1−𝑘 (𝑚 ≥ 1),

which is the recurrence. □

7.11 How to manipulate OGFs for coefficients?

Theorem 7.5. 1. For all 𝑛,

𝑏𝑛 =

{
𝑎𝑛−𝑟 , 𝑛 ≥ 𝑟,
0, 𝑛 < 𝑟,

⇐⇒ 𝐵(𝑥) = 𝑥𝑟𝐴(𝑥).

2. For all 𝑛,

𝑏𝑛 = 𝑛 𝑎𝑛 ⇐⇒ 𝐵(𝑥) = 𝑥 𝐴′(𝑥).

3. For all 𝑛,

𝑐𝑛 =

𝑛∑
𝑖=0

𝑎𝑖 ⇐⇒ 𝐶(𝑥) = 𝐴(𝑥)
1 − 𝑥 = 𝐴(𝑥) (1 + 𝑥 + 𝑥2 + · · ·).

4. (Even/odd parts.)

𝑏𝑛 =

{
𝑎𝑛 , 𝑛 even,

0, 𝑛 odd,
⇐⇒ 𝐵(𝑥) = 𝐴(𝑥) + 𝐴(−𝑥)

2

,

𝑏𝑛 =

{
𝑎𝑛 , 𝑛 odd,

0, 𝑛 even,
⇐⇒ 𝐵(𝑥) = 𝐴(𝑥) − 𝐴(−𝑥)

2

.

5. Let 𝑚 ≥ 1. For all 𝑛,

𝑏𝑛 =

{
𝑎𝑛/𝑚 , 𝑚 | 𝑛,
0, 𝑚 ∤ 𝑛,

⇐⇒ 𝐵(𝑥) = 𝐴(𝑥𝑚).

Example 7.10.
𝑛∑
𝑘=0

𝑘

(
𝑛

𝑘

)
= 𝑛2

𝑛−1.

Let

𝐴(𝑥) =
𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘 = (1 + 𝑥)𝑛 .

Then

𝐵(𝑥) = 𝑥𝐴′(𝑥) = 𝑥 · 𝑛(1 + 𝑥)𝑛−1 =

𝑛∑
𝑘=0

𝑘

(
𝑛

𝑘

)
𝑥𝑘 .

Ordinary generating functions 65

Comparing coefficients of 𝑥𝑘 gives

𝑛∑
𝑘=0

𝑘

(
𝑛

𝑘

)
= 𝑛2

𝑛−1.

Example 7.11.
𝑛∑
𝑘=0

𝑘2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

.

Recall ∑
𝑘≥0

𝑥𝑘 =
1

1 − 𝑥 .

Differentiate and multiply by 𝑥: ∑
𝑘≥0

𝑘𝑥𝑘 =
𝑥

(1 − 𝑥)2 .

Differentiate once more and multiply by 𝑥:∑
𝑘≥0

𝑘2𝑥𝑘 = 𝑥

(
𝑥

(1 − 𝑥)2

) ′
=

𝑥 + 𝑥2

(1 − 𝑥)3 =: 𝐴(𝑥).

Let 𝑎𝑘 = 𝑘2
, so 𝐴(𝑥) = ∑

𝑘≥0
𝑎𝑘𝑥

𝑘
. Define

𝐶(𝑥) :=
𝐴(𝑥)
1 − 𝑥 =

∑
𝑛≥0

𝑐𝑛𝑥
𝑛 ,

then

𝑐𝑛 =

𝑛∑
𝑘=0

𝑎𝑘 =

𝑛∑
𝑘=0

𝑘2 = [𝑥𝑛]𝐶(𝑥).

Since

𝐶(𝑥) = 𝑥 + 𝑥2

(1 − 𝑥)4 = 𝑥(1 − 𝑥)−4 + 𝑥2(1 − 𝑥)−4 ,

we get

[𝑥𝑛]𝐶(𝑥) =
(
𝑛 − 1 + 3

3

)
+

(
𝑛 − 2 + 3

3

)
=
𝑛(𝑛 + 1)(2𝑛 + 1)

6

.

Hence

𝑛∑
𝑘=0

𝑘2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

.

Example 7.12. We will extract the even-index part of (1 + 𝑥)𝑛 , i.e. find a closed form for

𝐸(𝑥) :=

∑
𝑖≥0

(
𝑛

2𝑖

)
𝑥2𝑖 ,

and as a consequence compute

∑
𝑖≥0

(
𝑛
2𝑖

)
.

Ordinary generating functions 66

Let

𝐴(𝑥) := (1 + 𝑥)𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘 .

Then the even–index part is ∑
𝑖≥0

(
𝑛

2𝑖

)
𝑥2𝑖 =

1

2

(
(1 + 𝑥)𝑛 + (1 − 𝑥)𝑛

)
,

since the odd–index terms cancel when we add (1 + 𝑥)𝑛 and (1 − 𝑥)𝑛 .

Setting 𝑥 = 1 (and assuming 𝑛 ≥ 1) gives∑
𝑖≥0

(
𝑛

2𝑖

)
=

1

2

(
(1 + 1)𝑛 + (1 − 1)𝑛

)
=

1

2

(2𝑛 + 0) = 2
𝑛−1.

(For 𝑛 = 0 the sum is

(
0

0

)
= 1.)

Combinatorial proof. There are 2
𝑛

subsets of [𝑛] := {1, . . . , 𝑛}. Pair each subset 𝑆 ⊆ [𝑛]with

𝑆△{𝑛} (toggle the element 𝑛); in each pair exactly one subset has even cardinality and one has

odd cardinality. Thus exactly half of all subsets are even, so the number of even subsets is 2
𝑛−1

,

i.e. ∑
𝑖≥0

(
𝑛

2𝑖

)
= 2

𝑛−1.

Example 7.13. Evaluate the sum

𝑆𝑛 :=

𝑛∑
𝑘=0

𝑘(𝑛 − 𝑘)

in closed form.

Let

𝑎𝑘 = 𝑏𝑘 = 𝑘.

Then

𝐴(𝑥) = 𝐵(𝑥) =
∑
𝑘≥0

𝑘𝑥𝑘 =
𝑥

(1 − 𝑥)2 ,

so

𝐶(𝑥) := 𝐴(𝑥)𝐵(𝑥) = 𝑥2

(1 − 𝑥)4 =

∑
𝑘≥0

(
𝑘 + 4 − 1

4 − 1

)
𝑥𝑘+2.

Thus

𝐶𝑛 =

𝑛∑
𝑘=0

𝑘 (𝑛 − 𝑘) = [𝑥𝑛]𝐶(𝑥) =
(
(𝑛 − 2) + 3

3

)
=

(
𝑛 + 1

3

)
.

Ordinary generating functions 67

Example 7.14. Prove the identity

𝑆𝑛 :=

𝑛∑
𝑘=0

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

)
= 4

𝑛 .

Consider

𝑆𝑛 :=

𝑛∑
𝑘=0

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

)
.

Let

𝐴(𝑥) :=

∑
𝑘≥0

(
2𝑘

𝑘

)
𝑥𝑘 .

Let the Catalan generating function be

𝐶(𝑥) :=

∑
𝑘≥0

𝐶𝑘𝑥
𝑘 =

∑
𝑘≥0

1

𝑘 + 1

(
2𝑘

𝑘

)
𝑥𝑘 =

1 −
√

1 − 4𝑥

2𝑥
.

Then

𝑥𝐶(𝑥) = 1 −
√

1 − 4𝑥

2

=⇒ 𝐴(𝑥) = (𝑥𝐶(𝑥))′ = (1 − 4𝑥)−1/2.

Hence

𝐴(𝑥)2 = (1 − 4𝑥)−1 =⇒ [𝑥𝑛]𝐴(𝑥)2 = [𝑥𝑛] 1

1 − 4𝑥
= 4

𝑛 .

But

𝐴(𝑥)2 =

(∑
𝑘≥0

(
2𝑘

𝑘

)
𝑥𝑘

) ©­«
∑
𝑗≥0

(
2𝑗

𝑗

)
𝑥 𝑗

ª®¬ =

∑
𝑛≥0

(
𝑛∑
𝑘=0

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

))
𝑥𝑛 ,

so

𝑆𝑛 =

𝑛∑
𝑘=0

(
2𝑘

𝑘

) (
2𝑛 − 2𝑘

𝑛 − 𝑘

)
= [𝑥𝑛]𝐴(𝑥)2 = 4

𝑛 .

7.12 Snake Oil

Herbert Wilf’s snake oil method is a reliable trick for evaluating sums that involve binomial

coefficients. The slogan is:

If you can sum it, you can generate it.

Concretely, suppose you have a sequence defined by a sum

𝑎𝑛 :=

∑
𝑘≥0

𝑇(𝑛, 𝑘),

where 𝑇(𝑛, 𝑘) is some expression in 𝑛 and 𝑘 (often binomial coefficients). The method is:

1. Form the ordinary generating function (OGF)

𝐴(𝑥) :=

∑
𝑛≥0

𝑎𝑛𝑥
𝑛 .

Ordinary generating functions 68

2. Substitute the definition of 𝑎𝑛 and (formally) swap the order of summation:

𝐴(𝑥) =
∑
𝑛≥0

∑
𝑘≥0

𝑇(𝑛, 𝑘)𝑥𝑛 =

∑
𝑘≥0

∑
𝑛≥0

𝑇(𝑛, 𝑘)𝑥𝑛 .

This is legal in formal power series.

3. For each fixed 𝑘, rewrite

∑
𝑛≥0

𝑇(𝑛, 𝑘)𝑥𝑛 into a known closed form. This usually requires a

reindexing so that the binomial coefficient becomes something like

(
𝑚+𝑘
𝑘

)
, whose OGF we

know.

4. After that, the 𝑘–sum typically becomes a geometric series. Finish the algebra, get a closed

form for 𝐴(𝑥), and then identify its coefficients using a known generating function (or a

recurrence derived from the denominator).

Consider the following example to illustrate the Snake Oil method.

Example 7.15. Define

𝑎𝑛 :=

∑
𝑘≥0

(
𝑛 − 𝑘
𝑘

)
(𝑛 ≥ 0),

where we adopt the usual convention

(
𝑟
𝑘

)
= 0 if 𝑟 < 𝑘 or 𝑟 < 0. We will show

𝑎𝑛 = 𝐹𝑛+1 ,

where 𝐹0 = 0, 𝐹1 = 1, and 𝐹𝑚+2 = 𝐹𝑚+1 + 𝐹𝑚 .

The term

(
𝑛−𝑘
𝑘

)
is nonzero only when 𝑛 − 𝑘 ≥ 𝑘, i.e. 𝑛 ≥ 2𝑘. So for fixed 𝑛, the sum is actually

finite: 0 ≤ 𝑘 ≤ ⌊𝑛/2⌋. This is exactly the kind of shape snake oil likes, because the constraint

𝑛 ≥ 2𝑘 suggests substituting 𝑛 = 𝑚 + 2𝑘.

Step 1: build the OGF and swap sums. Let

𝐴(𝑥) :=

∑
𝑛≥0

𝑎𝑛𝑥
𝑛 =

∑
𝑛≥0

∑
𝑘≥0

(
𝑛 − 𝑘
𝑘

)
𝑥𝑛 .

Swap the order:

𝐴(𝑥) =
∑
𝑘≥0

∑
𝑛≥0

(
𝑛 − 𝑘
𝑘

)
𝑥𝑛 .

Step 2: reindex to remove the constraint 𝑛 ≥ 2𝑘. For a fixed 𝑘, the inner term is nonzero only

when 𝑛 ≥ 2𝑘. Write

𝑛 = 𝑚 + 2𝑘 (𝑚 ≥ 0).
Then 𝑛 − 𝑘 = 𝑚 + 𝑘, so (

𝑛 − 𝑘
𝑘

)
=

(
𝑚 + 𝑘
𝑘

)
, 𝑥𝑛 = 𝑥𝑚+2𝑘 = 𝑥2𝑘𝑥𝑚 .

Thus

𝐴(𝑥) =
∑
𝑘≥0

∑
𝑚≥0

(
𝑚 + 𝑘
𝑘

)
𝑥𝑚+2𝑘 =

∑
𝑘≥0

𝑥2𝑘
∑
𝑚≥0

(
𝑚 + 𝑘
𝑘

)
𝑥𝑚 .

Ordinary generating functions 69

Step 3: use a known binomial OGF.∑
𝑚≥0

(
𝑚 + 𝑘
𝑘

)
𝑥𝑚 =

1

(1 − 𝑥)𝑘+1

.

can be proved by stars and bars. Plugging this in gives

𝐴(𝑥) =
∑
𝑘≥0

𝑥2𝑘

(1 − 𝑥)𝑘+1

=
1

1 − 𝑥
∑
𝑘≥0

(
𝑥2

1 − 𝑥

) 𝑘
.

Step 4: finish with a geometric series. Since

∑
𝑘≥0

𝑟𝑘 = 1

1−𝑟 in formal power series,

𝐴(𝑥) = 1

1 − 𝑥 ·
1

1 − 𝑥2

1−𝑥
=

1

1 − 𝑥 − 𝑥2

.

Step 5: recognize Fibonacci. The Fibonacci numbers satisfy∑
𝑛≥0

𝐹𝑛+1𝑥
𝑛 =

1

1 − 𝑥 − 𝑥2

,

so comparing coefficients yields 𝑎𝑛 = 𝐹𝑛+1 for all 𝑛 ≥ 0. Equivalently,∑
𝑘≥0

(
𝑛 − 𝑘
𝑘

)
= 𝐹𝑛+1.

Proposition 7.6 (A Delannoy identity). For all integers 𝑚, 𝑛 ≥ 0,∑
𝑘≥0

(
𝑚

𝑘

) (
𝑛 + 𝑚 − 𝑘

𝑚

)
=

∑
𝑘≥0

(
𝑚

𝑘

) (
𝑛

𝑘

)
2
𝑘 .

Proof. Fix 𝑚 and let

𝐿𝑛 :=

∑
𝑘≥0

(
𝑚

𝑘

) (
𝑛 + 𝑚 − 𝑘

𝑚

)
, 𝑅𝑛 :=

∑
𝑘≥0

(
𝑚

𝑘

) (
𝑛

𝑘

)
2
𝑘 .

We show that (𝐿𝑛) and (𝑅𝑛) have the same generating function in 𝑛.

Left-hand side. Let

𝐿(𝑥) :=

∑
𝑛≥0

𝐿𝑛𝑥
𝑛 =

∑
𝑛≥0

∑
𝑘≥0

(
𝑚

𝑘

) (
𝑛 + 𝑚 − 𝑘

𝑚

)
𝑥𝑛 .

Swap sums and use the change of variable 𝑁 = 𝑛 + 𝑚 − 𝑘:

𝐿(𝑥) =
∑
𝑘≥0

(
𝑚

𝑘

) ∑
𝑛≥0

(
𝑛 + 𝑚 − 𝑘

𝑚

)
𝑥𝑛 =

∑
𝑘≥0

(
𝑚

𝑘

) ∑
𝑁≥𝑚

(
𝑁

𝑚

)
𝑥𝑁−𝑘 .

Thus

𝐿(𝑥) =
∑
𝑘≥0

(
𝑚

𝑘

)
𝑥−𝑘

(∑
𝑁≥𝑚

(
𝑁

𝑚

)
𝑥𝑁

)
.

Ordinary generating functions 70

Using ∑
𝑁≥𝑚

(
𝑁

𝑚

)
𝑥𝑁 =

𝑥𝑚

(1 − 𝑥)𝑚+1

,

we get

𝐿(𝑥) = 𝑥𝑚

(1 − 𝑥)𝑚+1

∑
𝑘≥0

(
𝑚

𝑘

)
𝑥−𝑘 =

𝑥𝑚

(1 − 𝑥)𝑚+1

(1 + 𝑥−1)𝑚 =
(1 + 𝑥)𝑚
(1 − 𝑥)𝑚+1

.

Right-hand side. Similarly, let

𝑅(𝑥) :=

∑
𝑛≥0

𝑅𝑛𝑥
𝑛 =

∑
𝑛≥0

∑
𝑘≥0

(
𝑚

𝑘

) (
𝑛

𝑘

)
2
𝑘𝑥𝑛 .

Swap sums:

𝑅(𝑥) =
∑
𝑘≥0

(
𝑚

𝑘

)
2
𝑘
∑
𝑛≥0

(
𝑛

𝑘

)
𝑥𝑛 .

We use the standard generating function∑
𝑛≥0

(
𝑛

𝑘

)
𝑥𝑛 =

𝑥𝑘

(1 − 𝑥)𝑘+1

(𝑘 ≥ 0),

to get

𝑅(𝑥) =
∑
𝑘≥0

(
𝑚

𝑘

)
2
𝑘 𝑥𝑘

(1 − 𝑥)𝑘+1

=
1

1 − 𝑥
∑
𝑘≥0

(
𝑚

𝑘

) (
2𝑥

1 − 𝑥
) 𝑘

=
1

1 − 𝑥
(
1 + 2𝑥

1 − 𝑥
)𝑚

=
(1 + 𝑥)𝑚
(1 − 𝑥)𝑚+1

.

Since 𝐿(𝑥) = 𝑅(𝑥), the sequences (𝐿𝑛) and (𝑅𝑛) are identical, and the stated identity follows. □

Proposition 7.7. Let 𝑐(𝑛, 𝑘) denote the number of permutations of [𝑛]with exactly 𝑘 cycles

(Stirling numbers of the first kind). Then for integers 𝑛 ≥ 𝑚 ≥ 0,

𝑛∑
𝑘=𝑚

𝑐(𝑛, 𝑘)
(
𝑘

𝑚

)
= 𝑐(𝑛 + 1, 𝑚 + 1).

Proof. Recall the permutation cycle generating function identity

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘)𝑥𝑘 = 𝑥(𝑛) := 𝑥(𝑥 + 1) · · · (𝑥 + 𝑛 − 1),

the rising factorial.

Consider

𝑛∑
𝑘=𝑚

𝑐(𝑛, 𝑘)
(
𝑘

𝑚

)
𝑥𝑚 .

Using the binomial expansion of (1 + 𝑥)𝑘 we have

(1 + 𝑥)𝑘 =
𝑘∑

𝑚=0

(
𝑘

𝑚

)
𝑥𝑚 ,

Ordinary generating functions 71

so

𝑛∑
𝑘=𝑚

𝑐(𝑛, 𝑘)
(
𝑘

𝑚

)
𝑥𝑚 =

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘)
𝑘∑

𝑚=0

(
𝑘

𝑚

)
𝑥𝑚 =

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘)(1 + 𝑥)𝑘 .

Now use the generating function with 𝑥 replaced by (1 + 𝑥):
𝑛∑
𝑘=0

𝑐(𝑛, 𝑘)(1 + 𝑥)𝑘 = (1 + 𝑥)(𝑛) = (1 + 𝑥)(2 + 𝑥) · · · (𝑛 + 𝑥).

But

(1 + 𝑥)(𝑛) = 𝑥(𝑛+1)

𝑥
=

1

𝑥

𝑛+1∑
𝑚=0

𝑐(𝑛 + 1, 𝑚)𝑥𝑚 .

Taking the coefficient of 𝑥𝑚 on both sides,

𝑛∑
𝑘=𝑚

𝑐(𝑛, 𝑘)
(
𝑘

𝑚

)
= [𝑥𝑚]

(
(1 + 𝑥)(𝑛)

)
= [𝑥𝑚+1]

(
𝑥(𝑛+1)

)
= 𝑐(𝑛 + 1, 𝑚 + 1),

as claimed. □

Permutations statistics 72

8 Permutations statistics

8.1 Inversions

Definition 8.1. The symmetric group 𝑆𝑛 is the set of all permutations of {1, 2, . . . , 𝑛}, with

composition as the group operation.

Definition 8.2 (One–line notation). A permutation 𝜋 ∈ 𝑆𝑛 can be written as the word

(𝜋(1),𝜋(2), . . . ,𝜋(𝑛)).

This is called one–line notation.

Definition 8.3 (Inversion). Let 𝜋 ∈ 𝑆𝑛 . An inversion of 𝜋 is a pair (𝑖 , 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
such that 𝜋(𝑖) > 𝜋(𝑗). Denote by inv(𝜋) the number of inversions of 𝜋.

Example 8.1. For 𝜋 = (3, 1, 4, 2) ∈ 𝑆4 (in one–line notation), the inversions are

(1, 2), (1, 4), (3, 4),

so inv(𝜋) = 3.

Definition 8.4 (Inversion generating polynomial). For 𝑛 ≥ 0 define

𝐴𝑛(𝑥) =
∑
𝜋∈𝑆𝑛

𝑥inv(𝜋).

Theorem 8.1. For every 𝑛 ≥ 1,

𝐴𝑛(𝑥) =
𝑛∏
𝑖=1

(1 + 𝑥 + · · · + 𝑥 𝑖−1).

Proof. Goal. We prove a recurrence

𝐴𝑛(𝑥) = 𝐴𝑛−1(𝑥) (1 + 𝑥 + · · · + 𝑥𝑛−1),

and then iterate it.

Step 1: insert 𝑛 into a permutation of [𝑛 − 1]. Fix 𝜎 ∈ 𝑆𝑛−1 and write it in one–line form

(𝜎(1), 𝜎(2), . . . , 𝜎(𝑛 − 1)).

We create a permutation 𝜋 ∈ 𝑆𝑛 by inserting the symbol 𝑛 into this word. There are exactly 𝑛

insertion slots: before the first entry, between consecutive entries, or after the last entry.

Step 2: count how many new inversions are created. Since 𝑛 is the largest value, it can only

create inversions where it appears on the left. If we insert 𝑛 so that there are 𝑟 elements to its

Permutations statistics 73

right, then 𝑛 forms an inversion with each of those 𝑟 elements (because every one of them is

< 𝑛). Therefore the number of new inversions created is exactly 𝑟.

As we vary the insertion slot from “far right” to “far left”, the number 𝑟 runs through

0, 1, 2, . . . , 𝑛 − 1.

Step 3: translate this into generating functions. For the fixed 𝜎, the 𝑛 resulting permutations

contribute

𝑥inv(𝜎)(1 + 𝑥 + · · · + 𝑥𝑛−1)
to 𝐴𝑛(𝑥), because we add 0, 1, . . . , 𝑛 − 1 inversions depending on the slot.

Summing over all 𝜎 ∈ 𝑆𝑛−1 gives

𝐴𝑛(𝑥) =
∑

𝜎∈𝑆𝑛−1

𝑥inv(𝜎)(1 + 𝑥 + · · · + 𝑥𝑛−1) = 𝐴𝑛−1(𝑥)(1 + 𝑥 + · · · + 𝑥𝑛−1).

Step 4: solve the recurrence. Since 𝐴1(𝑥) = 1, iterating yields

𝐴𝑛(𝑥) =
𝑛∏
𝑖=1

(1 + 𝑥 + · · · + 𝑥 𝑖−1),

as claimed. □

Definition 8.5 (Two–line and word form). A permutation 𝜋 ∈ 𝑆𝑛 can be written in two–line
form

𝜋 =

(
1 2 . . . 𝑛

𝜋(1) 𝜋(2) . . . 𝜋(𝑛)

)
or in word form as

(𝜋(1),𝜋(2), . . . ,𝜋(𝑛)).

8.2 Permutation Cycles

Definition 8.6 (Cycle decomposition). A permutation 𝜋 ∈ 𝑆𝑛 decomposes uniquely into

disjoint cycles. For example,

𝜋 = (1 4 7 3)(2)(5 8)(6 9)
means 𝜋(1) = 4, 𝜋(4) = 7, 𝜋(7) = 3, 𝜋(3) = 1, and so on. Cycles are disjoint, so the order of

writing them does not affect the permutation.

Definition 8.7 (Canonical cycle representation). To make the cycle notation unique as a

written string, we impose conventions:

• within each cycle, write the smallest element first;

• order the cycles by increasing smallest element.

The resulting cycle product is the canonical cycle representation.

Permutations statistics 74

Lemma 8.2 (Uniqueness of canonical cycle form). Every permutation 𝜋 ∈ 𝑆𝑛 has a unique

canonical cycle representation.

Proof. The disjoint cycle decomposition of 𝜋 is unique up to: (i) rotating the entries within each

cycle, and (ii) permuting the order of the cycles. Putting the smallest element first in each cycle

fixes (i), and ordering cycles by their smallest elements fixes (ii). □

Definition 8.8 (Unsigned Stirling numbers of the first kind). Let 𝑐(𝑛, 𝑘) be the number

of permutations in 𝑆𝑛 having exactly 𝑘 cycles in their (equivalently, any) disjoint cycle

decomposition. These are the unsigned Stirling numbers of the first kind.

Definition 8.9 (Cycle index polynomial). For 𝑛 ≥ 1, define

𝐶𝑛(𝑥) =
𝑛∑
𝑘=1

𝑐(𝑛, 𝑘) 𝑥𝑘 .

Thus [𝑥𝑘]𝐶𝑛(𝑥) = 𝑐(𝑛, 𝑘) counts permutations of [𝑛]with exactly 𝑘 cycles.

Theorem 8.3 (Product formula for cycle counts). For all 𝑛 ≥ 1,

𝐶𝑛(𝑥) = 𝑥(𝑥 + 1)(𝑥 + 2) · · · (𝑥 + 𝑛 − 1).

Equivalently, the coefficient of 𝑥𝑘 in 𝑥(𝑥 + 1) · · · (𝑥 + 𝑛 − 1) is 𝑐(𝑛, 𝑘).

Proof. We prove the polynomial identity by counting the same set of objects in two ways.

Objects being counted. Fix a positive integer 𝑥. A coloured permutation means: take 𝜋 ∈ 𝑆𝑛 and

assign to each cycle one of 𝑥 colours (colours may repeat between cycles).

First count (group by number of cycles). If 𝜋 has 𝑘 cycles, then there are 𝑥𝑘 ways to colour

those cycles. Therefore

#{coloured permutations of [𝑛]} =
𝑛∑
𝑘=1

𝑐(𝑛, 𝑘) 𝑥𝑘 = 𝐶𝑛(𝑥).

Second count (insert 𝑚 into a coloured permutation on [𝑚 − 1]). We build the coloured

permutation by adding elements 1, 2, . . . , 𝑛 one at a time.

Start with 𝑚 = 1. The only permutation is the 1–cycle (1), and we may choose its colour in 𝑥

ways. So there are 𝑥 possibilities.

Now suppose we have already formed a coloured permutation on {1, . . . , 𝑚 − 1}. We insert 𝑚

as follows:

• Start a new cycle: create the 1–cycle (𝑚) and choose its colour. This gives 𝑥 possibilities.

• Insert into an existing cycle: in cycle notation, inserting 𝑚 means: choose an existing element

𝑡 ∈ {1, . . . , 𝑚 − 1} and declare that 𝑚 comes right after 𝑡 in its cycle. There are exactly 𝑚 − 1

choices of 𝑡. (No new colour choice is needed because we are not creating a new cycle.)

Permutations statistics 75

Hence, at step 𝑚, there are exactly 𝑥 + (𝑚 − 1)ways to place 𝑚.

Multiplying over 𝑚 = 1, 2, . . . , 𝑛 gives

#{coloured permutations of [𝑛]} = 𝑥(𝑥 + 1)(𝑥 + 2) · · · (𝑥 + 𝑛 − 1).

□

Permutations statistics 76

8.3 Eulerian numbers

This section is about a different permutation statistic than inversions. Instead of counting pairs

out of order, we count the places where a permutation drops when written in one–line notation.

Definition 8.10 (Descents). For 𝜋 ∈ 𝑆𝑛 the descent set of 𝜋 is

Des(𝜋) = {𝑖 ∈ {1, . . . , 𝑛 − 1} : 𝜋(𝑖) > 𝜋(𝑖 + 1)}.

The number of descents of 𝜋 is |Des(𝜋)|.

Example 8.2. If 𝜋 = (3, 1, 4, 2) ∈ 𝑆4, then

3 > 1⇒ 1 ∈ Des(𝜋), 1 < 4⇒ 2 ∉ Des(𝜋), 4 > 2⇒ 3 ∈ Des(𝜋),

so Des(𝜋) = {1, 3} and Des(𝜋) = 2.

Definition 8.11 (Eulerian numbers and polynomials). For 0 ≤ 𝑘 ≤ 𝑛 − 1 let 𝐴(𝑛, 𝑘) be the

number of permutations 𝜋 ∈ 𝑆𝑛 with exactly 𝑘 descents. The numbers 𝐴(𝑛, 𝑘) are the

Eulerian numbers. The associated Eulerian polynomial is Define the Eulerian polynomial

𝐸𝑛(𝑥) B
𝑛−1∑
𝑘=0

𝐴(𝑛, 𝑘) 𝑥𝑘 .

8.4 Worpitzky’s Identity

Theorem 8.4 (Worpitzky, 1883). For every integer 𝑛 ≥ 1 and every positive integer 𝑥,

𝑥𝑛 =

∑
𝑘≥0

𝐴(𝑛, 𝑘)
(
𝑥 + 𝑘
𝑛

)
,

where we understand 𝐴(𝑛, 𝑘) = 0 for 𝑘 ∉ {0, . . . , 𝑛 − 1}.

The identity is best understood as a change of basis: the polynomials

(
𝑥
𝑛

)
,
(
𝑥+1

𝑛

)
,
(
𝑥+2

𝑛

)
, . . . form a

very natural “binomial basis” for degree-𝑛 polynomials, and Worpitzky says the coefficients of

𝑥𝑛 in that basis are the Eulerian numbers.

Proof of Worpitzky’s Theorem. We give a combinatorial proof by double counting.

Fix 𝑛 and 𝑥 ∈ N. On the left-hand side, 𝑥𝑛 counts the number of functions

𝑓 : [𝑛] −→ [𝑥] = {1, 2, . . . , 𝑥},

since each of the 𝑛 elements may be sent independently to one of 𝑥 values.

We will now classify such functions according to a permutation with 𝑘 descents and an additional

choice counted by

(
𝑥+𝑘
𝑛

)
.

Given a function 𝑓 : [𝑛] → [𝑥], group together elements with the same image and, inside each

fibre, arrange the elements in increasing order. If we then list the fibres in increasing order of

the value in [𝑥], and concatenate these increasing lists, we obtain a word

𝜋(1)𝜋(2) . . . 𝜋(𝑛)

Permutations statistics 77

which is a permutation 𝜋 ∈ 𝑆𝑛 written in word form. The places where a new fibre begins are

exactly the positions where the sequence of values 𝑓 (𝜋(𝑖)) increases. Between two fibres the

function values strictly increase; inside a fibre the values are equal.

The permutation 𝜋 decomposes uniquely into increasing runs (maximal consecutive segments on

which 𝜋 is increasing). The number of such runs is 𝑘 + 1 if 𝜋 has 𝑘 descents, and the boundaries

between runs occur precisely at the positions of descents.

Conversely, given a permutation with 𝑘 descents, the positions between runs are fixed, but we

are free to assign the function values in [𝑥] to each run, as long as they weakly increase from

run to run.

Fix a permutation 𝜋 ∈ 𝑆𝑛 with 𝑘 descents, hence 𝑘 + 1 increasing runs. To obtain 𝑓 , we must

assign to each run a value in [𝑥] so that the run values form a weakly increasing sequence of

length 𝑘 + 1. Let these run values be 1 ≤ 𝑣1 ≤ 𝑣2 ≤ · · · ≤ 𝑣𝑘+1 ≤ 𝑥. We may think of these as

choosing 𝑘 + 1 (not necessarily distinct) numbers between 1 and 𝑥 in weakly increasing order.

By the standard “stars and bars” bĳection, such weakly increasing sequences are in bĳection

with subsets of size 𝑛 in a set of size 𝑥 + 𝑘; more concretely, they are counted by(
𝑥 + 𝑘
𝑛

)
.

(Equivalently, we can encode the 𝑘 increases between successive run values by inserting 𝑘 bars

among 𝑥 positions.)

Thus, for a fixed 𝜋 with 𝑘 descents, there are

(
𝑥+𝑘
𝑛

)
ways to choose 𝑓 whose sorted word yields 𝜋.

For each 𝑘, there are 𝐴(𝑛, 𝑘) permutations of 𝑆𝑛 with exactly 𝑘 descents. Each such permutation

corresponds to exactly

(
𝑥+𝑘
𝑛

)
functions 𝑓 : [𝑛] → [𝑥]. Therefore

𝑥𝑛 = #{ 𝑓 : [𝑛] → [𝑥]} =
𝑛−1∑
𝑘=0

𝐴(𝑛, 𝑘)
(
𝑥 + 𝑘
𝑛

)
,

which proves the identity. □

For completeness we record a generating–function reformulation of Worpitzky’s identity.

Definition 8.12. Fix 𝑛 ≥ 1 and set

𝐴𝑛(𝑥) =
∑
𝑘≥0

𝐴(𝑛, 𝑘)𝑥𝑘 , 𝐶𝑛(𝑥) =
∑
𝑚≥0

(
𝑚 + 𝑛
𝑛

)
𝑥𝑚 =

1

(1 − 𝑥)𝑛+1

.

Proposition 8.5. For every 𝑛 ≥ 1,

𝐴𝑛(𝑥)
(1 − 𝑥)𝑛+1

=

∑
𝑚≥0

𝑚𝑛𝑥𝑚 .

Equivalently,

𝐴𝑛(𝑥) = (1 − 𝑥)𝑛+1

∑
𝑚≥0

𝑚𝑛𝑥𝑚 ,

and expanding (1 − 𝑥)𝑛+1
recovers Worpitzky’s identity.

Permutations statistics 78

Proof. Start from Worpitzky’s identity in the form

𝑚𝑛 =

∑
𝑘≥0

𝐴(𝑛, 𝑘)
(
𝑚 + 𝑘
𝑛

)
(𝑚 ∈ N).

Multiply both sides by 𝑥𝑚 and sum over 𝑚 ≥ 0. On the right-hand side, interchange the order

of summation and use ∑
𝑚≥0

(
𝑚 + 𝑘
𝑛

)
𝑥𝑚 = 𝑥−𝑘𝐶𝑛(𝑥)

to obtain ∑
𝑚≥0

𝑚𝑛𝑥𝑚 = 𝐶𝑛(𝑥)
∑
𝑘≥0

𝐴(𝑛, 𝑘)𝑥𝑘 = 𝐴𝑛(𝑥)
(1 − 𝑥)𝑛+1

.

Rearranging gives the desired formula. □

Exponential generating functions 79

9 Exponential generating functions

9.1 Why EGFs exist

Ordinary generating functions (OGFs) are the right language when we are counting unlabeled
objects by a size/weight: if an object has weight 𝑛, it contributes 𝑥𝑛 .

Exponential generating functions (EGFs) are the right language when our objects are labeled: the

labels matter, and when we build larger objects by combining smaller ones, we must count the

ways to distribute labels among the parts. That label bookkeeping is exactly where the factorials

and binomial coefficients come from.

Definition 9.1 (Labeled object). Fix 𝑛 ≥ 0 and let [𝑛] = {1, 2, . . . , 𝑛} (with [0] = ∅).

A labeled object of size 𝑛 is a pair (𝑆,Φ)where:

• 𝑆 is an underlying “shape” with exactly 𝑛 distinguished atoms (the pieces that are being

labeled), and

• Φ : At(𝑆) → [𝑛] is a bĳection.

In other words, the labels 1, 2, . . . , 𝑛 are assigned to the atoms of 𝑆 in a one-to-one way:

every atom gets exactly one label, no label is repeated, and every label is used exactly once.

Definition 9.2. A labeled combinatorial class𝒜 is specified by giving, for each 𝑛 ≥ 0, a set

𝒜[𝑛] of labeled objects of size 𝑛 (i.e. pairs (𝑆,Φ) as above). We define the counting sequence

𝑎𝑛 := |𝒜[𝑛]|.

Remark 9.1 (Graphs: labels are vertex names). For graphs, the atoms are the vertices. An

unlabeled graph-shape is 𝑆 = (𝑉, 𝐸)with |𝑉 | = 𝑛. A labeling is a bĳection

Φ : 𝑉 → [𝑛],

i.e. each vertex gets a unique name 1, 2, . . . , 𝑛 (no repeats, all used). Thus a labeled graph is the

pair (𝑆,Φ).
Because Φ is a bĳection, there are exactly 𝑛! possible labelings of a fixed 𝑛-vertex shape 𝑆. This

“𝑛 distinct vertices⇒ 𝑛! ways to name them” is the basic source of the factorials in EGFs.

Definition 9.3 (Exponential generating function). The exponential generating function (EGF)

of the labeled class𝒜 (equivalently, of the sequence (𝑎𝑛)𝑛≥0) is

𝐴(𝑥) :=

∑
𝑛≥0

𝑎𝑛
𝑥𝑛

𝑛!

.

Exponential generating functions 80

Definition 9.4 (Disjoint union of labeled classes). Let𝒜 and ℬ be labeled combinatorial

classes, and assume they are disjoint as sets of objects (no object belongs to both classes).

Define their disjoint union (or sum) to be

𝒞 :=𝒜 ⊎ℬ ,

the class consisting of objects that are either an𝒜-object or a ℬ-object.

For each 𝑛 ≥ 0, the size-𝑛 objects are exactly the union of the size-𝑛 objects from each class:

𝒞[𝑛] =𝒜[𝑛] ⊎ ℬ[𝑛].

Hence, writing 𝑎𝑛 := |𝒜[𝑛]|, 𝑏𝑛 := |ℬ[𝑛]|, and 𝑐𝑛 := |𝒞[𝑛]|, we have

𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 (𝑛 ≥ 0).

Theorem 9.1 (Addition rule for EGFs). Let 𝒜 and ℬ be disjoint labeled combinatorial

classes, and let

𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛
𝑥𝑛

𝑛!

, 𝐵(𝑥) =
∑
𝑛≥0

𝑏𝑛
𝑥𝑛

𝑛!

be their EGFs, where 𝑎𝑛 := |𝒜[𝑛]| and 𝑏𝑛 := |ℬ[𝑛]|. If 𝒞 =𝒜 ⊎ℬ, then the EGF of 𝒞 is

𝐶(𝑥) = 𝐴(𝑥) + 𝐵(𝑥),

equivalently 𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 for all 𝑛 ≥ 0.

Proof. Since 𝒞 =𝒜 ⊎ℬ and the union is disjoint, for each 𝑛 ≥ 0 we have 𝒞[𝑛] =𝒜[𝑛] ⊎ ℬ[𝑛],
hence 𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 . Therefore

𝐶(𝑥) =
∑
𝑛≥0

𝑐𝑛
𝑥𝑛

𝑛!

=

∑
𝑛≥0

(𝑎𝑛 + 𝑏𝑛)
𝑥𝑛

𝑛!

=

∑
𝑛≥0

𝑎𝑛
𝑥𝑛

𝑛!

+
∑
𝑛≥0

𝑏𝑛
𝑥𝑛

𝑛!

= 𝐴(𝑥) + 𝐵(𝑥).

□

9.2 The labeled product construction

We now define the most important operation.

Exponential generating functions 81

Definition 9.5 (Labeled star product). Let𝒜 and ℬ be labeled combinatorial classes. Their

(labeled) star product 𝒞 =𝒜 ★ℬ is defined as follows.

For each 𝑛 ≥ 0, an object of 𝒞[𝑛] is obtained by:

1. choosing an integer 𝑘 with 0 ≤ 𝑘 ≤ 𝑛,

2. choosing a subset𝑈 ⊆ [𝑛]with |𝑈 | = 𝑘 (these labels go to the𝒜-part),

3. choosing an𝒜-object on the label set𝑈 (i.e. a copy of an object of𝒜[𝑘]whose atom-labels

are exactly the elements of𝑈),

4. choosing a ℬ-object on the complementary label set [𝑛] \𝑈 (i.e. a copy of an object of

ℬ[𝑛 − 𝑘]whose atom-labels are exactly the elements of [𝑛] \𝑈),

5. and recording the ordered pair (𝛼, 𝛽).

Equivalently, 𝒞[𝑛] consists of all ordered pairs (𝛼, 𝛽) where 𝛼 uses some subset𝑈 ⊆ [𝑛] of

labels, 𝛽 uses the remaining labels, and together they use each label in [𝑛] exactly once.

9.3 Product rule for EGFs

Theorem 9.2 (Product rule for EGFs). Let𝒜,ℬ be labeled classes with counts 𝑎𝑛 = |𝒜[𝑛]|
and 𝑏𝑛 = |ℬ[𝑛]|, and EGFs

𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛
𝑥𝑛

𝑛!

, 𝐵(𝑥) =
∑
𝑛≥0

𝑏𝑛
𝑥𝑛

𝑛!

.

Let 𝒞 =𝒜 ★ℬ be their labeled product, with 𝑐𝑛 = |𝒞[𝑛]| and EGF

𝐶(𝑥) =
∑
𝑛≥0

𝑐𝑛
𝑥𝑛

𝑛!

.

Then

𝐶(𝑥) = 𝐴(𝑥) 𝐵(𝑥),
and equivalently, for each 𝑛 ≥ 0,

𝑐𝑛 =

𝑛∑
𝑗=0

(
𝑛

𝑗

)
𝑎 𝑗 𝑏𝑛−𝑗 .

Combinatorial proof. Fix 𝑛 and count 𝒞[𝑛].
To build an ordered pair (𝛼, 𝛽) ∈ 𝒞[𝑛], we do:

1. Choose how many labels go to the𝒜-part: say 𝑗 labels.

2. Choose which 𝑗 labels from [𝑛] go to 𝛼:

(
𝑛
𝑗

)
choices.

3. Build 𝛼 on those chosen labels: 𝑎 𝑗 choices.

4. Build 𝛽 on the remaining 𝑛 − 𝑗 labels: 𝑏𝑛−𝑗 choices.

Thus the number of objects of 𝒞[𝑛]with an𝒜-part of size 𝑗 is

(
𝑛
𝑗

)
𝑎 𝑗𝑏𝑛−𝑗 , and summing over 𝑗

Exponential generating functions 82

gives

𝑐𝑛 =

𝑛∑
𝑗=0

(
𝑛

𝑗

)
𝑎 𝑗𝑏𝑛−𝑗 .

Finally, the identity 𝐶(𝑥) = 𝐴(𝑥)𝐵(𝑥) is just the generating-function way to package that

coefficient formula. □

A tiny sanity-check example

Let𝒜 be the class “a labeled set of size 𝑛 with no extra structure.” Then 𝑎𝑛 = 1 for all 𝑛 and

𝐴(𝑥) =
∑
𝑛≥0

𝑥𝑛

𝑛!

= 𝑒𝑥 .

Now𝒜 ★𝒜 is: split the labels into two groups, and record the ordered pair of groups. For

fixed 𝑛, choosing the first group determines the second, so there are 2
𝑛

such ordered splits, i.e.

𝑐𝑛 = 2
𝑛
. The product rule predicts

𝐶(𝑥) = 𝐴(𝑥)2 = 𝑒2𝑥 =

∑
𝑛≥0

2
𝑛 𝑥

𝑛

𝑛!

,

9.5 Basic examples

Example 9.1. For each 𝑛 ≥ 0, define 𝒢[𝑛] to be the set of all simple graphs with vertex set

exactly [𝑛] = {1, 2, . . . , 𝑛}. Concretely, an element of 𝒢[𝑛] is obtained by deciding, for every

pair {𝑖 , 𝑗}with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, whether we include the edge between vertex 𝑖 and vertex 𝑗.

What is the labeled object? A labeled object in 𝒢[𝑛] is just a graph where the vertices already

come with unique names 1, 2, . . . , 𝑛.

There are

(
𝑛
2

)
possible edges, and each edge is either present or not. Hence

𝑎𝑛 := |𝒢[𝑛]| = 2
(𝑛

2
).

EGF. Therefore the exponential generating function for labeled graphs is

𝐺(𝑥) =
∑
𝑛≥0

𝑎𝑛
𝑥𝑛

𝑛!

=

∑
𝑛≥0

2
(𝑛

2
) 𝑥𝑛
𝑛!

.

Example 9.2 (Words over an alphabet). Let an alphabet have 𝑚 letters. The number of words of

length 𝑛 over this alphabet is 𝑎𝑛 = 𝑚𝑛
. Hence the EGF is

𝐴(𝑥) =
∑
𝑛≥0

𝑚𝑛 𝑥
𝑛

𝑛!

= 𝑒𝑚𝑥 .

For the English alphabet (𝑚 = 26) we get 𝐴(𝑥) = 𝑒26𝑥
.

Exponential generating functions 83

Example 9.3 (Decomposing into vowels and consonants). Let 𝑉 be the set of vowels (|𝑉 | = 5)

and 𝐶 the set of consonants (|𝐶| = 21). Let 𝐴(𝑥) be the EGF for all words over 𝑉 ∪ 𝐶, 𝐴𝑉 (𝑥) the

EGF for words over 𝑉 , and 𝐴𝐶(𝑥) the EGF for words over 𝐶.

We have

𝐴𝑉 (𝑥) = 𝑒5𝑥 , 𝐴𝐶(𝑥) = 𝑒21𝑥 .

Every word over 𝑉 ∪ 𝐶 is uniquely determined by:

• the set of positions occupied by vowels and by consonants, and

• the vowel word and consonant word on those positions.

On the level of EGFs this is just the product construction, so

𝐴(𝑥) = 𝐴𝑉 (𝑥)𝐴𝐶(𝑥) = 𝑒5𝑥𝑒21𝑥 = 𝑒26𝑥 ,

in agreement with the direct count 𝑎𝑛 = 26
𝑛
.

Example 9.4 (Permutations). Let 𝑎𝑛 = 𝑛! be the number of permutations of [𝑛]. The EGF is

𝐴(𝑥) =
∑
𝑛≥0

𝑛!

𝑥𝑛

𝑛!

=

∑
𝑛≥0

𝑥𝑛 =
1

1 − 𝑥 .

Example 9.5 (Placing flags on poles). Let 𝑟 ≥ 1 be fixed. Consider 𝑛 distinct flags and 𝑟 distinct

flagpoles. On each pole the flags are arranged in a linear order; poles may be empty. Let 𝑎
(𝑟)
𝑛 be

the number of such arrangements on 𝑛 flags.

For a single pole the number of arrangements is 𝑛!, so the EGF is

𝐴(𝑥) =
∑
𝑛≥0

𝑛!

𝑥𝑛

𝑛!

=
1

1 − 𝑥 .

Arrangements on 𝑟 poles are an ordered 𝑟-tuple of independent arrangements on one pole, so

the EGF is

𝐴𝑟(𝑥) = 𝐴(𝑥)𝑟 = 1

(1 − 𝑥)𝑟 .

Hence

𝐴𝑟(𝑥) =
∑
𝑛≥0

𝑎
(𝑟)
𝑛

𝑥𝑛

𝑛!

=
1

(1 − 𝑥)𝑟 =

∑
𝑛≥0

(
𝑛 + 𝑟 − 1

𝑟 − 1

)
𝑥𝑛 ,

and therefore

𝑎
(𝑟)
𝑛 = 𝑛!

(
𝑛 + 𝑟 − 1

𝑟 − 1

)
.

Exponential generating functions 84

Fix an alphabet of size 𝑚. We consider two kinds of objects:

• multisets of letters, counted by ordinary GFs;

• words of length 𝑛, counted by EGFs.

For one letter, the ordinary and exponential GFs under various multiplicity conditions are:

condition on multiplicity ogf (one letter) egf (one letter)

unrestricted 0, 1, 2, . . . 1 + 𝑥 + 𝑥2 + · · · = 1

1 − 𝑥
∑
𝑛≥0

𝑥𝑛

𝑛!

= 𝑒𝑥

≤ 1 1 + 𝑥 1 + 𝑥
≥ 1 𝑥 + 𝑥2 + · · · = 𝑥

1 − 𝑥 𝑒𝑥 − 1

even (0, 2, 4, . . .) 1 + 𝑥2 + 𝑥4 + · · · = 1

1 − 𝑥2

𝑒𝑥 + 𝑒−𝑥
2

odd (1, 3, 5, . . .) 𝑥 + 𝑥3 + · · · = 𝑥

1 − 𝑥2

𝑒𝑥 − 𝑒−𝑥
2

For an alphabet of size 𝑚 we take the 𝑚-th power (letters behave independently):

condition on multiplicities ogf (multisets) egf (words)

unrestricted

(
1

1 − 𝑥

)𝑚 (
𝑒𝑥

)𝑚
= 𝑒𝑚𝑥

each letter used at most once (1 + 𝑥)𝑚 (1 + 𝑥)𝑚

each letter used at least once

(
𝑥

1 − 𝑥
)𝑚 (

𝑒𝑥 − 1

)𝑚
each letter used an even number of times

(
1

1 − 𝑥2

)𝑚 (
𝑒𝑥 + 𝑒−𝑥

2

)𝑚
each letter used an odd number of times

(
𝑥

1 − 𝑥2

)𝑚 (
𝑒𝑥 − 𝑒−𝑥

2

)𝑚
Example 9.6 (Ternary words with parity constraints). Let the alphabet be {0, 1, 2}. We count

words in which the number of 0’s is even, the number of 1’s is odd, and the number of 2’s is

arbitrary.

The one-letter EGFs are:

𝐸0(𝑥) =
𝑒𝑥 + 𝑒−𝑥

2

, 𝐸1(𝑥) =
𝑒𝑥 − 𝑒−𝑥

2

, 𝐸2(𝑥) = 𝑒𝑥 .

Hence the EGF of the desired words is

𝐴(𝑥) = 𝐸0(𝑥)𝐸1(𝑥)𝐸2(𝑥) =
1

4

(
𝑒𝑥 + 𝑒−𝑥

) (
𝑒𝑥 − 𝑒−𝑥

)
𝑒𝑥 =

1

4

(
𝑒3𝑥 − 𝑒−𝑥

)
.

Thus the number 𝑎𝑛 of such words of length 𝑛 is

𝑎𝑛 =
1

4

(
3
𝑛 − (−1)𝑛

)
.

9.6 Stirling numbers of the second kind

Definition 9.6. For integers 𝑛, 𝑘 ≥ 0, the Stirling number of the second kind 𝑆(𝑛, 𝑘) is the

number of partitions of the set [𝑛] = {1, . . . , 𝑛} into 𝑘 nonempty unlabeled blocks.

Exponential generating functions 85

Theorem 9.3 (EGF for 𝑆(𝑛, 𝑘)). For fixed 𝑘 ≥ 0,∑
𝑛≥0

𝑆(𝑛, 𝑘)𝑥
𝑛

𝑛!

=
(𝑒𝑥 − 1)𝑘

𝑘!
.

Proof. Instead of 𝑘 unlabeled blocks, consider partitions of [𝑛] into 𝑘 numbered boxes 1, 2, . . . , 𝑘,

each required to be nonempty.

Giving a partition into 𝑘 unlabeled blocks and then naming the blocks “box 1, box 2, . . . , box

𝑘” produces a partition into labeled blocks. Conversely, forgetting the box names turns a

labeled-block partition into an unlabeled-block partition.

For any fixed unlabeled partition into 𝑘 blocks, there are exactly 𝑘! ways to assign the names

1, 2, . . . , 𝑘 to its 𝑘 blocks. Therefore,

#{partitions of [𝑛] into 𝑘 numbered boxes} = 𝑘! 𝑆(𝑛, 𝑘).

So it suffices to compute the EGF for numbered-box partitions; we can divide by 𝑘! at the end.

First consider numbered boxes: put the 𝑛 elements of [𝑛] into 𝑘 numbered boxes, each nonempty.

A partition of [𝑛] into 𝑘 numbered boxes is the same thing as a function

𝑓 : [𝑛] → [𝑘]

such that every value 1, 2, . . . , 𝑘 is used at least once.

Indeed:

• Given such a function 𝑓 , define box 𝑖 to be 𝑓 −1(𝑖). The blocks are nonempty exactly when

every 𝑖 ∈ [𝑘] is hit by 𝑓 .

• Given 𝑘 labeled nonempty blocks 𝐵1 , . . . , 𝐵𝑘 , define 𝑓 (𝑥) = 𝑖 whenever 𝑥 ∈ 𝐵𝑖 . This is a

well-defined function and it is automatically onto.

So “partition into 𝑘 labeled nonempty blocks” ⇐⇒ “surjection [𝑛] → [𝑘]”.

Thus

#{surjections [𝑛] → [𝑘]} = 𝑘! 𝑆(𝑛, 𝑘).

Given a surjection 𝑓 : [𝑛] → [𝑘], define

𝐵𝑖 := 𝑓 −1(𝑖) (1 ≤ 𝑖 ≤ 𝑘).

Then (𝐵1 , . . . , 𝐵𝑘) is a 𝑘-tuple of nonempty disjoint subsets whose union is [𝑛]. Conversely, any

such 𝑘-tuple determines a unique surjection by sending every element of 𝐵𝑖 to 𝑖.

So a surjection is exactly: “split the labels [𝑛] into 𝑘 nonempty parts, and remember the order

1, 2, . . . , 𝑘.”

Let 𝒮≥1 be the class “a nonempty labeled set.” For each 𝑟 ≥ 1 there is exactly one such object on

[𝑟] (namely the set [𝑟]), and for 𝑟 = 0 there are none. Hence

𝑆≥1(𝑥) =
∑
𝑟≥1

𝑥𝑟

𝑟!
= 𝑒𝑥 − 1.

A surjection consists of an ordered 𝑘-tuple of nonempty labeled sets (one for 𝐵1, one for 𝐵2, . . . ,

one for 𝐵𝑘) whose labels are disjoint and together form [𝑛]. By the labeled product rule, the

EGF for an ordered 𝑘-tuple is the product of the EGFs, so the EGF for surjections is

(𝑒𝑥 − 1)𝑘 .

Exponential generating functions 86

By definition of EGF, saying “the EGF for surjections is (𝑒𝑥 − 1)𝑘” means

(𝑒𝑥 − 1)𝑘 =
∑
𝑛≥0

(
#{surjections [𝑛] → [𝑘]}

) 𝑥𝑛
𝑛!

.

Substitute #{surjections [𝑛] → [𝑘]} = 𝑘! 𝑆(𝑛, 𝑘) to get

(𝑒𝑥 − 1)𝑘 =
∑
𝑛≥0

𝑘! 𝑆(𝑛, 𝑘)𝑥
𝑛

𝑛!

.

Divide by 𝑘! and we obtain ∑
𝑛≥0

𝑆(𝑛, 𝑘)𝑥
𝑛

𝑛!

=
(𝑒𝑥 − 1)𝑘

𝑘!
,

which is exactly the desired EGF identity. □

9.7 Stirling numbers of the first kind

Definition 9.7. For integers 𝑛, 𝑘 ≥ 0, the signless Stirling number of the first kind 𝑐(𝑛, 𝑘) is the

number of permutations of [𝑛] having exactly 𝑘 cycles in their cycle decomposition.

The (signed) Stirling numbers of the first kind 𝑠(𝑛, 𝑘) are defined by

𝑠(𝑛, 𝑘) = (−1)𝑛−𝑘𝑐(𝑛, 𝑘).

We set 𝑠(0, 0) = 1 and 𝑠(0, 𝑘) = 𝑠(𝑛, 0) = 0 for 𝑛, 𝑘 > 0.

Theorem 9.4. For all 𝑛 ∈ 𝒩 ,

𝑥𝑛 =

𝑛∑
𝑘=0

𝑆(𝑛, 𝑘) 𝑥𝑘 , (2)

𝑥𝑛 =

𝑛∑
𝑘=0

𝑠(𝑛, 𝑘) 𝑥𝑘 . (3)

Combinatorial proof of (2). Fix 𝑛 and let 𝑥 be a positive integer. Interpret 𝑥𝑛 as the number of

functions 𝑓 : [𝑛] → [𝑥], i.e. words of length 𝑛 over the alphabet [𝑥] = {1, . . . , 𝑥}.
Partition all such functions 𝑓 according to the size 𝑘 of the image 𝑓 ([𝑛]). For a fixed 𝑘, we must:

• choose a 𝑘–element subset 𝑆 ⊆ [𝑥] to be the image;

• choose a surjection [𝑛]↠ 𝑆.

There are

(
𝑥
𝑘

)
ways to choose 𝑆, and 𝑆(𝑛, 𝑘) 𝑘! surjections onto a fixed 𝑘–set (as before). Hence

the number of functions with image size 𝑘 is(
𝑥

𝑘

)
𝑘! 𝑆(𝑛, 𝑘) = 𝑥𝑘 𝑆(𝑛, 𝑘).

Summing over 𝑘 = 0, . . . , 𝑛 yields

𝑥𝑛 =

𝑛∑
𝑘=0

𝑆(𝑛, 𝑘) 𝑥𝑘 .

Exponential generating functions 87

Since both sides are polynomials in 𝑥 that agree for all sufficiently many integer values of 𝑥, the

identity holds as a polynomial identity. □

Algebraic proof of (3). The polynomials 𝑥0 , . . . , 𝑥𝑛 form a basis of the vector space of polynomials

of degree at most 𝑛, so the expansion (2) expresses the monomials 𝑥𝑛 in that basis with

coefficients 𝑆(𝑛, 𝑘). The matrix 𝑆 = (𝑆(𝑛, 𝑘))𝑛,𝑘≥0 is therefore invertible, and its inverse has

entries 𝑤(𝑛, 𝑘), which gives the inverse expansion (3). (Equivalently, multiply the two identities

and compare the coefficient of 𝑥𝑚 on both sides.) □

Corollary 9.5 (Matrix inverse relation). For all 𝑛, 𝑚 ≥ 0,

𝑛∑
𝑘=0

𝑆(𝑛, 𝑘) 𝑠(𝑘, 𝑚) = 𝛿𝑛,𝑚 ,

where 𝛿𝑛,𝑚 is the Kronecker delta. Equivalently, the infinite lower-triangular matrices

(𝑆(𝑛, 𝑘))𝑛,𝑘≥0 and (𝑠(𝑛, 𝑘))𝑛,𝑘≥0 are mutual inverses.

Proof. Start from (2):

𝑥𝑛 =

𝑛∑
𝑘=0

𝑆(𝑛, 𝑘) 𝑥𝑘 .

Now substitute (3) (with 𝑛 replaced by 𝑘) into each 𝑥𝑘 :

𝑥𝑛 =

𝑛∑
𝑘=0

𝑆(𝑛, 𝑘)
(

𝑘∑
𝑚=0

𝑠(𝑘, 𝑚) 𝑥𝑚
)
=

𝑛∑
𝑚=0

(
𝑛∑

𝑘=𝑚

𝑆(𝑛, 𝑘) 𝑠(𝑘, 𝑚)
)
𝑥𝑚 .

On the other hand,

𝑥𝑛 =

𝑛∑
𝑚=0

𝛿𝑛,𝑚 𝑥
𝑚 .

Since the polynomials 1, 𝑥, 𝑥2 , . . . are linearly independent, the coefficient of 𝑥𝑚 must agree for

each 𝑚, giving

𝑛∑
𝑘=𝑚

𝑆(𝑛, 𝑘) 𝑠(𝑘, 𝑚) = 𝛿𝑛,𝑚 .

Finally, extending the sum to 𝑘 = 0, . . . , 𝑛 does not change anything because 𝑠(𝑘, 𝑚) = 0 for

𝑘 < 𝑚, so

𝑛∑
𝑘=0

𝑆(𝑛, 𝑘) 𝑠(𝑘, 𝑚) = 𝛿𝑛,𝑚 .

□

Exponential generating functions 88

9.8 Binomial inversion

Theorem 9.6 (Binomial inversion). Let (𝑎𝑛)𝑛≥0 and (𝑏𝑛)𝑛≥0 be sequences, and define EGFs

𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛
𝑥𝑛

𝑛!

, 𝐵(𝑥) =
∑
𝑛≥0

𝑏𝑛
𝑥𝑛

𝑛!

.

Then the following are equivalent:

(i) 𝑎𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑏𝑛−𝑘 (𝑛 ≥ 0),

(ii) 𝑏𝑛 =

𝑛∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
𝑎𝑛−𝑘 (𝑛 ≥ 0).

Proof. (i)⇒ EGF identity. Assume (i). Then for each 𝑛,

𝑎𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑏𝑛−𝑘 =

𝑛∑
𝑘=0

𝑛!

𝑘!(𝑛 − 𝑘)! 𝑏𝑛−𝑘 .

Multiply by 𝑥𝑛/𝑛! and sum over 𝑛 ≥ 0:

𝐴(𝑥) =
∑
𝑛≥0

𝑎𝑛
𝑥𝑛

𝑛!

=

∑
𝑛≥0

𝑛∑
𝑘=0

𝑏𝑛−𝑘
𝑥𝑛

𝑘!(𝑛 − 𝑘)! .

Rewrite with 𝑚 = 𝑛 − 𝑘 (so 𝑚 ≥ 0 and 𝑘 ≥ 0):

𝐴(𝑥) =
∑
𝑘≥0

∑
𝑚≥0

𝑏𝑚
𝑥𝑚+𝑘

𝑘!𝑚!

=

(∑
𝑘≥0

𝑥𝑘

𝑘!

) (∑
𝑚≥0

𝑏𝑚
𝑥𝑚

𝑚!

)
= 𝑒𝑥𝐵(𝑥).

So (i) implies

𝐴(𝑥) = 𝑒𝑥𝐵(𝑥).

EGF identity⇒ (ii). From 𝐴(𝑥) = 𝑒𝑥𝐵(𝑥)we get

𝐵(𝑥) = 𝑒−𝑥𝐴(𝑥).

Expand 𝑒−𝑥 =
∑
𝑘≥0
(−1)𝑘𝑥𝑘/𝑘! and multiply:

𝐵(𝑥) =
(∑
𝑘≥0

(−1)𝑘 𝑥
𝑘

𝑘!

) (∑
𝑚≥0

𝑎𝑚
𝑥𝑚

𝑚!

)
.

By the product rule for EGFs, the coefficient of 𝑥𝑛/𝑛! in this product is

𝑏𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
(−1)𝑘𝑎𝑛−𝑘 ,

which is exactly (ii).

(ii)⇒ (i). The same argument with 𝑥 replaced by −𝑥 reverses the steps, or equivalently: (ii)

gives 𝐵(𝑥) = 𝑒−𝑥𝐴(𝑥), hence 𝐴(𝑥) = 𝑒𝑥𝐵(𝑥), and extracting coefficients yields (i). □

Exponential generating functions 89

Example 9.7 (Derangements). Let 𝐷𝑛 be the number of derangements of [𝑛]. Using the

binomial inversion formula, obtain the EGF of 𝐷(𝑥)

Every permutation of [𝑛] can be obtained by first choosing the set of fixed points and then

deranging the rest, so

𝑛! =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝐷𝑛−𝑘 .

By binomial inversion,

𝐷𝑛 =

𝑛∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
(𝑛 − 𝑘)! = 𝑛!

𝑛∑
𝑘=0

(−1)𝑘
𝑘!

.

The EGF of the derangement numbers is therefore

𝐷(𝑥) =
∑
𝑛≥0

𝐷𝑛
𝑥𝑛

𝑛!

=
𝑒−𝑥

1 − 𝑥 .

Exponential generating functions 90

9.9 Exponential formula and connected structures

We now look at labelled combinatorial structures that decompose into connected components. The

exponential formula describes their EGFs.

Let 𝑐𝑛 be the number of structures of size 𝑛 (on label set [𝑛]), and define the exponential

generating function

𝐶(𝑥) =
∑
𝑛≥1

𝑐𝑛
𝑥𝑛

𝑛!

.

We call 𝒞 connected if its elements are taken to be connected objects in some sense (graphs,

permutations as products of cycles, set partitions as blocks, etc.).

Definition 9.8. Given a connected class 𝒞 , let 𝒢 be the class of finite sets of components

from 𝒞 , taken on disjoint label sets. Equivalently, 𝒢 consists of all finite (possibly empty)

structures obtained by taking a finite collection of connected components from 𝒞 and

relabelling them with the same label set.

Let 𝑔𝑛 be the number of 𝒢–structures on [𝑛], and let

𝐺(𝑥) =
∑
𝑛≥0

𝑔𝑛
𝑥𝑛

𝑛!

be its EGF (note that the empty structure is allowed, so 𝑔0 = 1).

Theorem 9.7 (Exponential formula). With notation as above, the EGFs satisfy

𝐺(𝑥) = exp

(
𝐶(𝑥)

)
.

Proof. Fix 𝑛 and consider a 𝒢–structure on [𝑛]. It consists of a set {𝐶1 , . . . , 𝐶𝑟} of connected

components, where the label sets form a partition of [𝑛] into 𝑟 (unordered) blocks of sizes

𝑛1 , . . . , 𝑛𝑟 summing to 𝑛, and 𝐶𝑖 is a 𝒞–structure on the 𝑖th block.

If we temporarily regard the components as labelled 1, . . . , 𝑟, then the EGF for an ordered 𝑟–tuple

of components is 𝐶(𝑥)𝑟/𝑟!, by the product and set constructions for EGFs. Summing over all

𝑟 ≥ 0, we obtain

𝐺(𝑥) =
∑
𝑟≥0

𝐶(𝑥)𝑟
𝑟!

= 𝑒𝐶(𝑥).

The factor 1/𝑟! exactly compensates for the ordering of the components, so this counts unordered

sets of components. □

Example 9.8 (Bell numbers). The 𝑛th Bell number 𝐵𝑛 is the number of ways to partition the

labeled set [𝑛] = {1, 2, . . . , 𝑛} into nonempty blocks (i.e. a set partition of [𝑛]).

Goal. Find the exponential generating function

𝐵(𝑥) :=

∑
𝑛≥0

𝐵𝑛
𝑥𝑛

𝑛!

.

Exponential generating functions 91

A block is a nonempty set of labels. If a structure consists of exactly one block on [𝑛], there is

only one possibility: the block is [𝑛] itself. So 𝑐𝑛 = 1 for 𝑛 ≥ 1 (and 𝑐0 = 0), hence

𝐶(𝑥) =
∑
𝑛≥1

𝑥𝑛

𝑛!

= 𝑒𝑥 − 1.

A set partition is an unordered set of blocks. By the exponential formula for labeled classes, “a set

of 𝒞 -objects” has EGF exp(𝐶(𝑥)). Therefore∑
𝑛≥0

𝐵𝑛
𝑥𝑛

𝑛!

= exp(𝑒𝑥 − 1).

Example 9.9 (Permutations and cycles). A cycle on [𝑛] means a single cyclic ordering of

the labels 1, 2, . . . , 𝑛. Let 𝒞 be the labeled class of single cycles, and let 𝒢 be the labeled

class of permutations (i.e. disjoint unions of cycles). Compute 𝐶(𝑥) for cycles, then use the

exponential formula (permutations = union of cycle components) to recover the EGF for

permutations.

Fix 1 as the start; then the remaining 𝑛 − 1 labels can be arranged in any order, so there are

(𝑛 − 1)! cycles. Hence

𝐶(𝑥) =
∑
𝑛≥1

(𝑛 − 1)!𝑥
𝑛

𝑛!

=

∑
𝑛≥1

𝑥𝑛

𝑛
= − log(1 − 𝑥).

A permutation is a set of disjoint cycles. By the exponential formula,

𝐺(𝑥) = exp(𝐶(𝑥)) = exp(− log(1 − 𝑥)) = 1

1 − 𝑥 .

Since there are 𝑛! permutations of [𝑛], this matches

𝐺(𝑥) =
∑
𝑛≥0

𝑛!

𝑥𝑛

𝑛!

=

∑
𝑛≥0

𝑥𝑛 =
1

1 − 𝑥 .

Example 9.10 (Involutions). An involution is a permutation 𝜋 of [𝑛] such that 𝜋2 = id,

equivalently: every cycle has length 1 or 2. Use the exponential formula (involutions = union

of 1-cycles and 2-cycle components) to find the EGF

𝐼(𝑥) :=

∑
𝑛≥0

𝐼𝑛
𝑥𝑛

𝑛!

,

where 𝐼𝑛 is the number of involutions on [𝑛].

There is exactly 1 labeled 1-cycle on [1] (a fixed point), and exactly 1 labeled 2-cycle on [2] (a
transposition). Thus the “allowed cycle” class has EGF

𝐶(𝑥) = 𝑥 + 𝑥
2

2

.

Exponential generating functions 92

By the exponential formula (set of allowed cycles),

𝐼(𝑥) = exp(𝐶(𝑥)) = exp

(
𝑥 + 𝑥

2

2

)
.

Example 9.11 (Connected graphs). Let 𝐺𝑛 be the number of labeled simple graphs on vertex

set [𝑛], and let 𝐶𝑛 be the number of connected labeled simple graphs on vertex set [𝑛].
Compute

𝐶(𝑥) :=

∑
𝑛≥1

𝐶𝑛
𝑥𝑛

𝑛!

using the exponential formula (a graph is a set of connected components).

A labeled graph on [𝑛] is determined by choosing which of the

(
𝑛
2

)
possible edges are present, so

𝐺𝑛 = 2
(𝑛

2
).

Define EGFs

𝐺(𝑥) =
∑
𝑛≥0

𝐺𝑛
𝑥𝑛

𝑛!

, 𝐶(𝑥) =
∑
𝑛≥1

𝐶𝑛
𝑥𝑛

𝑛!

.

Every graph decomposes uniquely into a set of connected components. By the exponential

formula,

𝐺(𝑥) = exp(𝐶(𝑥)).
Hence

𝐶(𝑥) = log𝐺(𝑥),

which determines the connected counts 𝐶𝑛 by extracting coefficients of log

(∑
𝑛≥0

2
(𝑛

2
) 𝑥𝑛
𝑛!

)
.

Exponential generating functions 93

9.10 Lagrange Inversion Formula

We state the version we will use.

Theorem 9.8 (Lagrange inversion). Let 𝜑(𝑧) be a formal power series with 𝜑(0) ≠ 0.

Suppose 𝑦 = 𝑦(𝑥) is defined implicitly as the unique formal power series with 𝑦(0) = 0

satisfying

𝑥 =
𝑦

𝜑(𝑦) .

Then for all integers 𝑛 ≥ 1 and 𝑚 ≥ 1,

[𝑥𝑛] 𝑦(𝑥)𝑚 =
𝑚

𝑛
[𝑧 𝑛−𝑚]𝜑(𝑧)𝑛 .

Proof. Substitute 𝑥 = 𝑦/𝜑(𝑦) and regard 𝑦 as an indeterminate. Using formal differentiation

and the identity

𝑑

𝑑𝑥
𝑦(𝑥)𝑚 = 𝑚𝑦(𝑥)𝑚−1𝑦′(𝑥),

one can write

𝑦(𝑥)𝑚 =
𝑚

𝑛
𝑥𝑛

𝑑

𝑑𝑥

(
𝜑(𝑦(𝑥))𝑛

)
and then compare coefficients of 𝑥𝑛 on both sides (or use Cauchy’s integral formula on formal

Laurent series). Rearranging gives the stated coefficient identity. For the full proof, see the

textbook. □

9.11 Cayley’s Formula from Lagrange Inversion

Let 𝑅𝑛 be the number of rooted labelled trees on vertex set [𝑛], and let 𝑟𝑛 := 𝑅𝑛 for brevity. Let

𝑅(𝑥) :=

∑
𝑛≥1

𝑟𝑛
𝑥𝑛

𝑛!

be the EGF for rooted trees.

Functional equation for rooted trees

Consider a rooted tree on a labelled vertex set. From the root, remove the edges from the root to

its neighbours; each neighbour then becomes the root of a rooted subtree. Thus a rooted tree is:

(a distinguished root vertex) + a set of rooted trees.

By the exponential formula this structure translates to the functional equation

𝑅(𝑥) = 𝑥 exp

(
𝑅(𝑥)

)
.

Equivalently,

𝑥 =
𝑅(𝑥)

exp(𝑅(𝑥)) .

Exponential generating functions 94

Counting rooted trees via Lagrange inversion

Here 𝜑(𝑧) = 𝑒𝑧 and 𝑦(𝑥) = 𝑅(𝑥) satisfies 𝑥 = 𝑦/𝜑(𝑦), so by Lagrange inversion with 𝑚 = 1 we

obtain

[𝑥𝑛]𝑅(𝑥) = 1

𝑛
[𝑧 𝑛−1] 𝑒𝑛𝑧 = 1

𝑛

𝑛𝑛−1

(𝑛 − 1)! =
𝑛𝑛−1

𝑛!

.

Therefore

𝑟𝑛 = 𝑛𝑛−1

rooted labelled trees on [𝑛].

Unrooted trees

Every labelled tree on [𝑛] has exactly 𝑛 possible choices of root, so 𝑟𝑛 = 𝑛 · 𝑡𝑛 , where 𝑡𝑛 is the

number of (unrooted) labelled trees on [𝑛]. Hence

𝑡𝑛 =
𝑟𝑛

𝑛
= 𝑛𝑛−2.

Theorem 9.9 (Cayley’s formula). The number of labelled trees on vertex set [𝑛] is

𝑡𝑛 = 𝑛𝑛−2.

Integer Partitions 95

10 Integer Partitions

Definition 10.1. A partition of a nonnegative integer 𝑛 is a sequence 𝜆 = (𝜆1 ,𝜆2 , . . . ,𝜆ℓ) of

positive integers with

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆ℓ ≥ 1, 𝜆1 + · · · + 𝜆ℓ = 𝑛.

The 𝜆𝑖 are the parts of the partition.

Let 𝑝(𝑛) be the number of partitions of 𝑛. We encode these in an ordinary generating function.

Example 10.1 (OGF for integer partitions). Let 𝑝(𝑛) be the number of (integer) partitions of

𝑛. Find the ordinary generating function

𝑃(𝑥) :=

∑
𝑛≥0

𝑝(𝑛) 𝑥𝑛 .

Idea: “unlimited coin change”: A partition of 𝑛 is the same thing as choosing how many 1’s

you use, how many 2’s you use, how many 3’s you use, and so on, with the total sum coming

out to 𝑛. So a partition is determined by a sequence of multiplicities

(𝑚1 , 𝑚2 , 𝑚3 , . . .) where 𝑚𝑗 ∈ {0, 1, 2, . . . }

and

1 · 𝑚1 + 2 · 𝑚2 + 3 · 𝑚3 + · · · = 𝑛.

(Only finitely many 𝑚 𝑗 are nonzero for a given partition.)

What does 1 + 𝑥 𝑗 + 𝑥2𝑗 + · · · mean? Fix a part size 𝑗. You are allowed to use 𝑗:

0 times, 1 time, 2 times, . . .

If you use 𝑗 exactly 𝑚 times, it contributes 𝑚𝑗 to the total sum. In an OGF, contributing 𝑚𝑗

corresponds to multiplying by 𝑥𝑚𝑗 . So the “menu of choices” for part size 𝑗 is exactly

1 + 𝑥 𝑗 + 𝑥2𝑗 + 𝑥3𝑗 + · · · ,

where:

• the term 1 means “use 𝑗 zero times”,

• the term 𝑥 𝑗 means “use 𝑗 once”,

• the term 𝑥2𝑗
means “use 𝑗 twice”, etc.

This is a geometric series, so

1 + 𝑥 𝑗 + 𝑥2𝑗 + · · · = 1

1 − 𝑥 𝑗
.

Why do we multiply over all 𝑗? Now we make all the choices at once: choose how many 1’s,

how many 2’s, how many 3’s, etc. These choices are independent (picking the number of 5’s

does not restrict how many 2’s you pick), so we multiply the choice series:

𝑃(𝑥) =
∏
𝑗≥1

(
1 + 𝑥 𝑗 + 𝑥2𝑗 + · · ·

)
=

∏
𝑗≥1

1

1 − 𝑥 𝑗
.

Integer Partitions 96

Why does the coefficient equal 𝑝(𝑛)? When you expand the product, you pick one term from

each factor. Picking 𝑥𝑚𝑗 𝑗
from the 𝑗th factor means “use 𝑗 exactly 𝑚 𝑗 times.” The product of all

chosen terms is

𝑥𝑚1·1 𝑥𝑚2·2 𝑥𝑚3·3 · · · = 𝑥 1𝑚1+2𝑚2+3𝑚3+···.

So you get a contribution to 𝑥𝑛 precisely when the chosen multiplicities satisfy

1𝑚1 + 2𝑚2 + 3𝑚3 + · · · = 𝑛,

which is exactly the condition for a partition of 𝑛. Moreover, each partition corresponds to

exactly one such choice of terms. Therefore the coefficient of 𝑥𝑛 in 𝑃(𝑥) is 𝑝(𝑛), i.e.

𝑃(𝑥) =
∑
𝑛≥0

𝑝(𝑛) 𝑥𝑛 =

∏
𝑗≥1

1

1 − 𝑥 𝑗
.

[Bounded largest part]

Example 10.2. Let 𝑝𝑘(𝑛) be the number of partitions of 𝑛 in which every part is at most 𝑘.

Find the ordinary generating function

𝑃𝑘(𝑥) :=

∑
𝑛≥0

𝑝𝑘(𝑛) 𝑥𝑛 .

In the full partition OGF

𝑃(𝑥) =
∏
𝑗≥1

1

1 − 𝑥 𝑗
,

the factor
1

1−𝑥 𝑗 = 1+ 𝑥 𝑗 + 𝑥2𝑗 + · · · is the “menu” for how many 𝑗’s you use. If we require all parts
≤ 𝑘, then parts 𝑘 + 1, 𝑘 + 2, . . . are forbidden, meaning their multiplicities must be 0.

In OGF language, “must use 0 of size 𝑗” means the only allowed term is 1, so we simply omit

those factors. Equivalently, we keep only the factors for 𝑗 = 1, 2, . . . , 𝑘:∑
𝑛≥0

𝑝≤𝑘(𝑛) 𝑥𝑛 =

𝑘∏
𝑗=1

(
1 + 𝑥 𝑗 + 𝑥2𝑗 + · · ·

)
=

𝑘∏
𝑗=1

1

1 − 𝑥 𝑗
.

Example 10.3 (Partitions into distinct parts). Let 𝑞(𝑛) be the number of partitions of 𝑛 into

distinct parts (no part size is repeated). Find the ordinary generating function

𝑄(𝑥) :=

∑
𝑛≥0

𝑞(𝑛) 𝑥𝑛 .

Use the same “one factor per part size” idea as for 𝑃(𝑥), but now each part size 𝑗 can be used at
most once. So for each 𝑗 ≥ 1 the only allowed choices are:

use 𝑗 zero times ⇒ 1, use 𝑗 once ⇒ 𝑥 𝑗 .

Thus the 𝑗th factor becomes 1 + 𝑥 𝑗 . Multiplying over all 𝑗 gives

𝑄(𝑥) =
∏
𝑗≥1

(1 + 𝑥 𝑗),

and by construction the coefficient of 𝑥𝑛 counts exactly the partitions of 𝑛 into distinct parts.

Integer Partitions 97

Partitions with restricted part sizes

More generally, fix a set 𝑆 ⊆ N of allowed part sizes. Let 𝑝𝑆(𝑛) be the number of partitions of 𝑛

whose parts all belong to 𝑆. The OGF is∑
𝑛≥0

𝑝𝑆(𝑛)𝑥𝑛 =

∏
𝑗∈𝑆

1

1 − 𝑥 𝑗
.

These generating functions are the starting point for many further identities and asymptotic

results about 𝑝(𝑛) and its variants.

10.2 Hardy–Ramanujan asymptotics and a simple upper bound

The famous Hardy–Ramanujan formula (1918) gives the asymptotic

𝑝(𝑛) ∼ 1

4𝑛
√

3

exp

(
𝜋

√
2𝑛

3

)
.

A much simpler inequality (due to Lint, 1971) says that for all 𝑛,

𝑝(𝑛) ≤ 1√
6𝑛

𝑒𝜋
√

2𝑛
3 . (4)

Let

𝑃(𝑥) :=

∑
𝑛≥0

𝑝(𝑛)𝑥𝑛 =

∏
𝑘≥1

1

1 − 𝑥𝑘

be the ordinary generating function of the partition numbers.

Taking logarithms,

log𝑃(𝑥) = −
∑
𝑘≥1

log(1 − 𝑥𝑘) =
∑
𝑘≥1

∑
𝑗≥1

𝑥𝑘 𝑗

𝑗
=

∑
𝑚≥1

©­« 1

𝑚

∑
𝑘|𝑚

𝑘
ª®¬ 𝑥𝑚 .

From the estimate ∑
𝑘|𝑚

𝑘 ≤ 𝑚(1 + log𝑚)

one obtains, after some calculus, the bound

log𝑃(𝑥) ≤ 𝜋2

6(1 − 𝑥) +
1

2

log

1

1 − 𝑥 + 𝑂(1)

as 𝑥 ↑ 1; extracting coefficients yields (4).

10.3 Ferrers diagrams and conjugation

Definition 10.2 (Ferrers diagram). A partition of 𝑛 is a sequence

𝜆 = (𝜆1 ,𝜆2 , . . . ,𝜆ℓ) with 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆ℓ ≥ 1,

ℓ∑
𝑖=1

𝜆𝑖 = 𝑛.

The Ferrers diagram of 𝜆 is the left-justified array of dots with 𝜆𝑖 dots in row 𝑖.

Integer Partitions 98

Definition 10.3 (Conjugate partition). The conjugate 𝜆′ of a partition 𝜆 is obtained by

reflecting its Ferrers diagram across the main diagonal. Equivalently, 𝜆′
𝑗
is the number of

parts of 𝜆 of size at least 𝑗.

𝜆 = (4, 2, 1) 𝜆′ = (3, 2, 1, 1)

𝜇 = (5, 3, 3, 1) 𝜇′ = (4, 3, 3, 1, 1)

Conjugation is an involution: (𝜆′)′ = 𝜆.

Proposition 10.1. For each 𝑘 ≥ 1, the number of partitions of 𝑛 whose largest part is 𝑘

equals the number of partitions of 𝑛 with exactly 𝑘 parts.

Proof. If 𝜆 has largest part 𝑘, then in 𝜆′ the number of parts equals 𝑘 (there are 𝑘 columns in the

Ferrers diagram). Thus conjugation is a bĳection between the two classes of partitions. □

10.4 Distinct parts versus odd parts (Frobenius 1882)

Theorem 10.2 (Euler–Frobenius).∏
𝑖≥1

(1 + 𝑥 𝑖) =
∏
𝑗≥1

1

1 − 𝑥2𝑗−1

.

The left-hand side is the generating function for partitions into distinct parts; the right-hand side

is the generating function for partitions into odd parts. Hence:

Corollary 10.3. For every 𝑛, the number of partitions of 𝑛 into distinct parts equals the

number of partitions of 𝑛 into odd parts.

Proof. Let 𝒪𝑛 be the set of partitions of 𝑛 into odd parts and𝒟𝑛 the set of partitions of 𝑛 into

distinct parts. We construct a bĳection Φ : 𝒪𝑛 →𝒟𝑛 .

Every odd integer can be written uniquely as 𝑚 = 2
𝑡(2𝑢 + 1) with 𝑡 ≥ 0 and 𝑢 ≥ 0. Take 𝜆 ∈ 𝒪𝑛

and fix one odd number 𝑚 = 2𝑢 + 1. Suppose 𝑚 occurs in 𝜆 with multiplicity 𝑞 ≥ 0. Write 𝑞 in

binary:

𝑞 = 𝜀02
0 + 𝜀12

1 + · · · + 𝜀𝑠2
𝑠 , 𝜀𝑗 ∈ {0, 1}.

For this odd part 𝑚 we replace the 𝑞 copies of 𝑚 by the (at most 𝑠 + 1) parts

2
𝑗𝑚 = 2

𝑗(2𝑢 + 1) for all 𝑗 with 𝜀𝑗 = 1.

Integer Partitions 99

Do this independently for each distinct odd number 𝑚 that occurs in 𝜆.

The resulting multiset of parts has the following properties.

• All parts are distinct: for fixed 𝑚, the powers 2
𝑗𝑚 are distinct because the 𝜀𝑗’s are 0 or 1, and

for different odd 𝑚 we cannot have 2
𝑡1𝑚1 = 2

𝑡2𝑚2 since that would force 𝑚1 and 𝑚2 to have

the same odd part.

• The sum of all parts is preserved: we simply regrouped 𝑞 copies of 𝑚 into

∑
𝑗 𝜀𝑗 copies of 2

𝑗𝑚

whose total is still 𝑞𝑚.

Thus Φ(𝜆) is a partition of 𝑛 into distinct parts, so Φ : 𝒪𝑛 →𝒟𝑛 is well-defined.

Conversely, given 𝜇 ∈ 𝒟𝑛 , write each part of 𝜇 in the form 2
𝑡(2𝑢 + 1) with 𝑡 ≥ 0 and 2𝑢 + 1 odd.

For each fixed odd integer 𝑚 = 2𝑢 + 1, consider all parts of 𝜇 whose odd component is 𝑚: they

have the form 2
𝑡𝑚 with distinct exponents 𝑡, because the parts of 𝜇 are distinct. Replace each

such part 2
𝑡𝑚 by 2

𝑡
copies of 𝑚. Summing over all 𝑚 we obtain a partition of 𝑛 into odd parts;

this is the inverse map Ψ : 𝒟𝑛 → 𝒪𝑛 .

It is immediate from the definitions that Ψ is inverse to Φ. Hence Φ is a bĳection and

|𝒪𝑛 | = |𝒟𝑛 |. □

10.5 Integer triangles and partitions

Let 𝑎𝑛 be the number of integer-sided triangles (𝑎, 𝑏, 𝑐) with perimeter 𝑛, counted up to

permutation of the side lengths and satisfying the triangle inequalities.

Theorem 10.4. The ordinary generating function of (𝑎𝑛)𝑛≥0 is∑
𝑛≥0

𝑎𝑛𝑥
𝑛 =

𝑥3

(1 − 𝑥2)(1 − 𝑥3)(1 − 𝑥4) .

Proof. Since we count triangles up to permutation of the side lengths, every triangle can be

written uniquely with

𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 1, 𝑎 < 𝑏 + 𝑐, 𝑎 + 𝑏 + 𝑐 = 𝑛.

Introduce new nonnegative integers

𝑡 := 𝑐 − 1 ≥ 0, 𝑢 := 𝑏 − 𝑐 ≥ 0, 𝑤 := 𝑎 − 𝑏 ≥ 0.

Then

𝑐 = 𝑡 + 1, 𝑏 = 𝑐 + 𝑢 = 𝑡 + 𝑢 + 1, 𝑎 = 𝑏 + 𝑤 = 𝑡 + 𝑢 + 𝑤 + 1.

The perimeter is therefore

𝑛 = 𝑎 + 𝑏 + 𝑐 = (𝑡 + 𝑢 + 𝑤 + 1) + (𝑡 + 𝑢 + 1) + (𝑡 + 1) = 3𝑡 + 2𝑢 + 𝑤 + 3.

The only remaining condition is the triangle inequality 𝑎 < 𝑏 + 𝑐:

𝑎 < 𝑏 + 𝑐 ⇐⇒ 𝑡 + 𝑢 + 𝑤 + 1 < (𝑡 + 𝑢 + 1) + (𝑡 + 1) = 2𝑡 + 𝑢 + 2 ⇐⇒ 𝑤 < 𝑡 + 1.

Since 𝑤 and 𝑡 are integers, this is equivalent to 0 ≤ 𝑤 ≤ 𝑡.

Integer Partitions 100

Now write 𝑡 as 𝑡 = 𝑠+𝑤 with 𝑠 ≥ 0; this parametrises all pairs (𝑡 , 𝑤)with 0 ≤ 𝑤 ≤ 𝑡. Substituting

into the expression for 𝑛, we obtain

𝑛 = 3(𝑠 + 𝑤) + 2𝑢 + 𝑤 + 3 = 3𝑠 + 2𝑢 + 4𝑤 + 3.

Thus each triangle corresponds uniquely to a triple (𝑠, 𝑢, 𝑤) of nonnegative integers, and the

perimeter of the triangle is

𝑛 = 3𝑠 + 2𝑢 + 4𝑤 + 3.

Hence the ordinary generating function is∑
𝑠,𝑢,𝑤≥0

𝑥3𝑠+2𝑢+4𝑤+3 = 𝑥3

(∑
𝑠≥0

𝑥3𝑠

) (∑
𝑢≥0

𝑥2𝑢

) (∑
𝑤≥0

𝑥4𝑤

)
=

𝑥3

(1 − 𝑥3)(1 − 𝑥2)(1 − 𝑥4) .

This is the claimed rational function. □

10.6 Euler’s identity for self-conjugate partitions

Theorem 10.5 (Euler). The generating function for self-conjugate partitions (those equal to

their conjugates) is∏
𝑖≥1

(1 + 𝑥2𝑖−1) = 1 +
∑
𝑘≥1

𝑥𝑘
2

(1 − 𝑥2)(1 − 𝑥4) · · · (1 − 𝑥2𝑘) .

Proof. We prove both equalities combinatorially.

Step 1: Decomposition by Durfee square. Let 𝜆 be a self-conjugate partition and draw its

Ferrers diagram. Let 𝑘 be the size of its Durfee square, i.e. the largest integer such that the

Young diagram contains a 𝑘 × 𝑘 square in the top left corner. Because 𝜆 is self-conjugate, this

square is symmetric with respect to the main diagonal, and all cells outside this square come in

symmetric pairs: if a cell appears to the right of the square in row 𝑖, a matching cell appears

below the square in column 𝑖.

For each 𝑖 = 1, . . . , 𝑘, let 𝑟𝑖 be the number of cells to the right of the Durfee square in row 𝑖;

self-conjugacy implies that there are also 𝑟𝑖 cells below the square in column 𝑖. Since the row

lengths are weakly decreasing, we have

𝑟1 ≥ 𝑟2 ≥ · · · ≥ 𝑟𝑘 ≥ 0.

Thus (𝑟1 , . . . , 𝑟𝑘) is a partition (possibly with zero parts) with at most 𝑘 parts.

The size of 𝜆 is

|𝜆| = 𝑘2 + 2

𝑘∑
𝑖=1

𝑟𝑖 ,

the 𝑘2
cells of the Durfee square plus 𝑟𝑖 cells in row 𝑖 and 𝑟𝑖 cells in column 𝑖 for each 𝑖.

Fix 𝑘. The contribution to the generating function from all self-conjugate partitions with Durfee

square of size 𝑘 is therefore

𝑥𝑘
2

∑
𝑟1≥···≥𝑟𝑘≥0

𝑥2(𝑟1+···+𝑟𝑘).

But the inner sum is exactly the generating function for partitions with at most 𝑘 parts, with

weight 𝑥2𝑚
for a total of𝑚 cells. It is well known (and easy to check by the usual Ferrers-diagram

Integer Partitions 101

bĳection) that the generating function for partitions with at most 𝑘 parts is

∏𝑘
𝑖=1
(1 − 𝑥 𝑖)−1

.

Replacing 𝑥 by 𝑥2
gives ∑

𝑟1≥···≥𝑟𝑘≥0

𝑥2(𝑟1+···+𝑟𝑘) =
𝑘∏
𝑖=1

1

1 − 𝑥2𝑖
.

Thus the total generating function for self-conjugate partitions is∑
𝑘≥0

𝑥𝑘
2

𝑘∏
𝑖=1

1

1 − 𝑥2𝑖
= 1 +

∑
𝑘≥1

𝑥𝑘
2

(1 − 𝑥2)(1 − 𝑥4) · · · (1 − 𝑥2𝑘) ,

proving the second equality.

Step 2: Bĳection with partitions into distinct odd parts. Let 𝒮 be the set of self-conjugate

partitions and𝒟odd the set of partitions into distinct odd parts. We construct a bĳection

Φ : 𝒟odd −→ 𝒮 .

Given 𝜇 ∈ 𝒟odd, write its parts in decreasing order and denote them by

𝜇1 > 𝜇2 > · · · > 𝜇ℓ , each 𝜇𝑗 odd.

Write 𝜇𝑗 = 2𝑎 𝑗 + 1 with 𝑎 𝑗 ≥ 0. We now build a Ferrers diagram for a self-conjugate partition by

successively adding hooks centered on the main diagonal.

Start with a single cell on the diagonal. For the largest part 𝜇1 = 2𝑎1 + 1, attach a hook of arm

length 𝑎1 to the right and a leg length 𝑎1 downward from this central cell; this gives a symmetric

“cross” of 2𝑎1+ 1 cells. For 𝜇2 = 2𝑎2+ 1, place a similar hook strictly inside the previous one (one

step closer to the diagonal), and so on. Because the parts are strictly decreasing, these hooks

nest properly and produce a Ferrers diagram that is symmetric about the diagonal. The total

number of cells equals the sum of the parts 𝜇𝑗 , so we have obtained a self-conjugate partition

Φ(𝜇) of the same integer.

Conversely, given a self-conjugate partition 𝜆, examine its Ferrers diagram and look at the cells

lying on the main diagonal. Around each diagonal cell there is a maximal symmetric hook:

move right until the diagram ends, and move down until the diagram ends; by self-conjugacy

these two legs have the same length, say 𝑎. This hook contains 2𝑎 + 1 cells. Remove all these

hooks, starting with the outermost and proceeding inward; what remains is again a (possibly

empty) self-conjugate Ferrers diagram, and the lengths of the hooks removed form a strictly

decreasing sequence of odd integers 2𝑎1+1 > 2𝑎2+1 > · · · . This sequence is precisely a partition

into distinct odd parts. This defines the inverse map Ψ : 𝒮 → 𝒟odd.

It is straightforward to check that Ψ is the inverse of Φ, so Φ is a bĳection. Therefore the

generating function of self-conjugate partitions equals the generating function of partitions into

distinct odd parts, which is ∏
𝑖≥1

(1 + 𝑥2𝑖−1),

since each odd part 2𝑖 − 1 can be chosen at most once.

Combining Step 1 and Step 2 gives both equalities in the statement of the theorem. □

Inclusion–Exclusion Principle (PIE) 102

11 Inclusion–Exclusion Principle (PIE)

11.1 Basic statement

Let𝑈 be a finite universal set and let 𝐴1 , . . . , 𝐴𝑛 ⊆ 𝑈 .

Theorem 11.1 (Inclusion–Exclusion Principle).��𝐴1 ∪ · · · ∪ 𝐴𝑛
�� = ∑
∅≠𝑇⊆[𝑛]

(−1)|𝑇 |+1

��⋂
𝑖∈𝑇

𝐴𝑖
��.

Equivalently, ��𝑈 \ (𝐴1 ∪ · · · ∪ 𝐴𝑛)
�� = ∑

𝑇⊆[𝑛]
(−1)|𝑇 |

��⋂
𝑖∈𝑇

𝐴𝑖
��.

Proof. Fix 𝑥 ∈ 𝑈 and let 𝑡 be the number of sets 𝐴𝑖 that contain 𝑥. On the right-hand side, 𝑥 is

counted in exactly

(
𝑡
𝑗

)
intersections of size 𝑗, with sign (−1)𝑗 . Thus its total contribution is

𝑡∑
𝑗=0

(−1)𝑗
(
𝑡

𝑗

)
= (1 − 1)𝑡 =

{
1, 𝑡 = 0,

0, 𝑡 ≥ 1.

Hence 𝑥 is counted once iff it lies in none of the 𝐴𝑖 , and not counted otherwise. Summing over

all 𝑥 ∈ 𝑈 gives the formula for |𝑈 \⋃𝑖 𝐴𝑖 |; the formula for |⋃𝑖 𝐴𝑖 | follows. □

11.2 Derangements

Example 11.1 (Derangements). Let𝑈 = 𝑆𝑛 be the set of all permutations of [𝑛]. For each 𝑖 ∈ [𝑛],
let 𝐴𝑖 be the set of permutations with 𝑖 as a fixed point. Then |𝐴𝑖 | = (𝑛 − 1)! and��⋂

𝑖∈𝑇
𝐴𝑖

�� = (𝑛 − |𝑇 |)!.
The number 𝐷𝑛 of derangements (permutations with no fixed points) is therefore

𝐷𝑛 =

𝑛∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
(𝑛 − 𝑘)!.

11.3 Euler’s totient function

Definition 11.1. For 𝑚 ≥ 1, Euler’s totient function

𝜑(𝑚) := |{1 ≤ 𝑖 ≤ 𝑚 : gcd(𝑖 , 𝑚) = 1}|

counts integers mod 𝑚 that are relatively prime to 𝑚.

Let 𝑝1 , . . . , 𝑝𝑠 be the distinct prime divisors of 𝑚.

Theorem 11.2.

𝜑(𝑚) = 𝑚

𝑠∏
𝑖=1

(
1 − 1

𝑝𝑖

)
= 𝑚

∑
𝑇⊆[𝑠]
(−1)|𝑇 | 1∏

𝑖∈𝑇 𝑝𝑖
.

Inclusion–Exclusion Principle (PIE) 103

Proof. Let 𝑈 = [𝑚]. For 𝑖 = 1, . . . , 𝑠, let 𝐴𝑖 be the set of integers in [𝑚] divisible by 𝑝𝑖 . Then

𝜑(𝑚) = |𝑈 \⋃𝑖 𝐴𝑖 |. For a nonempty 𝑇 ⊆ [𝑠],�����⋂
𝑖∈𝑇

𝐴𝑖

����� = ⌊
𝑚∏
𝑖∈𝑇 𝑝𝑖

⌋
=

𝑚∏
𝑖∈𝑇 𝑝𝑖

,

since

∏
𝑖∈𝑇 𝑝𝑖 divides 𝑚. PIE gives the stated formula. □

11.4 A PIE formula for Stirling numbers

Let 𝑆(𝑛, 𝑘) be the Stirling number of the second kind, the number of set partitions of [𝑛] into 𝑘

nonempty blocks.

Theorem 11.3. For integers 𝑛, 𝑘 ≥ 0,

𝑆(𝑛, 𝑘) = 1

𝑘!

𝑘∑
𝑗=0

(−1)𝑗
(
𝑘

𝑗

)
(𝑘 − 𝑗)𝑛 .

Equivalently,

𝑘!𝑆(𝑛, 𝑘) =
𝑘∑
𝑗=0

(−1)𝑗
(
𝑘

𝑗

)
(𝑘 − 𝑗)𝑛 .

Proof. Fix 𝑛 and 𝑘. Let𝑈 be the set of all functions 𝑓 : [𝑛] → [𝑘], so |𝑈 | = 𝑘𝑛 . For 𝑖 ∈ [𝑘], let 𝐴𝑖
be the set of functions that miss the value 𝑖 (no element is mapped to 𝑖). Then functions that hit

all 𝑘 values are precisely𝑈 \⋃𝑖 𝐴𝑖 .

Moreover, �����⋂
𝑖∈𝑇

𝐴𝑖

����� = (𝑘 − |𝑇 |)𝑛 .
By PIE, ��𝑈 \⋃

𝑖

𝐴𝑖
�� = 𝑘∑

𝑗=0

(−1)𝑗
(
𝑘

𝑗

)
(𝑘 − 𝑗)𝑛 .

Each surjection [𝑛] ↠ [𝑘] corresponds to a partition of [𝑛] into 𝑘 labelled blocks; forgetting

labels yields a factor of 𝑘!. Hence

𝑘!𝑆(𝑛, 𝑘) =
𝑘∑
𝑗=0

(−1)𝑗
(
𝑘

𝑗

)
(𝑘 − 𝑗)𝑛 .

□

11.5 Multisets via inclusion–exclusion

Let 𝑎𝑚,𝑛,𝑟 be the number of multisets of size 𝑚 drawn from an 𝑛-element type set, where each

type may appear at most 𝑟 times. Equivalently, 𝑎𝑚,𝑛,𝑟 counts integer solutions of

𝑥1 + · · · + 𝑥𝑛 = 𝑚, 0 ≤ 𝑥𝑖 ≤ 𝑟.

Inclusion–Exclusion Principle (PIE) 104

Proposition 11.4.

𝑎𝑚,𝑛,𝑟 =

𝑛∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

) (
𝑚 − 𝑘(𝑟 + 1) + 𝑛 − 1

𝑛 − 1

)
,

where the binomial coefficient is interpreted as 0 if the top is < 𝑛 − 1.

Proof. Let𝑈 be the set of all solutions in nonnegative integers of 𝑥1 + · · · + 𝑥𝑛 = 𝑚; then

|𝑈 | =
(
𝑚 + 𝑛 − 1

𝑛 − 1

)
by the stars-and-bars argument. For 𝑖 ∈ [𝑛], let 𝐴𝑖 be the set of solutions with 𝑥𝑖 ≥ 𝑟 + 1. Then

𝑎𝑚,𝑛,𝑟 = |𝑈 \
⋃
𝑖 𝐴𝑖 |.

For 𝑇 ⊆ [𝑛], |𝑇 | = 𝑘, we have 𝑥𝑖 ≥ 𝑟 + 1 for all 𝑖 ∈ 𝑇. Writing 𝑥′
𝑖
= 𝑥𝑖 − (𝑟 + 1) for 𝑖 ∈ 𝑇 and 𝑥′

𝑗
= 𝑥 𝑗

otherwise,

𝑛∑
𝑗=1

𝑥′𝑗 = 𝑚 − 𝑘(𝑟 + 1),

and the number of such solutions is(
𝑚 − 𝑘(𝑟 + 1) + 𝑛 − 1

𝑛 − 1

)
,

provided 𝑚 − 𝑘(𝑟 + 1) ≥ 0, and 0 otherwise. PIE now yields the claimed formula. □

11.6 PIE as an evaluation tool for sums

Many alternating binomial sums can be interpreted using PIE. For instance:

Example 11.2.
𝑛∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

)
2
𝑛−𝑘 = 1.

Interpret 2
𝑛−𝑘

as the number of subsets of [𝑛] that avoid a fixed 𝑘-element set and apply PIE

with𝑈 the power set of [𝑛] and 𝐴𝑖 the family of subsets containing element 𝑖.

Example 11.3. For integers 𝑚, 𝑛 ≥ 0,

𝑛∑
𝑘=0

(−1)𝑘
(
𝑛

𝑘

) (
𝑚 + 𝑛 − 𝑘
𝑟 − 𝑘

)
=

(
𝑚

𝑟

)
.

Let 𝑈 be the family of 𝑟-subsets of [𝑚 + 𝑛] and let 𝐴𝑖 be the subsets containing element 𝑖 for

𝑖 ∈ [𝑛]. Then the right-hand side counts 𝑟-subsets disjoint from [𝑛], while the left-hand side is

the PIE expansion for |𝑈 \⋃𝑖 𝐴𝑖 |.
Example 11.4 (Derangements again).

𝐷𝑛 = 𝑛!

𝑛∑
𝑘=0

(−1)𝑘
𝑘!

.

Apply PIE with𝑈 = 𝑆𝑛 and 𝐴𝑖 the permutations fixing 𝑖, as in the previous section.

Inclusion–Exclusion Principle (PIE) 105

Generalization of derangements

Definition 11.2 (Permutation matrix). Let 𝐺 be a permutation of {1, . . . , 𝑛}. The permutation
matrix of 𝐺 is the 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖 𝑗)with entries in {0, 1} defined by

𝑎𝑖 𝑗 =


1, if 𝑗 = 𝐺(𝑖),

0, otherwise.

Equivalently, every row and every column of 𝐴 contains exactly one entry equal to 1.

This point of view lets us extend the notion of derangements: instead of forbidding the diagonal

entries (𝑖 , 𝑖), one may forbid an arbitrary set of matrix positions for the 1’s.

Definition 11.3 (Derangement as a forbidden–positions problem). A classical derangement

of {1, . . . , 𝑛} is a permutation 𝐺 such that 𝐺(𝑖) ≠ 𝑖 for all 𝑖, i.e. in the permutation matrix of

𝐺 no 1 is allowed on the diagonal squares (𝑖 , 𝑖).

Definition 11.4 (Forbidden squares and sets𝐴𝑠). Let 𝑠 be a square (matrix position) 𝑠 = (𝑖 , 𝑗)
in an 𝑛 × 𝑛 matrix.

• Let 𝐴𝑠 be the set of permutations 𝐺 of {1, . . . , 𝑛} such that the permutation matrix of 𝐺

has a 1 in position 𝑠; equivalently, 𝐺(𝑖) = 𝑗. Then

|𝐴𝑠 | = (𝑛 − 1)!.

• For a set 𝐼 of squares, write ⋂
𝑠∈𝐼

𝐴𝑠

for the set of permutations whose permutation matrix has 1’s in all positions in 𝐼. We call

the squares in 𝐼 independent if no two of them lie in the same row or in the same column.

In that case, the conditions 𝐺(𝑖) = 𝑗 for (𝑖 , 𝑗) ∈ 𝐼 fix |𝐼| values of the permutation, and���⋂
𝑠∈𝐼

𝐴𝑠

��� = (𝑛 − |𝐼|)!.
11.8 Rook polynomials

Definition 11.5 (Boards and rook numbers). Let 𝐵 be a board (a subset of squares of an

𝑛 × 𝑛 grid). A subset 𝐵′ ⊆ 𝐵 is called independent if no two squares of 𝐵′ lie in the same row

or the same column.

For 𝑘 ≥ 0 define 𝑟𝑘(𝐵) to be the number of independent 𝑘-subsets of 𝐵. By convention

𝑟0(𝐵) = 1 (the empty set).

Inclusion–Exclusion Principle (PIE) 106

Definition 11.6 (Rook polynomial). The rook polynomial of a board 𝐵 is

𝑅𝐵(𝑥) :=

∑
𝑘≥0

𝑟𝑘(𝐵) 𝑥𝑘 .

Example 11.5. For the 4 × 4 board 𝐵 indicated in the figure in the notes (with certain forbidden

squares), one finds

𝑟0(𝐵) = 1, 𝑟1(𝐵) = 5, 𝑟2(𝐵) = 7, 𝑟3(𝐵) = 2, 𝑟4(𝐵) = 0,

so

𝑅𝐵(𝑥) = 1 + 5𝑥 + 7𝑥2 + 2𝑥3.

Proposition 11.5 (Product rule). Suppose 𝐵 = 𝐵1 ∪ 𝐵2 where 𝐵1 and 𝐵2 lie in disjoint sets

of rows and columns (no row or column of 𝐵 contains squares from both 𝐵1 and 𝐵2). Then

𝑅𝐵(𝑥) = 𝑅𝐵1
(𝑥)𝑅𝐵2

(𝑥).

Proof. An independent 𝑘-subset of 𝐵 is obtained by choosing, for some 𝑖, an independent 𝑖-subset

of 𝐵1 and an independent (𝑘 − 𝑖)-subset of 𝐵2. Thus

𝑟𝑘(𝐵) =
𝑘∑
𝑖=0

𝑟𝑖(𝐵1) 𝑟𝑘−𝑖(𝐵2),

and the stated identity is exactly the Cauchy product for the series 𝑅𝐵1
and 𝑅𝐵2

. □

Proposition 11.6 (Recursion). Let 𝑠 be a square of 𝐵. Let 𝐵 \ 𝑠 be the board obtained from

𝐵 by deleting 𝑠, and let 𝐵 − 𝑠 be the board obtained by deleting 𝑠 together with its entire

row and column. Then

𝑅𝐵(𝑥) = 𝑅𝐵\𝑠(𝑥) + 𝑥 𝑅𝐵−𝑠(𝑥).

Proof. Independent rook sets on 𝐵 either avoid 𝑠 or contain 𝑠. Those avoiding 𝑠 are precisely the

independent sets of 𝐵 \ 𝑠. Those containing 𝑠 correspond to independent sets on 𝐵 − 𝑠 (place

one rook at 𝑠, delete its row and column, and choose the remaining rooks). In the generating

polynomial this gives

𝑅𝐵(𝑥) =
∑
𝑘≥0

𝑟𝑘(𝐵)𝑥𝑘 =
∑
𝑘≥0

𝑟𝑘(𝐵 \ 𝑠)𝑥𝑘 +
∑
𝑘≥1

𝑟𝑘−1(𝐵 − 𝑠)𝑥𝑘 = 𝑅𝐵\𝑠(𝑥) + 𝑥𝑅𝐵−𝑠(𝑥).

□

11.9 Polynomial Inclusion–Exclusion

Let𝑈 be a finite set and 𝐴1 , . . . , 𝐴𝑛 ⊆ 𝑈 .

Inclusion–Exclusion Principle (PIE) 107

Definition 11.7. For 𝑝 ≥ 0 let

𝑎𝑝 :=
��{𝑢 ∈ 𝑈 : 𝑢 lies in exactly 𝑝 of the 𝐴𝑖}

��.
For 𝑘 ≥ 0 let

𝑏𝑘 :=

∑
𝐼⊆[𝑛]
|𝐼|=𝑘

���⋂
𝑖∈𝐼
𝐴𝑖

���
(with the convention that for 𝑘 = 0 the sum has one term |𝑈 |).

Theorem 11.7 (Polynomial form of P.I.E.). For an indeterminate 𝑥 we have the identity of

polynomials ∑
𝑝≥0

𝑎𝑝𝑥
𝑝 =

∑
𝑘≥0

𝑏𝑘(𝑥 − 1)𝑘 .

Proof. Fix 𝑢 ∈ 𝑈 and suppose 𝑢 lies in exactly 𝑝 of the sets 𝐴𝑖 . Then 𝑢 contributes 𝑥𝑝 to the

left-hand side. On the right-hand side, 𝑢 belongs to

⋂
𝑖∈𝐼 𝐴𝑖 precisely when 𝐼 is a subset of the 𝑝

indices of sets containing 𝑢. For each 𝑘 ≤ 𝑝 there are

(𝑝
𝑘

)
such subsets 𝐼, so the contribution of 𝑢

to the right-hand side is

𝑝∑
𝑘=0

(
𝑝

𝑘

)
(𝑥 − 1)𝑘 = (1 + (𝑥 − 1))𝑝 = 𝑥𝑝

by the binomial theorem. Since every 𝑢 ∈ 𝑈 contributes the same amount to both sides, the

polynomials are equal. □

11.10 Fixed points of a random permutation

Let 𝑈 = 𝑆𝑛 be the set of all permutations of [𝑛], and for each 𝑖 ∈ [𝑛] let 𝐴𝑖 be the set of

permutations that fix 𝑖.

For 𝜎 ∈ 𝑆𝑛 let 𝑝(𝜎) be the number of fixed points of 𝜎; then 𝑎𝑝 is the number of permutations

with exactly 𝑝 fixed points. Define

𝑁(𝑥) :=

∑
𝜎∈𝑆𝑛

𝑥𝑝(𝜎) =
∑
𝑝≥0

𝑎𝑝𝑥
𝑝 .

The polynomial P.I.E. gives an alternative expression for 𝑁(𝑥).
First compute 𝑏𝑘 : for a fixed 𝑘 and a subset 𝐼 ⊆ [𝑛]with |𝐼| = 𝑘,��⋂

𝑖∈𝐼
𝐴𝑖

�� = (𝑛 − 𝑘)!,
since the 𝑘 points in 𝐼 must be fixed and the remaining 𝑛 − 𝑘 points can be permuted arbitrarily.

There are

(
𝑛
𝑘

)
choices of 𝐼, so

𝑏𝑘 =

(
𝑛

𝑘

)
(𝑛 − 𝑘)!.

Therefore

𝑁(𝑥) =
𝑛∑
𝑘=0

(
𝑛

𝑘

)
(𝑛 − 𝑘)!(𝑥 − 1)𝑘 .

Symmetric counting 108

The expected number of fixed points of a random permutation is

E[𝑝(𝜎)] = 𝑁 ′(1)
𝑛!

.

Differentiate:

𝑁 ′(𝑥) =
𝑛∑
𝑘=1

(
𝑛

𝑘

)
(𝑛 − 𝑘)! 𝑘(𝑥 − 1)𝑘−1.

Evaluating at 𝑥 = 1 only the 𝑘 = 1 term survives, giving

𝑁 ′(1) =
(
𝑛

1

)
(𝑛 − 1)! = 𝑛!.

Hence

E[𝑝(𝜎)] = 𝑁 ′(1)
𝑛!

= 1.

So a random permutation of [𝑛] has on average one fixed point.

Many permutation–avoidance problems can be converted to rook polynomials by interpreting

forbidden positions of the permutation matrix as the squares of a board 𝐵: a rook in (𝑖 , 𝑗)means

that 𝜎(𝑖) = 𝑗.

Independent sets of 𝑘 squares in 𝐵 correspond to permutations that violate exactly 𝑘 of the

forbidden positions. Combining rook polynomials with P.I.E. yields formulas for the number of

permutations avoiding all forbidden positions (e.g. derangements as the special case where the

forbidden squares are the diagonal).

12 Symmetric counting

12.1 Signed permutations, parity, and determinants

Definition 12.1 (Involution). A permutation 𝜋 ∈ 𝑆𝑛 is an involution if 𝜋2 = id. Equivalently,

every cycle of 𝜋 has length 1 or 2.

Definition 12.2 (Parity and sign of a permutation). A permutation 𝜎 ∈ 𝑆𝑛 is even if it can be

written as a product of an even number of transpositions; otherwise it is odd. The sign of 𝜎 is

sign(𝜎) :=


+1, 𝜎 even,

−1, 𝜎 odd.

Equivalent characterisations of parity include:

• parity of the number of inversions of 𝜎;

• parity of the number of cycles of even length, etc.

Definition 12.3 (Determinant). For an 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖 , 𝑗) over a commutative ring, the

determinant is

det𝐴 =

∑
𝜎∈𝑆𝑛

sign(𝜎)
𝑛∏
𝑖=1

𝑎𝑖 ,𝜎(𝑖).

Symmetric counting 109

Example 12.1. If 𝐴 is the 𝑛 × 𝑛 all-1 matrix, then det𝐴 = 0 for 𝑛 ≥ 2. Indeed,

det𝐴 =

∑
𝜎∈𝑆𝑛

sign(𝜎) = #{even permutations} − #{odd permutations},

and these two numbers are equal, so the sum vanishes.

Consider lattice paths in Z2
that use only unit steps (1, 0) (right) and (0, 1) (up). For points

𝑃 = (𝑝1 , 𝑝2) and 𝑄 = (𝑞1 , 𝑞2)with 𝑞1 ≥ 𝑝1, 𝑞2 ≥ 𝑝2, the number of such paths from 𝑃 to 𝑄 is(
(𝑞1 − 𝑝1) + (𝑞2 − 𝑝2)

𝑞1 − 𝑝1

)
.

Given sources 𝑥1 , . . . , 𝑥𝑚 and sinks 𝑦1 , . . . , 𝑦𝑚 , let 𝑎𝑖 , 𝑗 be the number of lattice paths from 𝑥𝑖 to

𝑦 𝑗 and form the 𝑚 × 𝑚 matrix 𝐴 = (𝑎𝑖 , 𝑗).
In the 2 × 2 example from the notes (two sources and two sinks), there are 12 ordered pairs of

paths in total, but only 8 ordered pairs of vertex-disjoint paths. The path–count matrix is

𝐴 =

((
2

1

) (
4

1

)(
4

3

) (
6

3

)) =

(
2 4

4 20

)
,

and

det𝐴 = 2 · 20 − 4 · 4 = 40 − 16 = 24.

After dividing by appropriate symmetries (depending on how we count ordered vs. unordered

systems), this matches the number of vertex-disjoint path systems. This is a special case of the

Lindström–Gessel–Viennot lemma.

Theorem 12.1 (LGV lemma). For suitable acyclic directed graphs with sources 𝑥1 , . . . , 𝑥𝑚
and sinks 𝑦1 , . . . , 𝑦𝑚 , the determinant of the matrix 𝐴 = (𝑎𝑖 , 𝑗) of single-path counts equals a

signed sum over all 𝑚-tuples of vertex-disjoint paths from the 𝑥𝑖 to the 𝑦 𝑗 .

Consider a regular hexagon of side length 𝑛, subdivided into equilateral triangles of unit side

length. A rhombus tiling of this hexagon is a tiling by rhombi consisting of two unit triangles.

Theorem 12.2 (MacMahon, 1916). The number of rhombic tilings of a regular hexagon

of side length 𝑛 is equal to the determinant of the 𝑛 × 𝑛 matrix whose (𝑖 , 𝑗)–entry counts

certain lattice walks (equivalently, non-intersecting paths) associated with the tiling, as

illustrated in the notes. In particular this leads to MacMahon’s famous product formula for

plane partitions fitting in an 𝑛 × 𝑛 × 𝑛 box.

Symmetric counting 110

12.2 Burnside’s Lemma

Let 𝐺 be a finite group acting on a finite set 𝐶. For 𝜋 ∈ 𝐺 let

𝜓(𝜋) :=
��{𝑐 ∈ 𝐶 : 𝜋 · 𝑐 = 𝑐}

��
be the number of elements of 𝐶 fixed by 𝜋.

Lemma 12.3 (Burnside). The number of orbits of 𝐺 on 𝐶 equals

1

|𝐺|
∑
𝜋∈𝐺

𝜓(𝜋).

Proof. Let

𝑆 := {(𝜋, 𝑐) ∈ 𝐺 × 𝐶 : 𝜋 · 𝑐 = 𝑐}.
We count |𝑆| in two ways.

Fix 𝜋. For a given 𝜋 ∈ 𝐺, there are exactly 𝜓(𝜋) elements 𝑐 ∈ 𝐶 with 𝜋 · 𝑐 = 𝑐. Hence

|𝑆| =
∑
𝜋∈𝐺

𝜓(𝜋).

Fix 𝑐. For a given 𝑐 ∈ 𝐶, let 𝐺𝑐 := {𝜋 ∈ 𝐺 : 𝜋 · 𝑐 = 𝑐} be the stabilizer of 𝑐. Then |𝐺𝑐 | is the

number of 𝜋 ∈ 𝐺 with (𝜋, 𝑐) ∈ 𝑆, so

|𝑆| =
∑
𝑐∈𝐶
|𝐺𝑐 |.

The orbit–stabilizer theorem says that

|𝐺𝑐 | =
|𝐺|

|Orb(𝑐)| ,

where Orb(𝑐) = {𝜋 · 𝑐 : 𝜋 ∈ 𝐺} is the orbit of 𝑐.

Let 𝒪 be the set of orbits. Then∑
𝑐∈𝐶
|𝐺𝑐 | =

∑
𝑂∈𝒪

∑
𝑐∈𝑂
|𝐺𝑐 | =

∑
𝑂∈𝒪

∑
𝑐∈𝑂

|𝐺|
|𝑂| =

∑
𝑂∈𝒪
|𝐺| = |𝐺| · |𝒪|.

Equating the two expressions for |𝑆| gives∑
𝜋∈𝐺

𝜓(𝜋) = |𝐺| · |𝒪| =⇒ |𝒪| = 1

|𝐺|
∑
𝜋∈𝐺

𝜓(𝜋),

as claimed. □

12.3 Colorings and cycle structure

Let 𝑋 be a finite set and fix an integer 𝑘 ≥ 1. A 𝑘-coloring of 𝑋 is a function 𝑓 : 𝑋 → {1, . . . , 𝑘}.
Suppose 𝐺 acts on 𝑋; the induced action on colorings is given by

(𝜋 · 𝑓)(𝑥) := 𝑓 (𝜋−1𝑥) (𝜋 ∈ 𝐺, 𝑥 ∈ 𝑋).

Symmetric counting 111

Lemma 12.4. Let 𝜋 be a permutation of 𝑋 with 𝑡 cycles in its cycle decomposition. Then

the number of 𝑘-colorings 𝑓 : 𝑋 → [𝑘] fixed by 𝜋 is

𝜓(𝜋) = 𝑘𝑡 .

Proof. Write the cycles of 𝜋 as

𝐶1 , . . . , 𝐶𝑡 .

If 𝑓 is fixed by 𝜋 then 𝑓 must be constant on each cycle: for 𝑥 ∈ 𝐶 𝑗 we have 𝜋𝑚𝑥 = 𝑥 for some

𝑚 ≥ 1, and

𝑓 (𝑥) = 𝑓 (𝜋𝑚𝑥) = 𝑓 (𝜋𝑚−1𝑥) = · · · = 𝑓 (𝜋𝑥),
so all vertices in 𝐶 𝑗 have the same color. Conversely any coloring that is constant on each cycle

is fixed by 𝜋.

Thus to specify a fixed coloring we may choose an arbitrary color in [𝑘] for each cycle 𝐶 𝑗 ,

independently. There are 𝑘 choices per cycle, so in total 𝑘𝑡 fixed colorings. □

Example 12.2 (Vertices of a square). Let 𝑋 be the set of four vertices of a square, and let 𝐺 = 𝐷4

be the dihedral group of order 8 (all rotations and reflections of the square). We want the

number of different 𝑘-colorings of the vertices up to symmetry.

We list the cycle structure of each type of symmetry on the vertex set:

type # elements cycle structure on vertices

identity 1 4 cycles of length 1

rot. by ±90
◦

2 1 cycle of length 4

rot. by 180
◦

1 2 cycles of length 2

reflection in a diagonal 2 1 fixed vertex, 1 2-cycle, 1 fixed vertex (i.e. 2 1-cycles and 1 2-cycle)

reflection in a vertical/horizontal axis 2 2 fixed vertices and 1 2-cycle

Using the lemma, we get

𝜓(id) = 𝑘4 , 𝜓(90
◦) = 𝜓(270

◦) = 𝑘, 𝜓(180
◦) = 𝑘2 , 𝜓(each reflection) = 𝑘3

or 𝑘2 ,

and summing over types gives

#orbits of colorings =
1

8

(
𝑘4 + 2𝑘 + 3𝑘2 + 2𝑘3

)
.

12.4 Cycle index

Let 𝐺 be a permutation group acting on a finite set 𝑋 of size 𝑛. For 𝜋 ∈ 𝐺, let 𝑐 𝑗(𝜋) be the

number of cycles of length 𝑗 in the cycle decomposition of 𝜋.

Definition 12.4 (Cycle index). The cycle index of 𝐺 is the polynomial

𝑍𝐺(𝑥1 , . . . , 𝑥𝑛) :=
1

|𝐺|
∑
𝜋∈𝐺

𝑥
𝑐1(𝜋)
1

𝑥
𝑐2(𝜋)
2
· · · 𝑥𝑐𝑛(𝜋)𝑛 .

Symmetric counting 112

Example 12.3 (Vertices of a square). For the action of 𝐷4 on the 4 vertices, the cycle structures

above yield

𝑍
(vertices)

𝐷4

(𝑥1 , 𝑥2 , 𝑥4) =
1

8

(
𝑥4

1
+ 2𝑥4 + 𝑥2

2
+ 3𝑥2

1
𝑥2

)
.

Example 12.4 (Edges of a square). Let 𝐺 = 𝐷4 act on the 4 edges of a square. One checks that

the cycle index for this action is

𝑍
(edges)

𝐷4

(𝑥1 , 𝑥2 , 𝑥4) =
1

8

(
𝑥4

1
+ 𝑥2

2
+ 2𝑥4 + 4𝑥2

1
𝑥2

)
.

12.5 Pólya–Redfield counting

Let 𝐺 act on 𝑋 and consider colorings 𝑓 : 𝑋 → {1, . . . , 𝑘}. Give color 𝑖 a weight 𝑦𝑖 , and define

the weight of a coloring by

𝑤(𝑓) =
∏
𝑥∈𝑋

𝑦 𝑓 (𝑥).

For each orbit of colorings, the weight of all colorings in that orbit is the same; let 𝑃𝐺(𝑦1 , . . . , 𝑦𝑘)
be the sum of these orbit weights.

Theorem 12.5 (Pólya–Redfield). With notation as above,

𝑃𝐺(𝑦1 , . . . , 𝑦𝑘) = 𝑍𝐺
(
𝑦1 + · · · + 𝑦𝑘 , 𝑦2

1
+ · · · + 𝑦2

𝑘
, . . . , 𝑦𝑛

1
+ · · · + 𝑦𝑛

𝑘

)
.

In particular, the number of orbits of 𝑘-colorings is obtained by substituting 𝑦1 = · · · = 𝑦𝑘 = 1:

#{inequivalent 𝑘-colorings} = 𝑍𝐺(𝑘, 𝑘, . . . , 𝑘).

Proof. For a fixed 𝜋 ∈ 𝐺 with cycle structure 𝑐1(𝜋), . . . , 𝑐𝑛(𝜋), the colorings fixed by 𝜋 are exactly

those that are constant on each cycle. For a cycle of length 𝑗, the possible weights it contributes

are 𝑦
𝑗

1
, . . . , 𝑦

𝑗

𝑘
, so the generating polynomial of colorings on that cycle is 𝑦

𝑗

1
+ · · · + 𝑦 𝑗

𝑘
. Since

different cycles are independent, the total weight of all colorings fixed by 𝜋 is

𝑛∏
𝑗=1

(
𝑦
𝑗

1
+ · · · + 𝑦 𝑗

𝑘

) 𝑐 𝑗(𝜋).
By Burnside’s lemma, the sum of weights per orbit equals

𝑃𝐺(𝑦1 , . . . , 𝑦𝑘) =
1

|𝐺|
∑
𝜋∈𝐺

𝑛∏
𝑗=1

(
𝑦
𝑗

1
+ · · · + 𝑦 𝑗

𝑘

) 𝑐 𝑗(𝜋).
This is exactly the cycle index𝑍𝐺 with the substitution 𝑥 𝑗 ← 𝑦

𝑗

1
+· · ·+𝑦 𝑗

𝑘
, proving the formula. □

Example 12.5 (Edges of a square in two colors). Consider 2-colorings of the 4 edges of a square

with colors {red, blue}, under the action of 𝐷4.

Take 𝑦1 = 𝑟 (for red) and 𝑦2 = 𝑏 (for blue). Substituting into the cycle index above gives

𝑃𝐷4
(𝑟, 𝑏) = 1

8

(
(𝑟 + 𝑏)4 + (𝑟2 + 𝑏2)2 + 2(𝑟4 + 𝑏4) + 4(𝑟 + 𝑏)2(𝑟2 + 𝑏2)

)
.

Setting 𝑟 = 𝑏 = 1 we get the number of inequivalent 2-colorings:

𝑃𝐷4
(1, 1) = 1

8

(24 + 2
2 + 2 · 22 + 4 · 23) = 6.

So there are 6 distinct edge colorings up to symmetry.

Symmetric counting 113

12.6 Cube rotation group

Let 𝐺 be the rotation group of a cube in R3
. It has |𝐺| = 24 elements.

Action on vertices, faces, and edges

The group 𝐺 acts transitively on the 8 vertices, the 6 faces, and the 12 edges. One can classify

rotations by their axes and compute cycle structures in each action. The resulting cycle indices

are:

• Vertices (|𝑋 | = 8):

𝑍𝑉 (𝐺) =
1

24

(
𝑥8

1
+ 9𝑥2

1
𝑥3

2
+ 8𝑥2

3
+ 6𝑥2

4

)
.

• Faces (|𝑋 | = 6):

𝑍𝐹(𝐺) =
1

24

(
𝑥6

1
+ 6𝑥2

1
𝑥4 + 3𝑥2

1
𝑥2

2
+ 8𝑥2

3
+ 6𝑥3

2

)
.

• Edges (|𝑋 | = 12):

𝑍𝐸(𝐺) =
1

24

(
𝑥12

1
+ 3𝑥4

1
𝑥4

2
+ 6𝑥4

1
𝑥4

2
+ 8𝑥4

3
+ 6𝑥6

2

)
,

where the individual terms arise from rotations about face-centres, edge-centres and body

diagonals.

Example 12.6. Using 𝑍𝑉 (𝐺)we can count colorings of cube vertices with 𝑘 colors up to rotation:

#{inequivalent 𝑘-colorings of vertices} = 𝑍𝑉 (𝐺)(𝑘, 𝑘, 𝑘, 𝑘, 𝑘, 𝑘, 𝑘, 𝑘) =
1

24

(
𝑘8 + 9𝑘5 + 8𝑘2 + 6𝑘2

)
.

Similar formulas hold for faces and edges.

12.8 Graphs up to isomorphism

Fix 𝑛 ≥ 1 and let 𝑋 =
([𝑛]

2

)
be the set of unordered pairs of vertices, i.e. the edge set of the

complete graph 𝐾𝑛 . Any simple graph on vertex set [𝑛] is a subset 𝐸 ⊆ 𝑋, so we can think of

graphs as {0, 1}-colorings of 𝑋, where color 1 means “edge present” and color 0 means “edge

absent”.

The symmetric group 𝑆𝑛 acts on 𝑋 and hence on graphs by relabelling vertices. Orbits under

this action are exactly isomorphism classes of graphs on 𝑛 vertices.

Let 𝑍
(2)
𝑆𝑛

denote the cycle index of the 𝑆𝑛-action on the set of 2-subsets 𝑋. Pólya–Redfield with

colors {0, 1} then gives

#{non-isomorphic graphs on 𝑛 vertices} = 𝑍
(2)
𝑆𝑛
(2, 2, . . . , 2).

Example 12.7 (𝑛 = 4). For 𝑛 = 4, one computes

𝑍
(2)
𝑆4

(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥6) =
1

24

(
𝑥6

1
+ 3𝑥2

1
𝑥2

2
+ 8𝑥2

3
+ 6𝑥2

1
𝑥4 + 6𝑥3

2

)
.

Setting 𝑥 𝑗 = 2 for all 𝑗 gives

#{non-isomorphic graphs on 4 vertices} = 1

24

(
2

6 + 3 · 24 + 8 · 22 + 6 · 23 + 6 · 23
)
= 11.

This matches the well-known fact that there are 11 unlabeled graphs on 4 vertices.

Basics of Graph Theory 114

13 Basics of Graph Theory

Definition 13.1. A graph is a pair 𝐺 = (𝑉, 𝐸)where 𝑉 = 𝑉(𝐺) is a finite set of vertices and

𝐸 = 𝐸(𝐺) is a set of 2–element subsets of 𝑉 , called edges. If 𝑢𝑣 ∈ 𝐸(𝐺)we say that 𝑢 and 𝑣

are adjacent.

For a vertex 𝑣 ∈ 𝑉(𝐺) the degree of 𝑣 is

𝑑𝐺(𝑣) := |{ 𝑢 ∈ 𝑉(𝐺) : 𝑢𝑣 ∈ 𝐸(𝐺) }|.

Definition 13.2. A graph 𝐺 is

• 𝑘-regular if 𝑑𝐺(𝑣) = 𝑘 for every 𝑣 ∈ 𝑉(𝐺).
• of order 𝑛 if |𝑉(𝐺)| = 𝑛, and of size 𝑚 if |𝐸(𝐺)| = 𝑚.

Clearly |𝐸(𝐺)| ≤
(|𝑉(𝐺)|

2

)
.

Remark 13.1 (Conventions). Unless I explicitly say otherwise, graphs are finite, undirected, and

simple (no loops, no parallel edges). When we later allow multigraphs, I will say so out loud.

Definition 13.3 (Path and cycle). Let 𝑛 ≥ 1.

• A path of length 𝑛 − 1 is a graph 𝑃𝑛 with distinct vertices 𝑣1 , . . . , 𝑣𝑛 and edges 𝑣𝑖𝑣𝑖+1 for

𝑖 = 1, . . . , 𝑛 − 1.

• A cycle of length 𝑛 is a graph 𝐶𝑛 with distinct vertices 𝑣1 , . . . , 𝑣𝑛 and edges 𝑣𝑖𝑣𝑖+1 for

𝑖 = 1, . . . , 𝑛 − 1, together with 𝑣𝑛𝑣1.

A “path of length 𝑘” means 𝑘 edges (not 𝑘 vertices). So 𝑃𝑛 has 𝑛 vertices but length 𝑛 − 1.

13.1 Subgraphs and basic operations

Definition 13.4 (Subgraph). A graph 𝐻 is a subgraph of 𝐺 (written 𝐻 ⊆ 𝐺) if 𝑉(𝐻) ⊆ 𝑉(𝐺)
and 𝐸(𝐻) ⊆ 𝐸(𝐺). If 𝑉(𝐻) = 𝑉(𝐺)we call 𝐻 a spanning subgraph of 𝐺.

Definition 13.5 (Induced subgraph). Given 𝐺 and 𝑋 ⊆ 𝑉(𝐺), the induced subgraph 𝐺[𝑋] is
the graph with vertex set 𝑋 and edge set

𝐸(𝐺[𝑋]) = { 𝑢𝑣 ∈ 𝐸(𝐺) : 𝑢, 𝑣 ∈ 𝑋 }.

A subgraph 𝐻 of 𝐺 is induced if 𝐻 = 𝐺[𝑉(𝐻)].

Basics of Graph Theory 115

Remark 13.2. A subgraph allows deleting some vertices and/or edges, however you like. An

induced subgraph 𝐺[𝑋] is: you choose the vertex set 𝑋, and then you are forced to keep every

edge of 𝐺 whose endpoints both lie in 𝑋.

Definition 13.6 (Spanning subgraph). A subgraph 𝐻 of 𝐺 is spanning if it keeps all the

vertices:

𝑉(𝐻) = 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺).
In other words: you’re allowed to delete edges, but you’re not allowed to delete vertices.

Definition 13.7 (Vertex and edge deletion). For 𝑒 ∈ 𝐸(𝐺) let 𝐺 − 𝑒 be the graph obtained by

deleting 𝑒 but keeping all vertices. For 𝑣 ∈ 𝑉(𝐺) let 𝐺 − 𝑣 be the graph obtained by deleting

𝑣 and all edges incident with 𝑣.

Definition 13.8 (Neighborhood, isolated vertex). For 𝑣 ∈ 𝑉(𝐺) the neighborhood of 𝑣 is

𝑁𝐺(𝑣) := { 𝑢 ∈ 𝑉(𝐺) : 𝑢𝑣 ∈ 𝐸(𝐺) }.

If 𝑁𝐺(𝑣) = ∅ (equivalently, 𝑑𝐺(𝑣) = 0) we call 𝑣 an isolated vertex.

13.2 Complements, cliques and independent sets

Definition 13.9 (Complement). The complement 𝐺 of a graph 𝐺 is the graph with

𝑉(𝐺) = 𝑉(𝐺), 𝐸(𝐺) = { 𝑢𝑣 : 𝑢 ≠ 𝑣, 𝑢𝑣 ∉ 𝐸(𝐺) }.

Equivalently,

|𝐸(𝐺)| =
(
|𝑉(𝐺)|

2

)
− |𝐸(𝐺)|.

Definition 13.10 (Complete and empty graphs, cliques). The complete graph 𝐾𝑛 is the graph

on 𝑛 vertices with all possible edges.

A clique in 𝐺 is a set 𝑋 ⊆ 𝑉(𝐺) such that 𝐺[𝑋] � 𝐾|𝑋 |.
The empty graph on 𝑛 vertices is the graph with vertex set of size 𝑛 and no edges.

Definition 13.11 (Independent set). A set 𝐼 ⊆ 𝑉(𝐺) is an independent set if 𝐺[𝐼] has no edges

(equivalently, no two vertices of 𝐼 are adjacent).

Basics of Graph Theory 116

Lemma 13.1 (Handshake Lemma). For any finite (undirected) graph 𝐺 = (𝑉, 𝐸),∑
𝑣∈𝑉

deg(𝑣) = 2|𝐸|.

In particular, the number of vertices of odd degree is even.

Proof. Count the set of incidences

𝐼 := {(𝑣, 𝑒) ∈ 𝑉 × 𝐸 : 𝑒 is incident to 𝑣}.
Fixing 𝑣, there are exactly deg(𝑣) edges incident to 𝑣, so

|𝐼| =
∑
𝑣∈𝑉

deg(𝑣).

Fixing 𝑒 = {𝑢, 𝑣}, it is incident to exactly two vertices, so it contributes exactly 2 incidences;

hence |𝐼| = 2|𝐸|. Therefore

∑
𝑣∈𝑉 deg(𝑣) = 2|𝐸|.

For the parity claim, reduce mod 2:∑
𝑣∈𝑉

deg(𝑣) ≡ 0 (mod 2).

Even-degree vertices contribute 0 mod 2 and odd-degree vertices contribute 1, so the number of

odd-degree vertices is even. □

13.3 Bipartite and multipartite graphs

Definition 13.12 (Bipartite graphs). A graph 𝐺 is bipartite if its vertex set can be written as

a disjoint union 𝑉(𝐺) = 𝐴 ∪ 𝐵 such that both 𝐴 and 𝐵 are independent sets. In this case we

also say that 𝐺 is (𝐴, 𝐵)-bipartite and write 𝐺[𝐴, 𝐵].
The complete bipartite graph 𝐾𝑎,𝑏 has a bipartition 𝐴, 𝐵 with |𝐴| = 𝑎, |𝐵| = 𝑏, and all possible

edges between 𝐴 and 𝐵.

Definition 13.13 (Complete 𝑘-partite graphs). Let𝑈1 , . . . , 𝑈𝑘 be a partition of a finite set 𝑉 .

The complete 𝑘-partite graph with parts𝑈1 , . . . , 𝑈𝑘 is the graph 𝐺 with vertex set 𝑉 and edge

set

𝐸(𝐺) = { 𝑢𝑣 : 𝑢 ∈ 𝑈𝑖 , 𝑣 ∈ 𝑈 𝑗 , 𝑖 ≠ 𝑗 }.
Each𝑈𝑖 is independent, and every pair of vertices in different parts are adjacent.

13.4 Matrices associated to a graph

Let 𝐺 be a graph of order 𝑛 with vertices 𝑣1 , . . . , 𝑣𝑛 and edges 𝑒1 , . . . , 𝑒𝑚 .

Definition 13.14 (Adjacency matrix). The adjacency matrix of𝐺 is the 𝑛×𝑛matrix𝐴(𝐺) = (𝑎𝑖 𝑗)
where

𝑎𝑖 𝑗 =

{
1, 𝑣𝑖𝑣 𝑗 ∈ 𝐸(𝐺),
0, otherwise.

For a simple graph 𝐴(𝐺) is a symmetric {0, 1}-matrix with zeros on the diagonal.

Basics of Graph Theory 117

Definition 13.15 (Incidence matrix). The incidence matrix of 𝐺 is the 𝑛 × 𝑚 matrix 𝑀(𝐺) =
(𝑚𝑣𝑒)with rows indexed by vertices and columns by edges, where

𝑚𝑣𝑒 =

{
1, 𝑣 is an endpoint of edge 𝑒,

0, otherwise.

13.5 Isomorphisms and automorphisms

Definition 13.16 (Graph isomorphism). Graphs 𝐺 and 𝐻 are isomorphic (written 𝐺 � 𝐻) if

there is a bĳection 𝑓 : 𝑉(𝐺) → 𝑉(𝐻) such that for all 𝑢, 𝑣 ∈ 𝑉(𝐺)

𝑢𝑣 ∈ 𝐸(𝐺) ⇐⇒ 𝑓 (𝑢) 𝑓 (𝑣) ∈ 𝐸(𝐻).

Such a map 𝑓 is called an isomorphism.

Isomorphic graphs have the same order and size, and every isomorphism preserves degrees,

paths, cycles, cliques, independent sets, etc.

Definition 13.17 (Automorphisms). An automorphism of a graph 𝐺 is an isomorphism

𝑓 : 𝑉(𝐺) → 𝑉(𝐺) from 𝐺 to itself. The set of all automorphisms, with composition, forms a

group Aut(𝐺).

Definition 13.18 (Vertex- and edge-transitive). A graph 𝐺 is

• vertex-transitive if for all 𝑢, 𝑣 ∈ 𝑉(𝐺) there exists 𝜑 ∈ Aut(𝐺)with 𝜑(𝑢) = 𝑣.

• edge-transitive if for all 𝑒 , 𝑓 ∈ 𝐸(𝐺) there exists 𝜑 ∈ Aut(𝐺)with 𝜑(𝑒) = 𝑓 .

Let 𝐶𝑛 be the 𝑛-cycle with vertex set {1, . . . , 𝑛} and edges 12, 23, . . . , (𝑛 − 1)𝑛, 𝑛1.

Every automorphism of 𝐶𝑛 is determined by the image of a single edge (or of the ordered pair

(1, 2)), so

Aut(𝐶𝑛) � 𝐷2𝑛 ,

the dihedral group of order 2𝑛, generated by a rotation 𝜎 of order 𝑛 and a reflection 𝛿 with 𝛿2 = 1,

𝛿𝜎𝛿 = 𝜎−1
.

13.6 The Petersen graph

Let [5] := {1, 2, 3, 4, 5} and let

𝑉(𝑃) =
(
[5]
2

)
= {{𝑖 , 𝑗} : 1 ≤ 𝑖 < 𝑗 ≤ 5}

be the set of 2-element subsets of [5]. Two vertices 𝐴, 𝐵 ∈ 𝑉(𝑃) are adjacent if and only if they

are disjoint as sets:

𝐸(𝑃) =
{
𝐴𝐵 : 𝐴, 𝐵 ∈

([5]
2

)
, 𝐴 ∩ 𝐵 = ∅

}
.

The resulting graph 𝑃 is the Petersen graph.

Basics of Graph Theory 118

Proposition 13.2. The Petersen graph 𝑃 is 3-regular of order 10 and size 15.

Proof. There are

(
5

2

)
= 10 vertices (all 2-subsets of [5]). Fix a vertex 𝐴 ⊂ [5]with |𝐴| = 2. A vertex

𝐵 is adjacent to 𝐴 exactly when 𝐵 ∩ 𝐴 = ∅, i.e. 𝐵 is a 2-subset of [5] \ 𝐴, which has size 3. Thus

𝑑𝑃(𝐴) =
(
3

2

)
= 3,

so 𝑃 is 3-regular. By the Handshake Lemma,

2|𝐸(𝑃)| =
∑

𝑣∈𝑉(𝑃)
𝑑𝑃(𝑣) = 10 · 3,

so |𝐸(𝑃)| = 15. □

Remark 13.3. The automorphism group of 𝑃 contains all permutations of the ground set [5]; in

fact

Aut(𝑃) � 𝑆5.

Indeed, each 𝜋 ∈ 𝑆5 induces a permutation of the 2-subsets, preserving disjointness.

Remark 13.4. The Petersen graph is the smallest, most famous “counterexample graph”: it is

highly symmetric and 3-regular, yet it breaks many tempting conjectures (e.g. about Hamilton

cycles and edge-colourings).

13.7 Girth and circumference

Definition 13.19. The girth 𝑔(𝐺) of a graph 𝐺 is the length of a shortest cycle of 𝐺 (or +∞ if

𝐺 is acyclic). The circumference 𝑐(𝐺) is the length of a longest cycle of 𝐺.

Proposition 13.3. The Petersen graph 𝑃 has girth 𝑔(𝑃) = 5.

Proof. First we show that 𝑃 has no 3- or 4-cycles.

No triangles: Suppose 𝐴, 𝐵, 𝐶 form a 3-cycle in 𝑃. Then 𝐴, 𝐵, 𝐶 ∈
([5]

2

)
are pairwise disjoint

(since adjacent vertices correspond to disjoint subsets). Hence

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| = 6,

so 𝐴 ∪ 𝐵 ∪ 𝐶 would be a 6-element subset of [5], which is impossible. Thus 𝑃 is triangle-free.

No 4-cycles. Suppose 𝐴, 𝐵, 𝐶, 𝐷 form a 4-cycle

𝐴 ∼ 𝐵 ∼ 𝐶 ∼ 𝐷 ∼ 𝐴.

Then 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐶 = 𝐶 ∩ 𝐷 = 𝐷 ∩ 𝐴 = ∅. Because 𝑃 has no triangles, 𝐴 and 𝐶 cannot be

adjacent, so 𝐴 ∩ 𝐶 ≠ ∅; similarly 𝐵 ∩ 𝐷 ≠ ∅.

Relabel the ground set so that 𝐴 = {1, 2}. Then any neighbor of 𝐴 is a 2-subset of {3, 4, 5}, so we

may take 𝐵 = {3, 4} (the other choices are symmetric). Since 𝐵 ∼ 𝐶, the set 𝐶 must be a 2-subset

of {1, 2, 5} disjoint from 𝐵, so 𝐶 ∈ {{1, 5}, {2, 5}} (it cannot be {1, 2} = 𝐴).

Basics of Graph Theory 119

Assume 𝐶 = {1, 5}; the other case is analogous. Because 𝐶 ∼ 𝐷 and 𝐷 ∼ 𝐴, the set 𝐷 must be

disjoint from both {1, 5} and {1, 2}, so

𝐷 ⊆ [5] \ {1, 5} = {2, 3, 4}, 𝐷 ⊆ [5] \ {1, 2} = {3, 4, 5}.

Thus 𝐷 ⊆ {3, 4} and |𝐷| = 2, so 𝐷 = {3, 4} = 𝐵, contradicting that the four vertices on the cycle

are distinct. Hence 𝑃 has no 4-cycle.

We have shown that 𝑔(𝑃) ≥ 5. On the other hand, 𝑃 contains the 5-cycle

12 ∼ 34 ∼ 15 ∼ 23 ∼ 45 ∼ 12,

so 𝑔(𝑃) = 5. □

13.8 Kneser Graph

Definition 13.20 (Kneser graph). Fix integers 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛. The Kneser graph 𝐾(𝑛, 𝑘)
has

𝑉
(
𝐾(𝑛, 𝑘)

)
=

(
[𝑛]
𝑘

)
(the set of all 𝑘-subsets of [𝑛] = {1, 2, . . . , 𝑛}), and two vertices 𝐴, 𝐵 ∈

([𝑛]
𝑘

)
are adjacent iff

they are disjoint:

𝐴 ∼ 𝐵 ⇐⇒ 𝐴 ∩ 𝐵 = ∅.
(Note: if 𝑛 < 2𝑘, then there are no disjoint 𝑘-subsets, so 𝐾(𝑛, 𝑘) has no edges.)

Immediate observations.

• If 𝑛 < 2𝑘, then no two 𝑘-subsets are disjoint, hence 𝐸(𝐾(𝑛, 𝑘)) = ∅.

• If 𝑛 = 2𝑘, then each 𝐴 ∈
([𝑛]
𝑘

)
has a unique disjoint partner [𝑛] \ 𝐴, so 𝐾(2𝑘, 𝑘) is a 1-regular

graph.

Basic parameters (for 𝑛 ≥ 2𝑘).

• Number of vertices:

|𝑉(𝐾(𝑛, 𝑘))| =
(
𝑛

𝑘

)
.

• Regular degree: for any 𝐴 ∈
([𝑛]
𝑘

)
,

deg𝐾(𝑛,𝑘)(𝐴) =
(
𝑛 − 𝑘
𝑘

)
,

since a neighbor of 𝐴 is a 𝑘-subset chosen from the remaining 𝑛 − 𝑘 elements.

• Number of edges:

|𝐸(𝐾(𝑛, 𝑘))| = 1

2

|𝑉(𝐾(𝑛, 𝑘))| · deg(𝐾(𝑛, 𝑘)) = 1

2

(
𝑛

𝑘

) (
𝑛 − 𝑘
𝑘

)
.

• Vertex-transitivity: the symmetric group 𝑆𝑛 acts on

([𝑛]
𝑘

)
by permuting [𝑛], and preserves

disjointness, so 𝐾(𝑛, 𝑘) is vertex-transitive.

Basics of Graph Theory 120

The Petersen graph as a special case. Let 𝑛 = 5 and 𝑘 = 2. Then

|𝑉(𝐾(5, 2))| =
(
5

2

)
= 10, deg(𝐾(5, 2)) =

(
5 − 2

2

)
=

(
3

2

)
= 3, |𝐸(𝐾(5, 2))| = 1

2
· 10 · 3 = 15.

Thus 𝐾(5, 2) is a 3-regular graph on 10 vertices with 15 edges; this graph is the Petersen graph.

13.9 The 𝑘-dimensional hypercube.

Definition 13.21 (Hypercube 𝑄𝑘). Fix 𝑘 ≥ 1. The 𝑘-dimensional hypercube 𝑄𝑘 is the graph

with

𝑉(𝑄𝑘) = {0, 1}𝑘 ,
and for 𝑥 = (𝑥1 , . . . , 𝑥𝑘) and 𝑦 = (𝑦1 , . . . , 𝑦𝑘),

𝑥 ∼ 𝑦 ⇐⇒ 𝑥 and 𝑦 differ in exactly one coordinate.

Identify each vertex 𝑥 ∈ {0, 1}𝑘 with the subset

𝐴𝑥 := { 𝑖 ∈ [𝑘] : 𝑥𝑖 = 1 } ⊆ [𝑘],

so that 𝑉(𝑄𝑘) � 2
[𝑘]

via characteristic vectors. Under this identification, for 𝐴, 𝐵 ⊆ [𝑘],

𝐴 ∼ 𝐵 ⇐⇒ |𝐴△𝐵| = 1 ⇐⇒
(
𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴

)
and

��|𝐴| − |𝐵|�� = 1.

Remark 13.5. Any permutation of coordinates is an automorphism of 𝑄𝑘 , and any independent

bit-flip

(𝑥1 , . . . , 𝑥𝑘) ↦→ (𝑥1 ⊕ 𝜀1 , . . . , 𝑥𝑘 ⊕ 𝜀𝑘), 𝜀 ∈ {0, 1}𝑘 ,
is also an automorphism. In particular,

|Aut(𝑄𝑘)| = 2
𝑘 𝑘!.

Definition 13.22 (Cartesian product 𝐺□𝐻). Let 𝐺 and 𝐻 be graphs. The Cartesian product
𝐺□𝐻 is the graph with

𝑉(𝐺□𝐻) = 𝑉(𝐺) ×𝑉(𝐻),
and

(𝑢, 𝑣) ∼ (𝑢′ , 𝑣′) ⇐⇒
(
𝑢 = 𝑢′ and 𝑣𝑣′ ∈ 𝐸(𝐻)

)
or

(
𝑣 = 𝑣′ and 𝑢𝑢′ ∈ 𝐸(𝐺)

)
.

The hypercube is an iterated Cartesian product:

𝑄𝑘 � 𝐾2□𝐾2□ · · ·□𝐾2︸ ︷︷ ︸
𝑘 factors

.

For every 𝑘 ≥ 1,

𝑄𝑘+1 � 𝑄𝑘□𝐾2.

Definition 13.23 (Union of (labeled) graphs). Let 𝐺 and 𝐻 be graphs (think: their vertex

sets are actual labels, not “up to isomorphism”). The union 𝐺 ∪ 𝐻 is the graph with

𝑉(𝐺 ∪ 𝐻) = 𝑉(𝐺) ∪𝑉(𝐻), 𝐸(𝐺 ∪ 𝐻) = 𝐸(𝐺) ∪ 𝐸(𝐻).

Basics of Graph Theory 121

Remark 13.6. If 𝑉(𝐺) and 𝑉(𝐻) overlap, then 𝐺 ∪ 𝐻 identifies those common vertices (same

labels). If you want two separate copies with no identification, use disjoint union.

Definition 13.24 (Disjoint union). If𝑉(𝐺)∩𝑉(𝐻) = ∅, the disjoint union (also written 𝐺+𝐻)

is just the union:

𝐺 + 𝐻 := 𝐺 ∪ 𝐻 (when 𝑉(𝐺) ∩𝑉(𝐻) = ∅).

Equivalently, 𝐺 + 𝐻 consists of two connected components isomorphic to 𝐺 and 𝐻.

Definition 13.25 (Join). If 𝑉(𝐺) ∩ 𝑉(𝐻) = ∅, the join of 𝐺 and 𝐻, denoted 𝐺 ∨ 𝐻, is the

graph with

𝑉(𝐺 ∨ 𝐻) = 𝑉(𝐺) ∪𝑉(𝐻),
and

𝐸(𝐺 ∨ 𝐻) = 𝐸(𝐺) ∪ 𝐸(𝐻) ∪ 𝐸
[
𝑉(𝐺), 𝑉(𝐻)

]
,

where

𝐸
[
𝑉(𝐺), 𝑉(𝐻)

]
:=

{
𝑢𝑣 : 𝑢 ∈ 𝑉(𝐺), 𝑣 ∈ 𝑉(𝐻)

}
is the set of all cross-edges between 𝑉(𝐺) and 𝑉(𝐻).

Definition 13.26 (𝑚 copies of a graph). For an integer 𝑚 ≥ 1, define

𝑚 · 𝐺 := 𝐺 + 𝐺 + · · · + 𝐺︸ ︷︷ ︸
𝑚 times

,

i.e. the disjoint union of 𝑚 vertex-disjoint copies of 𝐺.

Vertex Degrees 122

14 Vertex Degrees

Recall the Handshake Lemma: ∑
𝑣∈𝑉

deg(𝑣) = 2|𝐸|.

As a result, the sum of all vertex degrees is even, and therefore the number of vertices of odd

degree is even.

Here is a geometric problem that looks like it should involve coordinates and area, but actually

collapses under a simple parity argument.

Theorem 14.1 (Integer side forced by an axis-parallel tiling). Let 𝑅 be a rectangle in the

plane whose sides are parallel to the coordinate axes. Suppose 𝑅 is partitioned (tiled) into

rectangles 𝑅1 , . . . , 𝑅𝑚 whose interiors are disjoint, whose union is 𝑅, and whose sides are

also parallel to the axes. Assume that for every 𝑖, the rectangle 𝑅𝑖 has at least one side of

integer length. Then 𝑅 has at least one side of integer length.

We are going to build a bipartite graph whose degrees encode “how many integer lattice corners”

each tile has. All tile-vertices will have even degree. The Handshake Lemma then forces the

lattice-point side to have an even sum of degrees. Since one specific lattice point has odd degree,

some other lattice point must also have odd degree. Finally, we show that the only lattice points

that can have odd degree are the corners of 𝑅, which forces one of those corners to be an integer

lattice point, and therefore forces𝑊 or 𝐻 to be an integer.

Proof. Write the big rectangle as

𝑅 = [0,𝑊] × [0, 𝐻] for some𝑊, 𝐻 > 0,

so (0, 0) is its lower-left corner.

Build a bipartite graph. Let 𝐴 = {𝑅1 , . . . , 𝑅𝑚}. Let

𝐵 := 𝑅 ∩ Z2

be the set of integer grid points inside (or on the boundary of) 𝑅. Define a bipartite graph

𝐺 = (𝐴, 𝐵;𝐸) by joining 𝑅𝑖 ∈ 𝐴 to 𝑝 ∈ 𝐵 iff 𝑝 is a corner of 𝑅𝑖 .

Every rectangle vertex has even degree. Every tile has even degree. Fix a tile 𝑅𝑖 . Its corners

have the form

(𝑥1 , 𝑦1), (𝑥2 , 𝑦1), (𝑥1 , 𝑦2), (𝑥2 , 𝑦2),
with 𝑥1 < 𝑥2 and 𝑦1 < 𝑦2. The hypothesis says that at least one of the side lengths 𝑥2 − 𝑥1 or

𝑦2 − 𝑦1 is an integer.

If 𝑅𝑖 has any integer lattice corner, say (𝑥1 , 𝑦1) ∈ Z2
, then:

• if 𝑥2 − 𝑥1 ∈ Z, then (𝑥2 , 𝑦1) = (𝑥1 + (𝑥2 − 𝑥1), 𝑦1) ∈ Z2
;

• if 𝑦2 − 𝑦1 ∈ Z, then (𝑥1 , 𝑦2) = (𝑥1 , 𝑦1 + (𝑦2 − 𝑦1)) ∈ Z2
.

So an integer corner forces a second integer corner. In particular, a tile cannot have exactly 1 or 3

integer corners. Therefore

deg𝐺(𝑅𝑖) ∈ {0, 2, 4} for every 𝑅𝑖 ∈ 𝐴,

Vertex Degrees 123

and so

∑
𝑅𝑖∈𝐴 deg𝐺(𝑅𝑖) is even.

Because 𝐺 is bipartite, the handshake lemma gives∑
𝑅𝑖∈𝐴

deg𝐺(𝑅𝑖) =

∑
𝑝∈𝐵

deg𝐺(𝑝).

The left-hand sum is even, hence the right-hand sum is even as well.

Claim: (0, 0) has odd degree. Exactly one tile 𝑅𝑖 contains the corner (0, 0) of the big rectangle 𝑅,

so (0, 0) is a corner of exactly one 𝑅𝑖 and thus

deg𝐺((0, 0)) = 1.

Since

∑
𝑝∈𝐵 deg𝐺(𝑝) is even but includes the odd term deg𝐺((0, 0)) = 1, there must exist another

grid point 𝑞 ∈ 𝐵 with odd degree.

Claim: Any grid point that is not a corner of 𝑅 has even degree. Let 𝑝 ∈ 𝐵 be a grid point

that is not a corner of 𝑅. Looking in a small neighborhood of 𝑝, the tiling is by axis-parallel

rectangles, so rectangles can meet at 𝑝 as corners in 0, 2, or 4 local quadrants only; in particular,

deg𝐺(𝑝) ∈ {0, 2, 4}.

Thus every non-corner grid point has even degree.

Therefore the odd-degree point 𝑞 must be a corner of 𝑅. So one of (𝑊, 0), (0, 𝐻), (𝑊, 𝐻) lies in

Z2
. In particular, either𝑊 ∈ Z or 𝐻 ∈ Z (or both), so 𝑅 has an integer-length side. □

14.1 Graphic Sequences

A degree sequence is what you get when you forget everything about a graph except how many

neighbors each vertex has. The natural inverse problem is: given a list of degrees, does any simple
graph realize it?

Definition 14.1 (Degree sequence). Let 𝐺 be a graph, 𝑉(𝐺) = {𝑣1 , . . . , 𝑣𝑛}. The degree
sequence of 𝐺 is the list

(deg(𝑣1), deg(𝑣2), . . . , deg(𝑣𝑛)).
Usually we sort it in nonincreasing order and write

𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑛 ,

and call (𝑑1 , . . . , 𝑑𝑛) the degree sequence.

Two immediate sanity checks. If (𝑑1 , . . . , 𝑑𝑛) is the degree sequence of a simple graph, then:

• Bounds: 0 ≤ 𝑑𝑖 ≤ 𝑛 − 1 for all 𝑖.

• Handshake parity:

∑𝑛
𝑖=1

𝑑𝑖 = 2|𝐸| is even, so the number of odd 𝑑𝑖 is even.

These are necessary conditions. They are not sufficient.

Vertex Degrees 124

Example 14.1. (3, 3, 3, 1) passes the parity test (sum is 10 even) and the bounds (≤ 3), but it is

impossible: the vertex of degree 1 can only connect to one of the three degree-3 vertices, and

then the remaining two degree-3 vertices can’t both reach degree 3.

Given a nonincreasing integer sequence

𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑛 ≥ 0,

when does there exist a simple graph 𝐺 on 𝑛 vertices whose degrees are exactly these numbers?

Definition 14.2 (Graphic sequence). A sequence (𝑑1 , . . . , 𝑑𝑛) of nonnegative integers is

graphic if there exists a simple graph 𝐺 with degree sequence (𝑑1 , . . . , 𝑑𝑛). Such a graph 𝐺

is called a realization of the sequence.

Definition 14.3 (2-switch). A 2-switch in 𝐺 is the following operation: pick four distinct
vertices 𝑥, 𝑦, 𝑧, 𝑤 such that

𝑥𝑦, 𝑧𝑤 ∈ 𝐸(𝐺) and 𝑥𝑧, 𝑦𝑤 ∉ 𝐸(𝐺).

Form a new graph 𝐺′ by deleting the edges 𝑥𝑦 and 𝑧𝑤 and adding the edges 𝑥𝑧 and 𝑦𝑤:

𝐸(𝐺′) =
(
𝐸(𝐺) \ {𝑥𝑦, 𝑧𝑤}

)
∪ {𝑥𝑧, 𝑦𝑤}.

We say 𝐺′ is obtained from 𝐺 by a 2-switch on (𝑥, 𝑦, 𝑧, 𝑤).

𝐺 (before 2-switch)

𝑥 𝑦

𝑧 𝑤

𝑥𝑦, 𝑧𝑤 ∈ 𝐸(𝐺)
𝑥𝑧, 𝑦𝑤 ∉ 𝐸(𝐺)

edge in 𝐺

non-edge (faint dashed)

2-switch

𝐺′ (after 2-switch)

𝑥 𝑦

𝑧 𝑤

𝑥𝑧, 𝑦𝑤 ∈ 𝐸(𝐺′)
𝑥𝑦, 𝑧𝑤 ∉ 𝐸(𝐺′)

𝑥: loses 𝑦, gains 𝑧

𝑦: loses 𝑥, gains 𝑤

𝑧: loses 𝑤, gains 𝑥

𝑤: loses 𝑧, gains 𝑦

all other vertices and degrees unchanged

Remark 14.1 (Degrees do not change). A 2-switch preserves degrees:

deg𝐺′(𝑣) = deg𝐺(𝑣) for all vertices 𝑣.

Vertex Degrees 125

We reduce the problem “is 𝑑 = (𝑑1 , . . . , 𝑑𝑛) graphic?” to a smaller instance. The obvious move

is: take a vertex of degree 𝑑1, connect it to 𝑑1 other vertices, then delete it and decrease those 𝑑1

degrees by 1. The Havel–Hakimi theorem says this greedy step is both necessary and sufficient:

𝑑 is graphic exactly when the resulting shorter sequence is graphic.

14.2 Havel-Hakimi Theorem for graphic sequences

Theorem 14.2 (Havel–Hakimi). Let 𝑑 = (𝑑1 , . . . , 𝑑𝑛) be a nonincreasing sequence of non-

negative integers:

𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑛 ≥ 0.

Define the reduced sequence 𝑑′ = (𝑑′
1
, . . . , 𝑑′

𝑛−1
) by

𝑑′ = sort

(
𝑑2 − 1, 𝑑3 − 1, . . . , 𝑑𝑑1+1 − 1, 𝑑𝑑1+2 , . . . , 𝑑𝑛

)
,

i.e. subtract 1 from the next 𝑑1 entries and then re-sort into nonincreasing order. (If 𝑑1 > 𝑛−1

or some 𝑑𝑖 − 1 < 0, then 𝑑′ is declared invalid.)

Then 𝑑 is graphic if and only if 𝑑′ is graphic.

The problem is that the degree sequence only tells us how many neighbors each vertex has, not

which ones, so in an arbitrary realization the vertex of degree 𝑑1 might be joined to some other

set 𝑇 of 𝑑1 vertices, not necessarily {𝑣2 , . . . , 𝑣𝑑1+1}.
The following lemma says we can always rearrange edges by 2-switches so that this is true,

without changing any degrees (and hence, the degree sequence).

Lemma 14.3. Let 𝐺 be a simple graph on vertices 𝑣1 , . . . , 𝑣𝑛 with degree sequence

𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑛 , where deg𝐺(𝑣𝑖) = 𝑑𝑖 .

Let 𝑤 := 𝑣1 and let

𝑆 := {𝑣2 , 𝑣3 , . . . , 𝑣𝑑1+1}.
Then there exists a graph 𝐺 obtained from 𝐺 by a finite sequence of 2-switches such that

deg
𝐺
(𝑣𝑖) = 𝑑𝑖 for all 𝑖 and 𝑁

𝐺
(𝑤) = 𝑆.

Proof. Among all graphs obtainable from𝐺 by 2-switches (hence with the same degree sequence),

choose one (call it again 𝐺) that maximizes the quantity

𝑡 := |𝑁𝐺(𝑤) ∩ 𝑆|.

We show 𝑡 = 𝑑1, i.e. 𝑆 = 𝑁𝐺(𝑤).
Assume for contradiction that 𝑡 < 𝑑1. Then there exist

𝑥 ∈ 𝑆 \ 𝑁𝐺(𝑤) and 𝑦 ∈ 𝑁𝐺(𝑤) \ 𝑆.

Indeed, |𝑁𝐺(𝑤)| = |𝑆| = 𝑑1, so if 𝑆 ≠ 𝑁𝐺(𝑤), some neighbor of 𝑤 must lie outside 𝑆.

Since 𝑥 ∈ 𝑆 and 𝑦 ∉ 𝑆 and the degree sequence is nonincreasing, we have

deg𝐺(𝑥) ≥ deg𝐺(𝑦).

Vertex Degrees 126

Now consider the set difference 𝑁𝐺(𝑥) \ 𝑁𝐺(𝑦). If 𝑁𝐺(𝑥) ⊆ 𝑁𝐺(𝑦), then deg𝐺(𝑥) ≤ deg𝐺(𝑦),
contradicting deg𝐺(𝑥) ≥ deg𝐺(𝑦) unless deg𝐺(𝑥) = deg𝐺(𝑦) and 𝑁𝐺(𝑥) = 𝑁𝐺(𝑦). But even in

that equality case we still get a contradiction as follows: because 𝑦 ∈ 𝑁𝐺(𝑤) and 𝑥 ∉ 𝑁𝐺(𝑤), the

vertex 𝑤 is in 𝑁𝐺(𝑦) but not in 𝑁𝐺(𝑥), hence

𝑤 ∈ 𝑁𝐺(𝑦) \ 𝑁𝐺(𝑥),

so 𝑁𝐺(𝑥) ≠ 𝑁𝐺(𝑦) and therefore 𝑁𝐺(𝑥) ⊈ 𝑁𝐺(𝑦). Thus in all cases,

𝑁𝐺(𝑥) \ 𝑁𝐺(𝑦) ≠ ∅.

Choose 𝑧 ∈ 𝑁𝐺(𝑥) \ 𝑁𝐺(𝑦). Then

𝑥𝑧 ∈ 𝐸(𝐺), 𝑦𝑧 ∉ 𝐸(𝐺).

Also by construction,

𝑤𝑦 ∈ 𝐸(𝐺), 𝑤𝑥 ∉ 𝐸(𝐺).
The four vertices 𝑤, 𝑥, 𝑦, 𝑧 are distinct: 𝑧 ≠ 𝑥 (since 𝑥𝑧 is an edge), 𝑧 ≠ 𝑦 (since 𝑦𝑧 is a non-edge),

and 𝑧 ≠ 𝑤 because 𝑤 ∈ 𝑁𝐺(𝑦) but 𝑧 ∉ 𝑁𝐺(𝑦).
Therefore we may perform the 2-switch that deletes 𝑤𝑦 and 𝑥𝑧 and adds 𝑤𝑥 and 𝑦𝑧:

𝐺′ := 𝐺 − {𝑤𝑦, 𝑥𝑧} + {𝑤𝑥, 𝑦𝑧}.

This is a valid 2-switch because the added edges were non-edges in 𝐺. Moreover 𝐺′ has the

same degree sequence as 𝐺. Moreover, 𝑤 loses neighbor 𝑦 and gains neighbor 𝑥, so

|𝑁𝐺′(𝑤) ∩ 𝑆| = |𝑁𝐺(𝑤) ∩ 𝑆| + 1 = 𝑡 + 1,

because 𝑥 ∈ 𝑆 and 𝑦 ∉ 𝑆. This contradicts the maximality of 𝑡.

Hence our assumption 𝑡 < 𝑑1 was false, so 𝑡 = 𝑑1 and 𝑁𝐺(𝑤) = 𝑆. Set 𝐺 := 𝐺. □

Proof of Havel-Hakimi Theorem

Proof. (⇐) Suppose 𝑑′ is graphic. Realize the unsorted sequence 𝑑̂ by a simple graph 𝐻 on

vertices 𝑣2 , . . . , 𝑣𝑛 with

deg𝐻(𝑣𝑖) =
{
𝑑𝑖 − 1, 2 ≤ 𝑖 ≤ 𝑑1 + 1,

𝑑𝑖 , 𝑑1 + 2 ≤ 𝑖 ≤ 𝑛.
Add a new vertex 𝑣1 and connect it to 𝑣2 , 𝑣3 , . . . , 𝑣𝑑1+1. Then deg(𝑣1) = 𝑑1, and for 2 ≤ 𝑖 ≤ 𝑑1 + 1

we increase deg𝐻(𝑣𝑖) by 1, restoring deg(𝑣𝑖) = 𝑑𝑖 , while other degrees stay 𝑑𝑖 . Hence the

resulting graph realizes 𝑑.

(⇒) Suppose 𝑑 is graphic and let 𝐺 be a realization on vertices 𝑣1 , . . . , 𝑣𝑛 with deg𝐺(𝑣𝑖) = 𝑑𝑖 .

Apply the previous lemma with 𝑤 = 𝑣1 and 𝑆 = {𝑣2 , . . . , 𝑣𝑑1+1} to obtain a graph 𝐺 (with the

same degree sequence) such that

𝑁
𝐺
(𝑣1) = {𝑣2 , . . . , 𝑣𝑑1+1}.

Now delete 𝑣1 to form 𝐺 − 𝑣1. In 𝐺 − 𝑣1, each vertex 𝑣𝑖 for 2 ≤ 𝑖 ≤ 𝑑1 + 1 loses exactly the edge

𝑣1𝑣𝑖 , so its degree becomes 𝑑𝑖 − 1, and every vertex 𝑣𝑖 for 𝑖 ≥ 𝑑1 + 2 keeps degree 𝑑𝑖 . Therefore

𝐺 − 𝑣1 realizes 𝑑̂ (hence also realizes its sorted version 𝑑′). Thus 𝑑′ is graphic. □

The 2-switch operation lets us change adjacencies without changing the degree sequence. A

natural question is whether all realizations of a fixed degree sequence (on the same labeled

vertex set) can be connected by a sequence of 2-switches. The answer is yes.

Vertex Degrees 127

Theorem 14.4. Fix a degree sequence on labeled vertices 𝑣1 , . . . , 𝑣𝑛 :

deg(𝑣𝑖) = 𝑑𝑖 (1 ≤ 𝑖 ≤ 𝑛).

If 𝐺 and 𝐻 are two simple graphs on {𝑣1 , . . . , 𝑣𝑛} with these degrees, then 𝐺 can be

transformed into 𝐻 by a finite sequence of 2-switches.

Proof. By induction on 𝑛. The cases 𝑛 ≤ 3 can be verified easily.

Assume 𝑛 ≥ 4. Let 𝑤 = 𝑣1 and 𝑆 = {𝑣2 , . . . , 𝑣𝑑1+1}. By the lemma, there exist graphs 𝐺∗ and 𝐻∗

obtainable from 𝐺 and 𝐻 (respectively) by 2-switches such that

𝑁𝐺∗(𝑤) = 𝑆 and 𝑁𝐻∗(𝑤) = 𝑆,

and all degrees remain 𝑑𝑖 .

Now delete 𝑤 from both graphs. The resulting graphs 𝐺∗ − 𝑤 and 𝐻∗ − 𝑤 are simple graphs on

{𝑣2 , . . . , 𝑣𝑛}with the same degree sequence

(𝑑2 − 1, . . . , 𝑑𝑑1+1 − 1, 𝑑𝑑1+2 , . . . , 𝑑𝑛)

(up to sorting). By the induction hypothesis, there is a sequence of 2-switches that transforms

𝐺∗ − 𝑤 into 𝐻∗ − 𝑤. Perform the same 2-switches in 𝐺∗ (none of them needs to involve 𝑤, since

𝑤 is absent from the smaller graphs). This transforms 𝐺∗ into 𝐻∗ while keeping 𝑁(𝑤) = 𝑆

throughout.

Finally, concatenate the 2-switch sequence from 𝐺 to 𝐺∗, then from 𝐺∗ to 𝐻∗, then reverse the

sequence from 𝐻 to 𝐻∗ to go from 𝐻∗ to 𝐻. This yields a 2-switch sequence from 𝐺 to 𝐻. □

The theorem is constructive: it gives a simple decision procedure (and, when it succeeds, a way

to build a realization).

Havel–Hakimi algorithm. Given a nonincreasing sequence 𝑑 = (𝑑1 , . . . , 𝑑𝑛):
1. If all entries are 0, return Graphic.

2. If 𝑑1 > 𝑛 − 1 or some entry is negative, return Not graphic.

3. Subtract 1 from each of 𝑑2 , . . . , 𝑑𝑑1+1 and leave 𝑑𝑑1+2 , . . . , 𝑑𝑛 unchanged. Sort the resulting

sequence and set it to 𝑑 in nonincreasing order.

4. Go back to Step 1.

If the process halts in Step 1, the original sequence is graphic; if it halts in Step 2, it is not.

14.3 Extremal problems

In extremal graph theory, you fix some parameter (like |𝐸(𝐺)|, 𝛿(𝐺), 𝛼(𝐺), 𝜒(𝐺), etc.) and you ask

for the minimum or maximum possible value among all graphs satisfying some constraint (e.g.

“triangle-free”, “bipartite”, “no 𝐾𝑟”, “given order 𝑛”, etc.).

Vertex Degrees 128

Example 14.2. Among all triangle-free graphs on 𝑛 vertices, what is the maximum possible

number of edges?

Mantel’s theorem answers this: any triangle-free graph on 𝑛 vertices has at most⌊
𝑛2

4

⌋
edges, with equality for the complete bipartite graph 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉.

14.4 Existence of large bipartite subgraph

Theorem 14.5. Every graph 𝐺 with 𝑚 edges contains a bipartite subgraph with at least

𝑚/2 edges.

Proof 1 (probabilistic). Choose a random partition (𝐴, 𝐵) of 𝑉(𝐺) by putting each vertex indepen-

dently into 𝐴 with probability 1/2 (and into 𝐵 otherwise). For an edge 𝑥𝑦 ∈ 𝐸(𝐺), let 𝑖𝑥𝑦 be the

indicator of the event “𝑥𝑦 is a cross-edge”:

𝑖𝑥𝑦 =

{
1, if 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 or 𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴,
0, otherwise.

For any fixed edge 𝑥𝑦, exactly two of the four equally-likely placements of (𝑥, 𝑦) make it a

cross-edge, so

P(𝑖𝑥𝑦 = 1) = 1

2

=⇒ E[𝑖𝑥𝑦] =
1

2

.

Let 𝑋 be the number of cross-edges under the random partition:

𝑋 =

∑
𝑥𝑦∈𝐸(𝐺)

𝑖𝑥𝑦 .

By linearity of expectation,

E[𝑋] =
∑

𝑥𝑦∈𝐸(𝐺)
E[𝑖𝑥𝑦] =

∑
𝑥𝑦∈𝐸(𝐺)

1

2

=
𝑚

2

.

Therefore there exists some partition (𝐴, 𝐵) for which 𝑋 ≥ 𝑚/2. The subgraph consisting of all

cross-edges for that partition is bipartite (with parts 𝐴, 𝐵) and has ≥ 𝑚/2 edges. □

Remark 14.2. This proof is pure existence: it guarantees a good partition exists, but it does not

explicitly tell you how to find it. (We fix that next.)

Proof 2 (algorithmic). Start with any partition (𝐴, 𝐵) of 𝑉(𝐺). For a vertex 𝑥, write

𝑑𝐴(𝑥) :=
��{𝑥𝑦 ∈ 𝐸(𝐺) : 𝑦 ∈ 𝐴}

��, 𝑑𝐵(𝑥) :=
��{𝑥𝑦 ∈ 𝐸(𝐺) : 𝑦 ∈ 𝐵}

��.
So 𝑑𝐴(𝑥) counts neighbors of 𝑥 on the 𝐴-side, and 𝑑𝐵(𝑥) counts neighbors on the 𝐵-side.

Improvement rule.

• If 𝑥 ∈ 𝐴 and 𝑑𝐴(𝑥) > 𝑑𝐵(𝑥), move 𝑥 from 𝐴 to 𝐵.

• If 𝑥 ∈ 𝐵 and 𝑑𝐵(𝑥) > 𝑑𝐴(𝑥), move 𝑥 from 𝐵 to 𝐴.

Vertex Degrees 129

Why this increases cross-edges. Assume 𝑥 ∈ 𝐴 and we move it to 𝐵. Before the move, edges

from 𝑥 to 𝐵 were cross-edges (count 𝑑𝐵(𝑥)) and edges from 𝑥 to 𝐴 were inside-edges (count

𝑑𝐴(𝑥)). After the move, these roles swap: 𝑥 has 𝑑𝐴(𝑥) cross-edges and 𝑑𝐵(𝑥) inside-edges. So

the number of cross-edges changes by

Δ = 𝑑𝐴(𝑥) − 𝑑𝐵(𝑥) > 0.

Thus every move strictly increases the number of cross-edges.

Termination. The number of cross-edges is an integer between 0 and 𝑚, and it strictly increases

each move, so the process must stop.

At a local optimum. When the process stops, we have for every 𝑥 ∈ 𝐴 that 𝑑𝐴(𝑥) ≤ 𝑑𝐵(𝑥), and

for every 𝑥 ∈ 𝐵 that 𝑑𝐵(𝑥) ≤ 𝑑𝐴(𝑥).
Sum these inequalities over each side:∑

𝑥∈𝐴
𝑑𝐴(𝑥) ≤

∑
𝑥∈𝐴

𝑑𝐵(𝑥),
∑
𝑥∈𝐵

𝑑𝐵(𝑥) ≤
∑
𝑥∈𝐵

𝑑𝐴(𝑥).

Add them: ∑
𝑥∈𝐴

𝑑𝐴(𝑥) +
∑
𝑥∈𝐵

𝑑𝐵(𝑥) ≤
∑
𝑥∈𝐴

𝑑𝐵(𝑥) +
∑
𝑥∈𝐵

𝑑𝐴(𝑥).

Now interpret each side:

•

∑
𝑥∈𝐴 𝑑𝐴(𝑥) = 2𝑒(𝐴)where 𝑒(𝐴) is the number of edges inside 𝐴.

•

∑
𝑥∈𝐵 𝑑𝐵(𝑥) = 2𝑒(𝐵)where 𝑒(𝐵) is the number of edges inside 𝐵.

•

∑
𝑥∈𝐴 𝑑𝐵(𝑥) =

∑
𝑥∈𝐵 𝑑𝐴(𝑥) = 𝑒(𝐴, 𝐵)where 𝑒(𝐴, 𝐵) is the number of cross-edges.

So the inequality becomes

2𝑒(𝐴) + 2𝑒(𝐵) ≤ 2𝑒(𝐴, 𝐵) ⇐⇒ 𝑒(𝐴) + 𝑒(𝐵) ≤ 𝑒(𝐴, 𝐵).

But

𝑚 = 𝑒(𝐴) + 𝑒(𝐵) + 𝑒(𝐴, 𝐵),
hence

𝑚 ≤ 2𝑒(𝐴, 𝐵) ⇐⇒ 𝑒(𝐴, 𝐵) ≥ 𝑚
2

.

Therefore the final partition (𝐴, 𝐵) produced by the algorithm has at least 𝑚/2 cross-edges, so

the bipartite subgraph induced by these cross-edges has at least 𝑚/2 edges. □

14.5 Turan’s Theorem

Turán’s theorem is the natural generalization of Mantel’s theorem: instead of forbidding triangles,

we forbid 𝐾𝑟+1 subgraphs for some fixed 𝑟 ≥ 2. The question is the same:

What is the maximum number of edges in an 𝑛-vertex graph that does not contain 𝐾𝑟+1 as a subgraph?

Turán’s theorem says that the extremal graphs are exactly the complete 𝑟-partite graphs with

parts as equal in size as possible (the Turán graphs), and it gives an explicit formula for the

maximum number of edges.

Vertex Degrees 130

Definition 14.4 (Turán graph 𝑇𝑛,𝑟). Fix integers 𝑛 ≥ 1 and 𝑟 ≥ 1. The Turán graph 𝑇𝑛,𝑟 is the

complete 𝑟-partite graph on 𝑛 vertices whose part sizes differ by at most 1. Equivalently,

write 𝑛 = 𝑞𝑟 + 𝑠 with 0 ≤ 𝑠 < 𝑟; then 𝑇𝑛,𝑟 has 𝑠 parts of size 𝑞 + 1 and 𝑟 − 𝑠 parts of size 𝑞.

Definition 14.5. Let 𝑓 (𝑛, 𝑟) denote the maximum number of edges in a simple 𝑛-vertex

graph with no 𝐾𝑟+1 subgraph.

Theorem 14.6 (Turán’s Theorem). For all 𝑛, 𝑟 ≥ 1,

𝑓 (𝑛, 𝑟) = |𝐸(𝑇𝑛,𝑟)| =
1

2

(
1 − 1

𝑟

)
𝑛2 − 𝑠(𝑟 − 𝑠)

2𝑟
where 𝑠 = 𝑛 − 𝑟

⌊
𝑛

𝑟

⌋
In particular, among all 𝐾𝑟+1-free graphs on 𝑛 vertices, 𝑇𝑛,𝑟 has the most edges.

Lemma 14.7. If 𝑛 ≥ 𝑟 + 1, then

|𝐸(𝑇𝑛,𝑟)| − |𝐸(𝑇𝑛−𝑟,𝑟)| = (𝑟 − 1)(𝑛 − 𝑟) +
(
𝑟

2

)
.

Proof of lemma. We want to obtain 𝑇𝑛,𝑟 from 𝑇𝑛−𝑟,𝑟 by adding one new vertex to each part. Then

the difference in edge counts is exactly the number of edges incident to these new vertices.

Start with a copy 𝐺 of 𝑇𝑛−𝑟,𝑟 whose parts are 𝑉1 , . . . , 𝑉𝑟 (so

∑𝑟
𝑖=1
|𝑉𝑖 | = 𝑛 − 𝑟). Form a graph 𝐻

on 𝑛 vertices by adding, for each 𝑖 ∈ [𝑟], one new vertex 𝑣𝑖 and placing 𝑣𝑖 into part 𝑉𝑖 . Join 𝑣𝑖 to

every vertex outside 𝑉𝑖 (i.e. to all 𝑛 − 𝑟 − |𝑉𝑖 | old vertices in 𝐺 −𝑉𝑖) and to all other new vertices

𝑣 𝑗 for 𝑗 ≠ 𝑖. Then 𝐻 is exactly 𝑇𝑛,𝑟 .

(a) Edges among the new vertices. The vertex set {𝑣1 , . . . , 𝑣𝑟} spans a complete graph 𝐾𝑟 , so this

contributes

(
𝑟
2

)
new edges.

(b) Edges from new vertices to old vertices. Fix 𝑖 ∈ [𝑟]. The new vertex 𝑣𝑖 is adjacent to every old

vertex not in 𝑉𝑖 , so it has 𝑛 − 𝑟 − |𝑉𝑖 | neighbors among the old vertices. Summing over all 𝑖 gives

𝑟∑
𝑖=1

(𝑛 − 𝑟 − |𝑉𝑖 |) =
𝑟∑
𝑖=1

(𝑛 − 𝑟) −
𝑟∑
𝑖=1

|𝑉𝑖 | = 𝑟(𝑛 − 𝑟) − (𝑛 − 𝑟) = (𝑟 − 1)(𝑛 − 𝑟),

Vertex Degrees 131

using

∑𝑟
𝑖=1
|𝑉𝑖 | = 𝑛 − 𝑟.

Hence

|𝐸(𝑇𝑛,𝑟)| − |𝐸(𝑇𝑛−𝑟,𝑟)| =
(
𝑟

2

)
+ (𝑟 − 1)(𝑛 − 𝑟),

as claimed. □

Proof of Turán’s Theorem

Proof. First note that 𝑇𝑛,𝑟 is 𝐾𝑟+1-free (an (𝑟 + 1)-clique would require two vertices from the same

part, but there are no edges inside a part). Therefore 𝑓 (𝑛, 𝑟) ≥ |𝐸(𝑇𝑛,𝑟)|.

It remains to prove the reverse inequality

𝑓 (𝑛, 𝑟) ≤ |𝐸(𝑇𝑛,𝑟)|. (5)

Fixing 𝑟, we prove (5) by induction on 𝑛.

Base case: 𝑛 ≤ 𝑟. Any 𝑛-vertex graph is automatically 𝐾𝑟+1-free, because a copy of 𝐾𝑟+1 would

need 𝑟 + 1 distinct vertices, but we only have 𝑛 ≤ 𝑟. So there is no restriction at all, and the

maximum number of edges is attained by the complete graph:

𝑓 (𝑛, 𝑟) =
(
𝑛

2

)
= |𝐸(𝐾𝑛)|.

Then every 𝑛-vertex graph is automatically 𝐾𝑟+1-free, so 𝑓 (𝑛, 𝑟) =
(
𝑛
2

)
, attained by 𝐾𝑛 . On the

other hand, when 𝑛 ≤ 𝑟, the Turán graph 𝑇𝑛,𝑟 is also just 𝐾𝑛 : we have 𝑟 parts and at most one

vertex per part, so every pair of vertices lies in different parts and hence every edge is present.

Thus |𝐸(𝑇𝑛,𝑟)| =
(
𝑛
2

)
, and (5) holds in this case.

Induction step: 𝑛 ≥ 𝑟 + 1. Assume (5) holds for all smaller values 𝑛′ < 𝑛. Let 𝐺 be a 𝐾𝑟+1-free

simple graph on 𝑛 vertices with

|𝐸(𝐺)| = 𝑓 (𝑛, 𝑟).
Let 𝑄 be the vertex set of a largest clique in 𝐺; then |𝑄| ≤ 𝑟. Choose any set 𝑄′ ⊆ 𝑉(𝐺) \𝑄 of size

𝑟 − |𝑄| and define

𝐹 := 𝑄 ∪𝑄′.
So |𝐹| = 𝑟 and 𝑄 ⊆ 𝐹.

Because 𝑄 is a maximum clique, every vertex 𝑧 ∈ 𝑉(𝐺) \𝑄 is adjacent to at most |𝑄| − 1 vertices

of 𝑄; otherwise 𝑄 ∪ {𝑧}would be a larger clique. Now for any 𝑧 ∈ 𝑉(𝐺) \ 𝐹 we have

deg𝐹(𝑧) = |𝑁𝐺(𝑧) ∩ 𝐹| = |𝑁𝐺(𝑧) ∩𝑄| + |𝑁𝐺(𝑧) ∩𝑄′|.

The first term is at most |𝑄| − 1 by maximality of 𝑄, and the second term is at most |𝑄′| = 𝑟 − |𝑄|.
Thus

deg𝐹(𝑧) ≤ (|𝑄| − 1) + (𝑟 − |𝑄|) = 𝑟 − 1 for all 𝑧 ∈ 𝑉(𝐺) \ 𝐹.
Summing over all 𝑛 − 𝑟 vertices in 𝑉(𝐺) \ 𝐹 gives

𝑒(𝐹, 𝑉(𝐺) \ 𝐹) ≤ (𝑟 − 1)(𝑛 − 𝑟). (a)

Vertex Degrees 132

Inside 𝐹 there are at most

(
𝑟
2

)
edges, since |𝐹| = 𝑟:

𝑒(𝐹) ≤
(
𝑟

2

)
. (b)

Let

𝐺′ := 𝐺 − 𝐹
be the induced subgraph on 𝑉(𝐺) \ 𝐹. Then 𝐺′ has 𝑛 − 𝑟 vertices and is still 𝐾𝑟+1-free, so by the

induction hypothesis,

|𝐸(𝐺′)| ≤ 𝑓 (𝑛 − 𝑟, 𝑟) = |𝐸(𝑇𝑛−𝑟,𝑟)|. (c)

Every edge of 𝐺 lies either inside 𝐺′, between 𝐹 and 𝑉(𝐺) \ 𝐹, or inside 𝐹, so

|𝐸(𝐺)| = |𝐸(𝐺′)| + 𝑒(𝐹, 𝑉(𝐺) \ 𝐹) + 𝑒(𝐹).

Using (𝑎), (𝑏), and (𝑐), we get

|𝐸(𝐺)| ≤ |𝐸(𝑇𝑛−𝑟,𝑟)| + (𝑟 − 1)(𝑛 − 𝑟) +
(
𝑟

2

)
.

By the lemma,

|𝐸(𝑇𝑛−𝑟,𝑟)| + (𝑟 − 1)(𝑛 − 𝑟) +
(
𝑟

2

)
= |𝐸(𝑇𝑛,𝑟)|.

Hence

|𝐸(𝐺)| ≤ |𝐸(𝑇𝑛,𝑟)|,
which proves (5). Therefore 𝑓 (𝑛, 𝑟) = |𝐸(𝑇𝑛,𝑟)|. □

Directed Graphs 133

15 Directed Graphs

Definition 15.1 (Directed graph). A directed graph (digraph) is a pair 𝐺 = (𝑉, 𝐸) where

𝑉 = 𝑉(𝐺) is a vertex set and

𝐸 = 𝐸(𝐺) ⊆ 𝑉 ×𝑉
is a set of ordered pairs. An edge (𝑥, 𝑦) ∈ 𝐸 is written 𝑥 → 𝑦. We say 𝑥 is the tail and 𝑦 is the

head for the edge 𝑥 → 𝑦.

Definition 15.2 (In-/out-degree). Let 𝐺 be a digraph and let 𝑥 ∈ 𝑉(𝐺). The out-degree is

the number of outgoing edges from 𝑥.

𝑑+𝐺(𝑥) = 𝑑+(𝑥) :=
��{𝑦 ∈ 𝑉(𝐺) : 𝑥 → 𝑦 ∈ 𝐸(𝐺)}

��,
The indegree is the number of incoming edges to 𝑥.

𝑑−𝐺(𝑥) = 𝑑−(𝑥) :=
��{𝑦 ∈ 𝑉(𝐺) : 𝑦 → 𝑥 ∈ 𝐸(𝐺)}

��.
Definition 15.3 (In-/out-neighborhood). Let 𝐺 be a digraph and 𝑥 ∈ 𝑉(𝐺). The out-
neighborhood of 𝑥 is

𝑁+𝐺(𝑥) = 𝑁+(𝑥) := {𝑦 ∈ 𝑉(𝐺) : 𝑥 → 𝑦 ∈ 𝐸(𝐺)},

and the in-neighborhood of 𝑥 is

𝑁−𝐺(𝑥) = 𝑁−(𝑥) := {𝑦 ∈ 𝑉(𝐺) : 𝑦 → 𝑥 ∈ 𝐸(𝐺)}.

Thus

𝑑+(𝑥) = |𝑁+(𝑥)|, 𝑑−(𝑥) = |𝑁−(𝑥)|.

Definition 15.4 (Adjacency matrix of a digraph). If𝑉(𝐺) = {𝑣1 , . . . , 𝑣𝑛}, the adjacency matrix
𝐴(𝐺) = (𝑎𝑖 𝑗) ∈ {0, 1}𝑛×𝑛 is defined by

𝑎𝑖 𝑗 =

{
1, if 𝑣𝑖 → 𝑣 𝑗 ∈ 𝐸(𝐺),
0, otherwise.

Equivalently, 𝑎𝑖 𝑗 = 1 iff there is an edge from row-vertex 𝑣𝑖 to column-vertex 𝑣 𝑗 .

Definition 15.5 (Oriented incidence matrix). Let 𝐺 be a digraph with 𝑉(𝐺) = {𝑣1 , . . . , 𝑣𝑛}
and 𝐸(𝐺) = {𝑒1 , . . . , 𝑒𝑚}. The (oriented) incidence matrix 𝑀(𝐺) = (𝑚𝑖ℓ) ∈ {−1, 0, 1}𝑛×𝑚 is

defined by

𝑚𝑖ℓ =


−1, if 𝑣𝑖 is the tail of 𝑒ℓ ,

1, if 𝑣𝑖 is the head of 𝑒ℓ ,

0, otherwise.

So each column (one directed edge) has exactly one −1 at its tail and one +1 at its head.

Directed Graphs 134

Definition 15.6 (Directed path). A directed path in a digraph is a sequence of vertices

𝑣1 → 𝑣2 → · · · → 𝑣𝑘

such that 𝑣𝑖 → 𝑣𝑖+1 ∈ 𝐸(𝐺) for each 𝑖 = 1, . . . , 𝑘 − 1. The length of this path is 𝑘 − 1.

Definition 15.7 (Symmetric digraph). A digraph 𝐺 is symmetric if whenever 𝑥 → 𝑦 is an

edge, the reverse edge 𝑦 → 𝑥 is also an edge. Equivalently,

(𝑥, 𝑦) ∈ 𝐸(𝐺) =⇒ (𝑦, 𝑥) ∈ 𝐸(𝐺).

In matrix terms (with respect to any ordering of 𝑉(𝐺)), this is equivalent to

𝐴(𝐺) = 𝐴(𝐺)T.

Definition 15.8 (Antisymmetric digraph). A digraph 𝐺 is antisymmetric if it has no two-way

pairs of edges: for all distinct vertices 𝑥 ≠ 𝑦,

(𝑥, 𝑦) ∈ 𝐸(𝐺) =⇒ (𝑦, 𝑥) ∉ 𝐸(𝐺).

Equivalently, between any unordered pair {𝑥, 𝑦} there is at most one directed edge.

Definition 15.9 (Underlying graph). Given a digraph 𝐺 = (𝑉, 𝐸), its underlying (undirected)
graph𝑈(𝐺) is obtained by forgetting directions:

𝑉
(
𝑈(𝐺)

)
= 𝑉(𝐺),

and for distinct 𝑥, 𝑦 ∈ 𝑉(𝐺),

{𝑥, 𝑦} ∈ 𝐸
(
𝑈(𝐺)

)
⇐⇒ (𝑥, 𝑦) ∈ 𝐸(𝐺) or (𝑦, 𝑥) ∈ 𝐸(𝐺).

Definition 15.10 (Orientation / oriented graph). Let 𝐻 be a simple undirected graph. An

orientation of 𝐻 is a digraph 𝐺 obtained by replacing each undirected edge {𝑥, 𝑦} ∈ 𝐸(𝐻)
by exactly one of the two directed edges 𝑥 → 𝑦 or 𝑦 → 𝑥. A digraph obtained this way is

called an oriented graph or an orientation of 𝐻.

Remark 15.1. An oriented graph is antisymmetric and has no loops, and its underlying graph

is exactly the original 𝐻.

Directed Graphs 135

15.1 Tournaments and Landau’s Theorem

Motivation: Imagine a round-robin competition with 𝑛 teams: every pair of teams plays

exactly one game. We build a directed graph 𝑇 to record the outcome:

• Vertices are the teams.

• For distinct teams 𝑥 and 𝑦, we draw a directed edge 𝑥 → 𝑦 if 𝑥 beats 𝑦.

Between any two teams, exactly one of them wins, so between any two vertices we get exactly

one directed edge. This directed complete graph is what we call a tournament.

Definition 15.11 (Tournament). A tournament is an orientation of a complete graph.

Equivalently, a digraph 𝑇 is a tournament if for every pair of distinct vertices 𝑥 ≠ 𝑦,

exactly one of 𝑥 → 𝑦 or 𝑦 → 𝑥 is an edge.

Definition 15.12 (King in a tournament). Let 𝑇 be a tournament. A vertex 𝑣 is a king if

every other vertex can be reached from 𝑣 by a directed path of length at most 2; i.e. for all

𝑢 ≠ 𝑣,

𝑣 → 𝑢 or ∃𝑤 with 𝑣 → 𝑤 → 𝑢.

Remark 15.2 (Historical motivation for kings). Landau introduced kings in the 1950s while

modeling dominance in animal societies: vertices are animals, and an edge 𝑥 → 𝑦 means “𝑥

defeats (or pecks) 𝑦” in a round-robin dominance graph. A “perfect boss” would be a vertex that

beats everyone directly (a source), but tournaments do not always have such a vertex. Landau’s

observation was that you can still guarantee a weaker leader: a vertex 𝑘 such that for every other

𝑣 either 𝑘 → 𝑣 or there is some 𝑢 with 𝑘 → 𝑢 → 𝑣, i.e. 𝑘 reaches everyone within two steps.

This is exactly the definition of a king, and it matches the idea of an individual that may not

dominate everyone personally, but dominates the whole group through its allies.

Theorem 15.1 (Landau, 1953). Every tournament has a king. Moreover, every vertex of

maximum out-degree in a tournament is a king.

Proof. Let 𝑥 be a vertex of maximum out-degree in a tournament 𝑇. Write

𝑉(𝑇) = {𝑥} ¤∪ 𝑁+(𝑥) ¤∪ 𝑁−(𝑥).

Assume for contradiction that 𝑥 is not a king. Then there exists a vertex 𝑦 that is not reachable

from 𝑥 by a directed path of length ≤ 2. In particular 𝑥 → 𝑦 ∉ 𝐸(𝑇), hence 𝑦 → 𝑥 ∈ 𝐸(𝑇), i.e.

𝑦 ∈ 𝑁−(𝑥).
Now fix any 𝑧 ∈ 𝑁+(𝑥), i.e. 𝑥 → 𝑧 ∈ 𝐸(𝑇). If we had 𝑧 → 𝑦 ∈ 𝐸(𝑇), then 𝑥 → 𝑧 → 𝑦 would be a

directed path of length 2, contradicting the choice of 𝑦. Therefore for every 𝑧 ∈ 𝑁+(𝑥) we must

have 𝑦 → 𝑧 ∈ 𝐸(𝑇), so 𝑧 ∈ 𝑁+(𝑦). Thus

𝑁+(𝑥) ⊆ 𝑁+(𝑦),

and moreover 𝑥 ∈ 𝑁+(𝑦) (since 𝑦 ∈ 𝑁−(𝑥)means 𝑦 → 𝑥 ∈ 𝐸(𝑇)). Hence

𝑑+(𝑦) ≥ |𝑁+(𝑥)| + 1 = 𝑑+(𝑥) + 1,

contradicting that 𝑥 has maximum out-degree. Therefore 𝑥 is a king, and the theorem follows. □

Directed Graphs 136

Definition 15.13 (Transmitter). A vertex 𝑡 in a tournament is a transmitter if it has in-degree

0 (equivalently, 𝑡 beats everyone: 𝑑+(𝑡) = |𝑉(𝑇)| − 1).

Lemma 15.2. Let 𝑇 be a tournament with no transmitter (i.e. 𝑑−(𝑣) ≥ 1 for all 𝑣). Then for

every vertex 𝑣 ∈ 𝑉(𝑇) there exists a king 𝑢 such that 𝑢 → 𝑣.

Proof. Fix 𝑣 ∈ 𝑉(𝑇). Since 𝑇 has no transmitter, 𝑁−(𝑣) ≠ ∅. Consider the subtournament

𝑇[𝑁−(𝑣)] induced by 𝑁−(𝑣), and choose 𝑢 ∈ 𝑁−(𝑣) of maximum out-degree within 𝑇[𝑁−(𝑣)].
By Landau’s theorem applied to 𝑇[𝑁−(𝑣)], the vertex 𝑢 is a king of 𝑇[𝑁−(𝑣)].
We claim 𝑢 is a king of the whole tournament 𝑇. Let 𝑤 ∈ 𝑉(𝑇).

• If 𝑤 ∈ 𝑁−(𝑣), then 𝑤 is reachable from 𝑢 within 2 steps inside 𝑇[𝑁−(𝑣)], hence also inside 𝑇.

• If 𝑤 ∉ 𝑁−(𝑣), then 𝑣 → 𝑤 (because in a tournament exactly one of 𝑤𝑣 or 𝑣𝑤 holds). Since

𝑢 ∈ 𝑁−(𝑣) we have 𝑢 → 𝑣, and therefore 𝑢 → 𝑣 → 𝑤 is a directed path of length 2 from 𝑢 to

𝑤.

Thus dist𝑇(𝑢, 𝑤) ≤ 2 for all 𝑤, so 𝑢 is a king. Finally, 𝑢 → 𝑣 holds by 𝑢 ∈ 𝑁−(𝑣). □

Proposition 15.3 (At least three kings when there is no transmitter). If a tournament 𝑇 has

no transmitter, then 𝑇 has at least 3 kings.

Proof. By Landau’s theorem, 𝑇 has at least one king.

Assume for contradiction that 𝑇 has at most two kings.

Not exactly one king: If 𝑇 had exactly one king 𝑘, apply the previous lemma to the vertex 𝑣 = 𝑘.

It yields a king 𝑢 with 𝑢 → 𝑘. Since 𝑘 is the only king, we must have 𝑢 = 𝑘, impossible (no

loops).

Not exactly two kings: If 𝑇 had exactly two kings 𝑎, 𝑏, apply the lemma to 𝑣 = 𝑎 to get a king 𝑢

with 𝑢 → 𝑎. Then 𝑢 ∈ {𝑎, 𝑏}, but 𝑢 ≠ 𝑎 (again no loops), so 𝑢 = 𝑏 and hence 𝑏 → 𝑎. Similarly,

applying the lemma to 𝑣 = 𝑏 forces 𝑎 → 𝑏. This contradicts that exactly one of 𝑎𝑏 or 𝑏𝑎 can be

an arc in a tournament.

Therefore 𝑇 cannot have 1 or 2 kings, and hence it has at least 3 kings. □

Connection and Decomposition 137

16 Connection and Decomposition

Definition 16.1 (𝑢, 𝑣-path). A path in a graph 𝐺 is a sequence of vertices

𝑃 = (𝑣0 , 𝑣1 , . . . , 𝑣𝑘)

such that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐺) for all 𝑖 = 0, 1, . . . , 𝑘 − 1, and no vertex is repeated. Its length is 𝑘

(the number of edges).

If 𝑣0 = 𝑢 and 𝑣𝑘 = 𝑣, we call 𝑃 a (𝑢, 𝑣)-path. The vertices 𝑢 and 𝑣 are the endpoints, and the

vertices 𝑣1 , . . . , 𝑣𝑘−1 (if any) are the internal vertices.

Definition 16.2 (Connected graph). An undirected graph 𝐺 is connected if for every pair of

vertices 𝑢, 𝑣 ∈ 𝑉(𝐺), there exists a (𝑢, 𝑣)-path in 𝐺.

Definition 16.3 (Reachability relation). For an undirected graph 𝐺, define a relation ∼ on

𝑉(𝐺) by

𝑢 ∼ 𝑣 ⇐⇒ there exists a (𝑢, 𝑣)-path in 𝐺.

The relation ∼ is an equivalence relation on 𝑉(𝐺).

Definition 16.4 (Connected component). A connected component of an undirected graph 𝐺

is an equivalence class of 𝑉(𝐺) under ∼. Equivalently, a component is a maximal connected
subgraph of 𝐺.

Remark 16.1. Thus 𝐺 is connected iff it has exactly one connected component.

Strong connectivity in digraphs.

Definition 16.5 (Strongly connected digraph). A digraph 𝐷 is strongly connected if for every

pair 𝑢, 𝑣 ∈ 𝑉(𝐷) there exists a directed path from 𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢.

Definition 16.6 (Strong component). Define a relation ≈ on 𝑉(𝐷) by

𝑢 ≈ 𝑣 ⇐⇒ 𝑢 reaches 𝑣 and 𝑣 reaches 𝑢 by directed paths.

The equivalence classes of≈ are called the strongly connected components (or strong components)
of 𝐷.

16.1 Walks and Paths

Connection and Decomposition 138

Definition 16.7 (Walk). A walk in a graph 𝐺 is a sequence of vertices

𝑊 = (𝑣0 , 𝑣1 , . . . , 𝑣𝑘)

such that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐺) for all 𝑖 = 0, 1, . . . , 𝑘 − 1. Unlike a path, vertices (and edges) are

allowed to repeat. The length of the walk is 𝑘 (the number of edges).

Definition 16.8 (Closed walk). A walk (𝑣0 , . . . , 𝑣𝑘) is closed if 𝑣0 = 𝑣𝑘 .

Definition 16.9 (Odd/even walk). A walk is odd (resp. even) if its length is odd (resp. even).

Lemma 16.1. Every (𝑢, 𝑣)-walk contains a (𝑢, 𝑣)-path.

Idea: Given any (𝑢, 𝑣)-walk, whenever a vertex is visited twice, the segment between the

two visits forms a cycle that can be deleted without breaking the connection between 𝑢 and

𝑣. Repeating this process until no vertex is repeated yields a (𝑢, 𝑣)-path.

Proof. We induct on the length ℓ of the (𝑢, 𝑣)-walk𝑊 = (𝑣0 , 𝑣1 , . . . , 𝑣ℓ), where 𝑣0 = 𝑢 and 𝑣ℓ = 𝑣.

Base case: ℓ = 0. Then𝑊 has no edges, so 𝑢 = 𝑣 and the walk repeats no vertices. Hence𝑊 itself

is a (𝑢, 𝑣)-path.

Induction step. Assume ℓ > 0 and that every (𝑢, 𝑣)-walk of length < ℓ contains a (𝑢, 𝑣)-path. Let

𝑊 be any (𝑢, 𝑣)-walk of length ℓ .

If𝑊 has no repeated vertices, then it is already a path and we are done. Otherwise, some vertex

appears at least twice along the walk. Choose indices 0 ≤ 𝑘1 < 𝑘2 ≤ ℓ such that

𝑣𝑘1
= 𝑣𝑘2

=: 𝑤.

Now delete the closed “detour” from the first occurrence of 𝑤 to the next occurrence of 𝑤.

Define the shorter vertex sequence

𝑊 ′ := (𝑣0 , 𝑣1 , . . . , 𝑣𝑘1
, 𝑣𝑘2+1 , . . . , 𝑣ℓ).

This is still a (𝑢, 𝑣)-walk: consecutive vertices in𝑊 ′ are consecutive in𝑊 except at the splice,

where we go directly from 𝑣𝑘1
= 𝑤 to 𝑣𝑘2+1, and 𝑤𝑣𝑘2+1 is an edge because it occurs in𝑊 .

Moreover the length strictly decreases:

ℓ ′ = ℓ − (𝑘2 − 𝑘1) < ℓ .

By the induction hypothesis,𝑊 ′ contains a (𝑢, 𝑣)-path. Since𝑊 ′ is obtained from𝑊 by deleting

vertices, any (𝑢, 𝑣)-path contained in𝑊 ′ is also contained in𝑊 .

Therefore𝑊 contains a (𝑢, 𝑣)-path. This completes the induction. □

Connection and Decomposition 139

Lemma 16.2. Let 𝐺 be a graph and let 𝑢, 𝑣, 𝑤 ∈ 𝑉(𝐺). If 𝐺 contains a (𝑢, 𝑣)-path and a

(𝑣, 𝑤)-path, then 𝐺 contains a (𝑢, 𝑤)-path. In particular, the relation

𝑢 ∼ 𝑤 ⇐⇒ there exists a (𝑢, 𝑤)-path in 𝐺

is transitive.

Proof. Let

𝑃 = (𝑢 = 𝑣0 , 𝑣1 , . . . , 𝑣𝑘 = 𝑣) and 𝑄 = (𝑣 = 𝑤0 , 𝑤1 , . . . , 𝑤ℓ = 𝑤)
be a (𝑢, 𝑣)-path and a (𝑣, 𝑤)-path, respectively.

Concatenate them to get the (𝑢, 𝑤)-walk

𝑊 = (𝑢 = 𝑣0 , 𝑣1 , . . . , 𝑣𝑘 = 𝑣 = 𝑤0 , 𝑤1 , . . . , 𝑤ℓ = 𝑤).

This is a walk because consecutive vertices along 𝑃 and along 𝑄 are adjacent, and we glue at the

common vertex 𝑣.

By the lemma, the walk𝑊 contains a (𝑢, 𝑤)-path. Hence 𝐺 contains a (𝑢, 𝑤)-path, as claimed.

Therefore, if 𝑢 ∼ 𝑣 and 𝑣 ∼ 𝑤, then 𝑢 ∼ 𝑤, so ∼ is transitive. □

Lemma 16.3. Every odd closed walk contains an odd cycle.

Idea: Traverse the closed walk and whenever you first revisit a vertex, you’ve found a cycle;

remove that cycle and continue. This decomposes the walk into edge-disjoint cycles whose

lengths add up to the (odd) length of the walk. A sum of integers is odd only if at least one

of them is odd, so one of these cycles must have odd length.

Proof. Let𝑊 = (𝑣0 , 𝑣1 , . . . , 𝑣ℓ) be a closed walk with 𝑣0 = 𝑣ℓ and odd length ℓ . Among all odd

closed subwalks of𝑊 , choose one of minimum length and call it

𝑊 ∗ = (𝑢0 , 𝑢1 , . . . , 𝑢𝑚), 𝑢0 = 𝑢𝑚 , 𝑚 odd.

We claim that𝑊 ∗ has no repeated vertices other than 𝑢0 = 𝑢𝑚 ; hence it is a cycle, and since 𝑚 is

odd, it is an odd cycle.

Suppose for contradiction that some vertex repeats inside 𝑊 ∗. Then there exist indices

0 ≤ 𝑖 < 𝑗 < 𝑚 with 𝑢𝑖 = 𝑢𝑗 . Consider the two closed walks obtained by splitting at this

repetition:

𝐶1 = (𝑢𝑖 , 𝑢𝑖+1 , . . . , 𝑢𝑗) (closed since 𝑢𝑖 = 𝑢𝑗),

and

𝐶2 = (𝑢𝑗 , 𝑢𝑗+1 , . . . , 𝑢𝑚 = 𝑢0 , 𝑢1 , . . . , 𝑢𝑖) (also closed).

Their lengths are

|𝐶1| = 𝑗 − 𝑖 , |𝐶2| = 𝑚 − (𝑗 − 𝑖).
Because 𝑚 is odd, exactly one of 𝑗 − 𝑖 and 𝑚 − (𝑗 − 𝑖) is odd. Moreover 0 < 𝑗 − 𝑖 < 𝑚, so both

|𝐶1| and |𝐶2| are strictly smaller than 𝑚. Therefore whichever of 𝐶1 or 𝐶2 has odd length is a

shorter odd closed walk than𝑊 ∗, contradicting the minimality of𝑊 ∗.

Hence𝑊 ∗ has no repeated vertices except its start/end, so it is a cycle. Since its length 𝑚 is odd,

𝑊 ∗ is an odd cycle contained in𝑊 . □

Connection and Decomposition 140

16.2 Kőnig’s Theorem characterizing bipartite graphs

It is obvious that an odd cycle prevents a graph from being bipartite: you cannot 2-color its

vertices so that every edge goes between the two colors. Kőnig’s theorem says this is the only
obstruction: if a graph fails to be bipartite, it must already contain an odd cycle.

Theorem 16.4 (Kőnig). A graph 𝐺 is bipartite if and only if 𝐺 contains no odd cycle.

Idea: Start from any vertex, color it red, its neighbors blue, their uncolored neighbors red,

and so on. This forces all vertices at even distance to be one color and odd distance the

other. An odd cycle would force some vertex to be both colors at once, which is impossible.

Conversely, if no odd cycle exists, this coloring never breaks, so the graph is bipartite.

Proof. (⇒) Suppose 𝐺 is bipartite with bipartition (𝑋,𝑌), so every edge has one endpoint in

𝑋 and the other in 𝑌. Let 𝐶 = (𝑣0 , 𝑣1 , . . . , 𝑣𝑘 = 𝑣0) be any cycle in 𝐺. Starting at 𝑣0 ∈ 𝑋 (wlog),

each step across an edge forces us to alternate sides:

𝑣0 ∈ 𝑋 ⇒ 𝑣1 ∈ 𝑌 ⇒ 𝑣2 ∈ 𝑋 ⇒ · · ·

After 𝑘 steps we return to 𝑣0, which is in 𝑋. Thus 𝑘 must be even (otherwise we would land in

𝑌). So every cycle has even length, hence there is no odd cycle.

(⇐) Suppose 𝐺 has no odd cycle. It suffices to show each connected component is bipartite. So

assume 𝐺 is connected and fix a root vertex 𝑟.

For any vertex 𝑣, let dist(𝑟, 𝑣) be the length of a shortest (𝑟, 𝑣)-path. Define

𝑋 := {𝑣 ∈ 𝑉(𝐺) : dist(𝑟, 𝑣) is even}, 𝑌 := {𝑣 ∈ 𝑉(𝐺) : dist(𝑟, 𝑣) is odd}.

Clearly 𝑋 ∪ 𝑌 = 𝑉(𝐺) and 𝑋 ∩ 𝑌 = ∅.

We claim there is no edge with both endpoints in 𝑋 (and similarly none with both endpoints

in 𝑌). Assume for contradiction that 𝑢𝑣 ∈ 𝐸(𝐺)with 𝑢, 𝑣 ∈ 𝑋. Let 𝑃𝑢 and 𝑃𝑣 be shortest paths

from 𝑟 to 𝑢 and from 𝑟 to 𝑣. Then |𝑃𝑢 | and |𝑃𝑣 | are both even.

Let 𝑧 be the last common vertex of 𝑃𝑢 and 𝑃𝑣 (their paths from 𝑟 coincide up to 𝑧 and then

diverge). Write 𝑃𝑢 = 𝑧 { 𝑢 and 𝑃𝑣 = 𝑧 { 𝑣 for the suffixes beyond 𝑧. The closed walk formed

by

(𝑧 { 𝑢) ∪ (𝑢 → 𝑣) ∪ (𝑣 { 𝑧)
has length

|𝑧 { 𝑢| + 1 + |𝑧 { 𝑣|.
Now dist(𝑟, 𝑢) = dist(𝑟, 𝑧) + |𝑧 { 𝑢| and dist(𝑟, 𝑣) = dist(𝑟, 𝑧) + |𝑧 { 𝑣|. Since both dist(𝑟, 𝑢)
and dist(𝑟, 𝑣) are even, |𝑧 { 𝑢| and |𝑧 { 𝑣| have the same parity, so |𝑧 { 𝑢| + |𝑧 { 𝑣| is even,

and therefore

|𝑧 { 𝑢| + 1 + |𝑧 { 𝑣|
is odd. Thus we have an odd closed walk, which contains an odd cycle, contradiction.

Hence no edge lies inside 𝑋 or inside 𝑌, so every edge goes between 𝑋 and 𝑌. Therefore 𝐺 is

bipartite.

Applying the same construction to each connected component finishes the proof for general

𝐺. □

Connection and Decomposition 141

16.3 Cut vertices and edges

Definition 16.10 (Cut-vertex, cut-edge). Let 𝐺 be a graph and let 𝑐(𝐺) denote the number

of connected components of 𝐺.

• A vertex 𝑣 ∈ 𝑉(𝐺) is a cut-vertex if 𝑐(𝐺 − 𝑣) > 𝑐(𝐺).
• An edge 𝑒 ∈ 𝐸(𝐺) is a cut-edge (or bridge) if 𝑐(𝐺 − 𝑒) > 𝑐(𝐺).

Proposition 16.5. Assume 𝐺 is connected and let 𝑒 ∈ 𝐸(𝐺). Then

𝐺 − 𝑒 is connected ⇐⇒ 𝑒 lies on a cycle of 𝐺.

Equivalently, 𝑒 is a cut-edge iff 𝑒 is not contained in any cycle.

Proof. Write 𝑒 = 𝑥𝑦.

(⇒) If 𝐺− 𝑒 is connected, then there is an (𝑥, 𝑦)-path 𝑃 in 𝐺− 𝑒. Adding the edge 𝑥𝑦 to 𝑃 creates

a cycle in 𝐺 containing 𝑒.

(⇐) If 𝑒 lies on a cycle 𝐶, then 𝐶 − 𝑒 contains an (𝑥, 𝑦)-path 𝑃 in 𝐺 − 𝑒. Now take any vertices

𝑢, 𝑣 ∈ 𝑉(𝐺). Since 𝐺 is connected, there is a (𝑢, 𝑣)-path in 𝐺. If that path does not use 𝑒 we are

done; if it uses 𝑒 = 𝑥𝑦, replace the subedge 𝑥𝑦 by the 𝑥–𝑦 path 𝑃 in 𝐺 − 𝑒. Thus 𝑢 and 𝑣 are still

connected in 𝐺 − 𝑒, so 𝐺 − 𝑒 is connected. □

Remark 16.2. Adding an edge 𝑒 = 𝑥𝑦 to a graph merges two components iff 𝑥 and 𝑦 were in

different components. In that case the new edge 𝑒 is a bridge in the new graph, so it lies on no

cycle.

Proposition 16.6 (Few edges⇒many components). Every 𝑛-vertex graph 𝐺 with 𝑒(𝐺) ≤ 𝑘
has at least 𝑛 − 𝑘 connected components. Moreover this is best possible: for every 𝑛 > 𝑘

there exists an 𝑛-vertex graph with 𝑘 edges and exactly 𝑛 − 𝑘 components.

Proof. Start from the empty graph 𝐸𝑛 on 𝑛 vertices, which has 𝑐(𝐸𝑛) = 𝑛 components. Adding

one edge can reduce the number of components by at most 1 (it either joins two components, or

stays inside one). After adding 𝑒(𝐺) ≤ 𝑘 edges, we therefore have

𝑐(𝐺) ≥ 𝑛 − 𝑘.

For sharpness, take a path on 𝑘 + 1 vertices (which has 𝑘 edges and 1 component) and add

𝑛 − (𝑘 + 1) isolated vertices. The resulting graph has 𝑘 edges and 1 + (𝑛 − 𝑘 − 1) = 𝑛 − 𝑘
components. □

Proposition 16.7 (At least two non-cut vertices). Every graph 𝐺 with |𝑉(𝐺)| ≥ 2 has at least

two vertices that are not cut-vertices.

Proof. It suffices to prove this for a connected component of 𝐺, so assume 𝐺 is connected. Let

𝑃 = (𝑣0 , 𝑣1 , . . . , 𝑣ℓ)

Connection and Decomposition 142

be a longest path in 𝐺 (maximal length ℓ). We claim that 𝑣0 and 𝑣ℓ are not cut-vertices.

Suppose for contradiction that 𝑣0 is a cut-vertex. Then 𝐺 − 𝑣0 has at least two components.

All vertices 𝑣1 , . . . , 𝑣ℓ lie in a single component of 𝐺 − 𝑣0 (because they are connected by the

subpath 𝑣1 − · · · − 𝑣ℓ). So there exists some vertex 𝑥 ∉ {𝑣1 , . . . , 𝑣ℓ} adjacent to 𝑣0 in a different

component of 𝐺 − 𝑣0. Thus 𝑣0𝑥 ∈ 𝐸(𝐺) and 𝑥 ∉ 𝑉(𝑃), so

(𝑥, 𝑣0 , 𝑣1 , . . . , 𝑣ℓ)

is a path longer than 𝑃, contradiction. Hence 𝑣0 is not a cut-vertex. The same argument applies

to 𝑣ℓ . □

Path 𝑃 = (𝑣0 , . . . , 𝑣ℓ) colored in blue

𝑣0 is a cut-vertex⇒ 𝑃 is not a longest path

𝑣0 𝑣1 𝑣2

. . . 𝑣ℓ

𝑥

𝑥 ∉ 𝑉(𝑃), adjacent to 𝑣0

16.4 Eulerian circuits

Lemma 16.8. If 𝛿(𝐺) ≥ 2, then 𝐺 contains a cycle.

Proof. Let 𝑃 = (𝑣0 , 𝑣1 , . . . , 𝑣ℓ) be a longest path in 𝐺. Because deg(𝑣0) ≥ 2, the vertex 𝑣0 has a

neighbor 𝑥 ≠ 𝑣1. By maximality of 𝑃, this neighbor 𝑥 must already lie on the path, say 𝑥 = 𝑣𝑖
for some 𝑖 ≥ 2. Otherwise, (𝑥, 𝑣0 , 𝑣1 , . . . , 𝑣ℓ) is a path: the edge 𝑥𝑣0 exists by choice of 𝑥, and no

vertex repeats because 𝑥 is new. This path has length ℓ + 1, contradicting that 𝑃 was chosen to

be a longest path. Hence

𝑣0𝑣1 · · · 𝑣𝑖𝑣0

is a cycle. □

Definition 16.11 (Edge-decomposition). An (edge-)decomposition of a graph 𝐺 is a partition

of the edge set:

𝐸(𝐺) = 𝐸1
¤∪ 𝐸2

¤∪ · · · ¤∪ 𝐸𝑡 ,
often with the intent that each (𝑉(𝐺), 𝐸𝑖) has some nice structure (cycles, paths, stars, . . .).

Definition 16.12 (Even graph / Eulerian graph). A graph 𝐺 is even if every vertex has even

degree.

Connection and Decomposition 143

Lemma 16.9. If 𝐺 is even, then 𝐸(𝐺) can be partitioned into edge-disjoint cycles.

Proof. If 𝐸(𝐺) = ∅ there is nothing to prove. Otherwise, consider the subgraph 𝐻 spanned by

the non-isolated vertices of 𝐺. Since 𝐺 is even, every non-isolated vertex has degree at least 2,

so 𝛿(𝐻) ≥ 2. By Lemma 16.8, 𝐻 contains a cycle 𝐶.

Remove the edges of 𝐶 to form 𝐺1 := 𝐺 − 𝐸(𝐶). Every vertex on 𝐶 loses exactly 2 incident edges,

so degrees remain even in 𝐺1. Repeat the argument on 𝐺1: if it still has edges, it contains a

cycle, remove its edges, and so on. This process terminates because each step removes at least

one edge. The removed cycles are pairwise edge-disjoint and their edges cover 𝐸(𝐺), giving the

desired decomposition. □

Conjecture 16.10 (Hajós). Every even (Eulerian) graph on 𝑛 vertices can be decomposed

into at most ⌊𝑛/2⌋ cycles.

Conjecture 16.11 (Gallai). Every 𝑛-vertex graph can be decomposed into at most

⌈
𝑛
2

⌉
paths.

Proposition 16.12 (A 𝐾1,𝑘-decomposition characterizes bipartite regular graphs). Let 𝐺

be a 𝑘-regular graph. Then 𝐺 has an edge-decomposition into copies of 𝐾1,𝑘 (stars with 𝑘

leaves) if and only if 𝐺 is bipartite.

Proof. (⇐) If 𝐺 is bipartite with bipartition (𝐴, 𝐵), then for each 𝑎 ∈ 𝐴 the set of all 𝑘 edges

incident to 𝑎 forms a star 𝐾1,𝑘 centered at 𝑎. Because every edge has exactly one endpoint in 𝐴,

these stars are edge-disjoint and their union is 𝐸(𝐺). So they give a 𝐾1,𝑘-decomposition.

(⇒) Suppose 𝐸(𝐺) is partitioned into stars 𝑆1 , . . . , 𝑆𝑡 , each isomorphic to 𝐾1,𝑘 . Let 𝐴 be the set

of star-centers (the unique degree-𝑘 vertex in each star), and let 𝐵 := 𝑉(𝐺) \ 𝐴. We claim (𝐴, 𝐵)
is a bipartition.

First, no vertex can be both a center and a leaf: if 𝑣 is a leaf in some star, then the incident edge

used there is already assigned to that star; but if 𝑣 were also a center, all 𝑘 edges incident to 𝑣

would have to lie in the star centered at 𝑣, contradicting that at least one of those edges was

assigned elsewhere. Hence 𝐴 ∩ 𝐵 = ∅.

Now take any edge 𝑢𝑣 ∈ 𝐸(𝐺). It lies in exactly one star, and in that star exactly one endpoint is

the center. Thus exactly one of {𝑢, 𝑣} lies in 𝐴, and the other lies in 𝐵. Therefore every edge

goes between 𝐴 and 𝐵, so 𝐺 is bipartite. □

Definition 16.13 (Multigraph, simple graph). A multigraph is a graph in which edges may

have multiplicity (i.e. multiple edges between the same pair of vertices are allowed), and

loops are also allowed. A simple graph is a graph with no loops and no multiple edges.

Connection and Decomposition 144

Definition 16.14 (Trail, circuit, Eulerian circuit). Let 𝐺 be a (multi)graph.

• A trail is a walk that uses each edge at most once.

• A circuit is a closed trail.

• An Eulerian circuit is a circuit that uses every edge of 𝐺 exactly once.

Seven Bridges of Königsberg: In 1736, the city of Königsberg (now Kaliningrad) presented a

well-known walking puzzle. The Pregel River split the city into four landmasses connected by

seven bridges. The question was whether one can take a walk that crosses each bridge exactly
once and returns to the starting point.

Abstract the situation by forming a multigraph 𝐺 whose vertices are the landmasses and whose

edges are the bridges (allowing multiple edges if two landmasses are connected by several

bridges). The question is then:

Does 𝐺 contain a closed walk that traverses each edge exactly once?

That is exactly what we now call an Eulerian circuit.

The Seven Bridges of Königsberg: can one cross each bridge exactly once and return to the start?

Suppose you are walking an Eulerian circuit. Every time you enter a vertex along some edge,

you must also leave along a different unused edge (except that you start and end at the same

vertex, which still matches up in pairs because you return). So the incident edges at each vertex

get used in enter/exit pairs. That forces the degree of every vertex to be even.

A single walk cannot jump between disconnected pieces of the graph. So if two different

components both contain edges, there is no way one closed walk can cover them all. Equivalently,

among the components of 𝐺, at most one can be nontrivial (contain an edge).

In the Königsberg graph, vertices have odd degree, so an Eulerian circuit cannot exist. Euler’s

theorem below states that these two obstructions are not merely necessary but also sufficient: if

𝐺 has at most one nontrivial component and every vertex has even degree, then 𝐺 does have an

Eulerian circuit.

Theorem 16.13 (Euler’s Theorem (for multigraphs)). A multigraph 𝐺 has an Eulerian

circuit if and only if

1. 𝐺 has at most one nontrivial component (i.e. among its connected components, at most

one contains an edge), and

2. every vertex has even degree.

Connection and Decomposition 145

Proof. (⇒) If 𝐺 has an Eulerian circuit, then every vertex has even degree: each time the circuit

enters a vertex along some edge, it must leave along a distinct unused edge, so incident edges

are paired. Also, an Eulerian circuit lives inside a single connected component containing edges,

so there can be at most one nontrivial component.

(⇐) Assume 𝐺 has at most one nontrivial component and every vertex has even degree. Discard

isolated vertices; we may assume 𝐺 is connected and has at least one edge.

Because all degrees are even, 𝐺 is an even graph. Hence 𝐸(𝐺) decomposes into edge-disjoint

cycles

𝐸(𝐺) = 𝐸(𝐶1) ¤∪ · · · ¤∪ 𝐸(𝐶𝑡).

If two circuits share a vertex, they can be spliced into one bigger circuit that uses exactly the

union of their edges: start walking along the first circuit; upon first reaching a shared vertex,

traverse the entire second circuit and return to the same vertex; then continue along the first

circuit. The result is still a closed trail (no edge is repeated) and it uses all edges of both circuits.

As long as 𝑡 ≥ 2, we claim there exist 𝑖 ≠ 𝑗 with 𝐶𝑖 and 𝐶 𝑗 sharing a vertex. Indeed, let 𝐻 be the

subgraph formed by the union of the cycles. Then 𝐻 is connected (because 𝐻 contains all edges

of 𝐺, and 𝐺 is connected). If all cycles were vertex-disjoint, then 𝐻 would be a disjoint union of

those cycles and hence disconnected, contradiction. So some two cycles intersect, and we can

merge them.

Repeatedly merge intersecting circuits. Each merge reduces the number of circuits by 1, and the

process must stop. When it stops, we have a single circuit using all edges of 𝐺, i.e. an Eulerian

circuit. □

Remark 16.3 (Why Königsberg is often called the “birth” of graph theory). The Königsberg

bridges puzzle is remembered as the birth of graph theory because Euler solved it by discarding
almost all geometric information. He did not use distances, angles, or coordinates; he kept only

which landmasses are connected by which bridges, i.e. the adjacency structure of a graph. That

shift created a new kind of mathematics: studying properties that depend only on connectivity

(and are invariant under any redrawings of the picture). Euler’s parity argument (odd vs. even

degrees) is a first example of a purely graph-theoretic argument, and the resulting theorem is

not about Königsberg in particular but about a general class of graphs.

Trees 146

17 Trees

17.1 Basic properties of trees

Definition 17.1. A graph is acyclic if it contains no cycle. An acyclic graph is also called a

forest. A tree is a connected forest (equivalently: a connected acyclic graph).

Definition 17.2 (Spanning tree). Let 𝐺 be a graph. A subgraph 𝐻 ⊆ 𝐺 is a spanning tree of

𝐺 if

𝐻 is a tree and 𝑉(𝐻) = 𝑉(𝐺).

Definition 17.3 (Leaf). A leaf of a forest is a vertex of degree 1 (in that forest).

Proposition 17.1. Let 𝑇 be a tree.

(i) If |𝑉(𝑇)| ≥ 2, then 𝑇 has at least two leaves.

(ii) If 𝑣 is a leaf of 𝑇, then 𝑇 − 𝑣 is a tree.

(iii) If |𝑉(𝑇)| = 𝑛, then |𝐸(𝑇)| = 𝑛 − 1.

Proof. (i) Let 𝑃 be a longest path in 𝑇, with endpoints 𝑎, 𝑏. We claim 𝑎 is a leaf. If deg𝑇(𝑎) ≥ 2,

then 𝑎 has a neighbor 𝑥 ≠ the next vertex of 𝑃. Because 𝑇 is acyclic, 𝑥 cannot lie on 𝑃 (otherwise

we would create a cycle by going from 𝑎 into 𝑃 and back to 𝑎 via 𝑥), so we could extend 𝑃

to a longer path starting 𝑥 − 𝑎 − · · · , contradicting maximality. Thus deg𝑇(𝑎) = 1. Similarly

deg𝑇(𝑏) = 1. Hence 𝑇 has at least two leaves.

(ii) Let 𝑣 be a leaf of 𝑇, and let 𝑢 be its unique neighbor. Set 𝑇′ := 𝑇 − 𝑣.

𝑇′ is connected: Take any two vertices 𝑥, 𝑦 ∈ 𝑉(𝑇′). Since 𝑇 is connected, there is an 𝑥–𝑦 path

𝑃 in 𝑇. If 𝑃 contains 𝑣, then 𝑃 must use the edge 𝑢𝑣 to enter 𝑣; but to reach 𝑦 ≠ 𝑣 it would

have to leave 𝑣 again, and the only way out is along 𝑢𝑣 once more, repeating an edge. This is

impossible for a path, so 𝑃 avoids 𝑣 and is therefore contained in 𝑇′. Hence 𝑇′ is connected.

𝑇′ is acyclic: If 𝑇′ had a cycle, that same cycle must have been in 𝑇 (we only deleted 𝑣 and its

incident edge, and deleting vertices and edges does not introduce a cycle). But 𝑇 is acyclic, a

contradiction.

Since 𝑇′ is connected and acyclic, so 𝑇′ is a tree.

(iii) We induct on 𝑛 = |𝑉(𝑇)|. If 𝑛 = 1, then 𝑇 has 0 edges and the statement |𝐸(𝑇)| = 𝑛 − 1 holds.

Assume 𝑛 ≥ 2 and the statement holds for all smaller trees. By (i), 𝑇 has a leaf 𝑣. Removing 𝑣

produces a tree 𝑇′ := 𝑇 − 𝑣 with 𝑛 − 1 vertices by (ii). By induction,

|𝐸(𝑇′)| = (𝑛 − 1) − 1 = 𝑛 − 2.

Since 𝑣 was a leaf, deleting 𝑣 removed exactly one edge, so |𝐸(𝑇)| = |𝐸(𝑇′)| + 1 = (𝑛 − 2) + 1 =

𝑛 − 1. □

17.2 Characterization of trees

Trees 147

Proposition 17.2 (Characterizations of trees). Let 𝑛 ≥ 1 and let 𝐺 be a graph on 𝑛 vertices.

The following are equivalent:

(A) 𝐺 is a tree (connected and has no cycles).

(B) 𝐺 is connected and has 𝑛 − 1 edges.

(C) 𝐺 has no cycles and has 𝑛 − 1 edges.

(D) For any 𝑢, 𝑣 ∈ 𝑉(𝐺), there is exactly one 𝑢–𝑣 path in 𝐺.

(E) Adding any edge 𝑒 ∉ 𝐸(𝐺) creates a graph with exactly one cycle.

(A)

(E)

(D)(C)

(B)

Proof. (𝐴) ⇒ (𝐷). Fix 𝑢 ≠ 𝑣. Since 𝐺 is connected, there exists a 𝑢–𝑣 path. For uniqueness,

suppose 𝑃, 𝑄 are two distinct 𝑢–𝑣 paths. Let 𝑥 be the first vertex where they diverge and let 𝑦

be the next vertex where they meet again. Then the subpath of 𝑃 from 𝑥 to 𝑦 together with the

subpath of 𝑄 from 𝑥 to 𝑦 forms a cycle, contradicting that 𝐺 is acyclic. Hence the 𝑢–𝑣 path is

unique.

(𝐷) ⇒ (𝐴). Condition (D) implies 𝐺 is connected (there is a path between every pair). Now if

𝐺 had a cycle, pick two distinct vertices 𝑢, 𝑣 on that cycle; going around the cycle in the two

directions gives two different 𝑢–𝑣 paths, contradicting (D). Thus 𝐺 has no cycles.

(𝐴) ⇒ (𝐵). Follows from (iii) of previous proposition

(𝐵) ⇒ (𝐶). Assume 𝐺 is connected and |𝐸(𝐺)| = 𝑛 − 1. If 𝐺 contains a cycle, delete an edge from

that cycle. This does not disconnect the graph, since the remaining edges of the cycle still give a

route between the endpoints. Repeat this until no cycles remain, obtaining a graph 𝐺′ that is

connected and acyclic.

Thus 𝐺′ satisfies (A), and since (𝐴) ⇒ (𝐵)we have

|𝐸(𝐺′)| = 𝑛 − 1.

But each deletion reduces the number of edges by 1, so starting from |𝐸(𝐺)| = 𝑛 − 1 we can only

end with |𝐸(𝐺′)| = 𝑛 − 1 if we deleted zero edges. Therefore no cycle edge was ever available to

delete, i.e. 𝐺 had no cycles to begin with. Hence 𝐺 is acyclic, which is (C).

(𝐶) ⇒ (𝐵). Assume 𝐺 has no cycles and |𝐸(𝐺)| = 𝑛 − 1. Let 𝐺1 , . . . , 𝐺𝑘 be the connected

components of 𝐺, and write 𝑛𝑖 := |𝑉(𝐺𝑖)| and 𝑒𝑖 := |𝐸(𝐺𝑖)|. Each 𝐺𝑖 is connected and acyclic,

hence satisfies (A), so by (𝐴) ⇒ (𝐵) applied to 𝐺𝑖 we have 𝑒𝑖 = 𝑛𝑖 − 1 for all 𝑖. Summing over

components gives

𝑛 − 1 = |𝐸(𝐺)| =
𝑘∑
𝑖=1

𝑒𝑖 =

𝑘∑
𝑖=1

(𝑛𝑖 − 1) =
(𝑘∑
𝑖=1

𝑛𝑖

)
− 𝑘 = 𝑛 − 𝑘,

Trees 148

so 𝑘 = 1. Hence 𝐺 is connected, i.e. (B) holds.

(𝐶) ⇒ (𝐴). By (𝐶) ⇒ (𝐵) the graph 𝐺 is connected, and (C) also says 𝐺 is acyclic; hence 𝐺 is a

tree.

(𝐴) ⇒ (𝐸). Assume 𝐺 is a tree, and let 𝑒 = 𝑢𝑣 ∉ 𝐸(𝐺). By (𝐴) ⇒ (𝐷), there is a unique 𝑢–𝑣 path

𝑃 in 𝐺. In 𝐺 + 𝑒, the subgraph 𝑃 ∪ {𝑒} is a cycle. Moreover, since 𝐺 had no cycles, any cycle in

𝐺 + 𝑒 must use the new edge 𝑒, and then the rest of that cycle is a 𝑢–𝑣 path in 𝐺, which must be

𝑃 by uniqueness. Thus 𝐺 + 𝑒 has exactly one cycle.

(𝐸) ⇒ (𝐷). Assume (E). Fix distinct 𝑢, 𝑣 ∈ 𝑉(𝐺) and add the edge 𝑒 = 𝑢𝑣. By (E), the graph

𝐺 + 𝑒 contains exactly one cycle, and this cycle must use 𝑒 (otherwise it would already be a cycle

in 𝐺). Removing 𝑒 from that cycle leaves a 𝑢–𝑣 path in 𝐺, so at least one such path exists.

For uniqueness, if 𝐺 had two distinct 𝑢–𝑣 paths 𝑃 ≠ 𝑄, then 𝑃 ∪ {𝑒} and 𝑄 ∪ {𝑒} would be two

distinct cycles in 𝐺 + 𝑒, contradicting that 𝐺 + 𝑒 has exactly one cycle. Hence 𝐺 has exactly one

𝑢–𝑣 path.

□

Corollary 17.3. Let 𝑇 be a tree.

(i) Every edge of 𝑇 is a cut-edge (bridge).

(iii) Every connected graph has a spanning tree.

Proof. (i) Fix 𝑒 = 𝑢𝑣 ∈ 𝐸(𝑇). In a tree there is a unique (𝑢, 𝑣)-path, namely the single edge 𝑢𝑣.

Deleting 𝑒 destroys the only (𝑢, 𝑣)-path, so 𝑇 − 𝑒 is disconnected. Hence 𝑒 is a cut-edge.

(iii) Let 𝐺 be connected. If 𝐺 is already acyclic, it is a tree and we are done. Otherwise, repeatedly

delete an edge that lies on a cycle. This keeps the graph connected and strictly decreases the

number of edges. The process must stop, and it stops exactly when no cycle remains, i.e. at a tree.

Because we only deleted edges and never removed vertices, the resulting tree spans 𝑉(𝐺). □

Theorem 17.4 (Spanning tree exchange). Let 𝐺 be a connected graph and let 𝑇, 𝑇′ be

spanning trees of 𝐺. If 𝑒 ∈ 𝐸(𝑇) \𝐸(𝑇′), then there exist edges 𝑒′ , 𝑒′′ ∈ 𝐸(𝑇′) \𝐸(𝑇) such that

𝑇1 := 𝑇 − 𝑒 + 𝑒′ and 𝑇2 := 𝑇′ + 𝑒 − 𝑒′′

are both spanning trees of 𝐺. (In fact one can take 𝑒′′ = 𝑒′, so a single edge swap works in

both directions.)

Proof. Let 𝑒 = 𝑢𝑣 ∈ 𝐸(𝑇) \ 𝐸(𝑇′). Since 𝑇 is a tree, 𝑒 is a cut-edge of 𝑇. Let the two components

of 𝑇 − 𝑒 have vertex sets𝑈 and𝑈 ′ with 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑈 ′.
Because 𝑇′ is connected, there is a (𝑢, 𝑣)-path in 𝑇′. That path starts in𝑈 and ends in𝑈′, so at

some point it must cross from𝑈 to𝑈′. Therefore there exists an edge

𝑒′ = 𝑥𝑦 ∈ 𝐸(𝑇′) with 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈′.

Necessarily 𝑒′ ∉ 𝐸(𝑇), because 𝑇 has no edges between 𝑈 and 𝑈′ after removing 𝑒. So

𝑒′ ∈ 𝐸(𝑇′) \ 𝐸(𝑇).

Trees 149

Now add 𝑒′ to 𝑇 − 𝑒. It reconnects the two components, and since 𝑇 − 𝑒 is acyclic and we added

exactly one edge between components, 𝑇1 := 𝑇− 𝑒+ 𝑒′ is connected and acyclic, hence a spanning

tree.

Next consider 𝑇′ + 𝑒. Since 𝑇′ is a tree, adding 𝑒 creates a unique cycle 𝐶. This cycle must

cross the cut (𝑈,𝑈′) at least once (it uses 𝑒 itself), so it contains some edge 𝑒′′ of 𝑇′ that crosses

between 𝑈 and 𝑈′. Choose such an edge 𝑒′′ on 𝐶 with 𝑒′′ ≠ 𝑒. Then 𝑒′′ ∈ 𝐸(𝑇′) \ 𝐸(𝑇) (same

reason as above), and removing 𝑒′′ breaks the unique cycle while keeping the graph connected.

Thus

𝑇2 := 𝑇′ + 𝑒 − 𝑒′′

is a spanning tree.

Finally, note we may simply take 𝑒′′ = 𝑒′, because 𝑒′ lies on the (𝑢, 𝑣)-path in 𝑇′, hence lies on

the unique cycle in 𝑇′ + 𝑒. □

Top: Tree 𝑇. Removing 𝑒 = 𝑢𝑣 splits the vertices into𝑈 and𝑈′
Bottom: Tree 𝑇′ + 𝑢𝑣. In 𝑇′, the 𝑢–𝑣 path crosses via 𝑒′ = 𝑥𝑦; in 𝑇′ + 𝑒 this creates one cycle

17.3 Distance in graphs

Definition 17.4 (Distance). For vertices 𝑥, 𝑦 ∈ 𝑉(𝐺), define the distance

𝑑𝐺(𝑥, 𝑦) := length of a shortest (𝑥, 𝑦)-path.

If 𝑥 and 𝑦 lie in different components, set 𝑑𝐺(𝑥, 𝑦) = ∞.

Trees 150

Remark 17.1 (Basic properties). For all 𝑥, 𝑦, 𝑧 ∈ 𝑉(𝐺):

• 𝑑(𝑥, 𝑥) = 0.

• 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (undirected graphs).

• (Triangle inequality) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

On a connected graph (so distances are finite), 𝑑 is a metric on 𝑉(𝐺).

Definition 17.5 (Eccentricity, diameter, radius). Assume 𝐺 is connected.

• The eccentricity of a vertex 𝑢 is

𝜀(𝑢) := max

𝑣∈𝑉(𝐺)
𝑑(𝑢, 𝑣).

• The diameter of 𝐺 is

diam(𝐺) := max

𝑢,𝑣∈𝑉(𝐺)
𝑑(𝑢, 𝑣) = max

𝑢∈𝑉(𝐺)
𝜀(𝑢).

• The radius of 𝐺 is

rad(𝐺) := min

𝑢∈𝑉(𝐺)
𝜀(𝑢).

Definition 17.6 (Center of a graph). Assume 𝐺 is connected. The center of 𝐺 is the set of

vertices with minimum eccentricity:

Center(𝐺) := {𝑢 ∈ 𝑉(𝐺) : 𝜀(𝑢) = rad(𝐺)}.

(So Center(𝐺) is the set of vertices that are “as close as possible” to everyone else.)

Theorem 17.5 (Jordan, 1869). If 𝑇 is a tree, then Center(𝑇) is either

• a single vertex, or

• two adjacent vertices.

Proof. If |𝑉(𝑇)| ≤ 2 the statement is immediate, so assume |𝑉(𝑇)| ≥ 3.

Let 𝐿 be the set of leaves of 𝑇, and let

𝑇′ := 𝑇 − 𝐿
be the graph obtained by deleting all leaves (simultaneously). By Proposition 17.1(ii), deleting a

leaf from a tree yields a tree; repeating over all leaves shows 𝑇′ is either empty or still a tree.

Key claim: For every vertex 𝑥 ∈ 𝑉(𝑇′),

𝜀𝑇(𝑥) = 𝜀𝑇′(𝑥) + 1.

Why? Take a farthest vertex 𝑦 from 𝑥 in 𝑇. In a tree, any farthest vertex must be a leaf: if 𝑦

were not a leaf, it has a neighbor further away from 𝑥 along the unique 𝑥–𝑦 path, contradicting

maximality. Thus a farthest vertex is in 𝐿, so when we delete all leaves, every farthest vertex

Trees 151

disappears and the maximum distance drops by 1. Conversely, any farthest vertex in 𝑇′ is at

distance one less than a farthest leaf in 𝑇 (just extend the path one step to a leaf), so the drop is

exactly 1.

In particular, all eccentricities in the surviving tree drop by exactly 1, so the set of vertices

minimizing eccentricity does not change when passing from 𝑇 to 𝑇′:

Center(𝑇) = Center(𝑇′).

Now iterate the leaf-pruning process:

𝑇 = 𝑇0 ⊃ 𝑇1 ⊃ 𝑇2 ⊃ · · · , 𝑇𝑖+1 := 𝑇𝑖 − {leaves of 𝑇𝑖}.

Each step removes at least two vertices as long as |𝑉(𝑇𝑖)| ≥ 3 (trees have ≥ 2 leaves), so the

process must stop, and it stops exactly when 𝑇𝑚 has either 1 vertex or 2 vertices. If 𝑇𝑚 has 2

vertices, they must be adjacent (otherwise it would not be connected).

Since centers are preserved at every pruning step, we get

Center(𝑇) = Center(𝑇𝑚),

and Center(𝑇𝑚) is either a single vertex or two adjacent vertices. □

Matchings in bipartite graphs 152

18 Matchings in bipartite graphs

Definition 18.1 (Matching). A matching in a graph 𝐺 is a set of edges no two of which share

an endpoint. Equivalently, each vertex is incident to at most one edge of the matching.

A matching saturates a vertex set 𝑆 ⊆ 𝑉(𝐺) if every vertex in 𝑆 is incident to some edge of the

matching.

Motivation: SDR / jobs and applicants. Suppose there are jobs labeled 1, 2, . . . , 𝑛, and for

each job 𝑖 we are given a set 𝐴𝑖 of applicants who are qualified for that job. We ask:

Can we assign a distinct qualified applicant to every job?

Model this question as a bipartite graph 𝐺 = (𝑋,𝑌):

• 𝑋 = {1, 2, . . . , 𝑛} represents the jobs.

• 𝑌 =
⋃𝑛
𝑖=1
𝐴𝑖 represents all applicants who appear in at least one list.

• Put an edge 𝑖–𝑎 if applicant 𝑎 is qualified for job 𝑖 (i.e., 𝑎 ∈ 𝐴𝑖).

Then for each job 𝑖 ∈ 𝑋, its neighborhood is exactly

𝑁(𝑖) = 𝐴𝑖 .

An 𝑋-saturating matching is a matching that touches every job vertex 𝑖 ∈ 𝑋 exactly once.

• “touches 𝑖” means we pick some edge 𝑖–𝑎, i.e. we assign job 𝑖 to applicant 𝑎𝑖 ∈ 𝐴𝑖 ;
• “matching edges are disjoint” means no applicant vertex 𝑎 ∈ 𝑌 is used twice for two jobs.

Thus an 𝑋-saturating matching is the same thing as a set of distinct representatives (SDR) for {𝐴𝑖}:

choose 𝑎𝑖 ∈ 𝐴𝑖 for each 𝑖 , with all 𝑎𝑖 distinct.

Necessary condition: Fix a subset of jobs 𝐽 ⊆ 𝑋. The only applicants who could possibly fill

jobs in 𝐽 are those adjacent to at least one job in 𝐽, namely the pool

𝑁(𝐽) =
⋃
𝑖∈𝐽
𝐴𝑖 .

Any 𝑋-saturating matching assigns distinct applicants to the jobs in 𝐽. So it would have to choose

|𝐽 | different vertices from the set 𝑁(𝐽). That is an injection

𝐽 ↩→ 𝑁(𝐽),

which is impossible if |𝑁(𝐽)| < |𝐽 |. Equivalently: if a group of |𝐽 | jobs has access to fewer than |𝐽 |
applicants in total, then some job in that group must be left unmatched no matter what you do.

Therefore a necessary condition for an 𝑋-saturating matching is

∀ 𝐽 ⊆ 𝑋 : |𝑁(𝐽)| ≥ |𝐽 |.

No subset of jobs is competing for too small a common applicant pool

Matchings in bipartite graphs 153

It turns out that there are no other obstructions. In 1935, Philip Hall proved that this same

inequality condition already guarantees an SDR exists. In graph language:

18.1 Hall’s Marriage Theorem

Theorem 18.1 (Hall’s Marriage Theorem). In an (𝑋,𝑌)-bigraph 𝐺, there exists an 𝑋-

saturating matching iff for every 𝑆 ⊆ 𝑋,

|𝑆| ≤ |𝑁(𝑆)|.

(This is Hall’s condition.)

Proof. Necessity of Hall’s Condition was shown previously. To prove that Hall’s Condition is

sufficient, we induct on the size of 𝑋.

Base cases. |𝑋 | = 0 is trivial. If |𝑋 | = 1, Hall’s condition implies the unique vertex of 𝑋 has a

neighbor, giving a matching of size 1.

Induction step. Let |𝑋 | ≥ 2 and assume the theorem holds for all smaller 𝑋.

Case 1: Every nonempty proper subset 𝑆 ⊊ 𝑋 satisfies |𝑁(𝑆)| > |𝑆|.

Every proper set of jobs has at least one extra available applicant:

|𝑁(𝑆)| ≥ |𝑆| + 1.

So we can safely commit to one job–applicant pair without creating a shortage for the rest.

Pick any job 𝑥 ∈ 𝑋 and any neighbor 𝑦 ∈ 𝑁(𝑥), and delete them:

𝑋′ := 𝑋 \ {𝑥}, 𝑌′ := 𝑌 \ {𝑦},

letting 𝐺′ be the induced bipartite graph on (𝑋′ , 𝑌′).
Hall still holds in 𝐺′: For any 𝑆 ⊆ 𝑋′, we have 𝑆 ⊊ 𝑋, hence |𝑁𝐺(𝑆)| ≥ |𝑆| + 1. Removing 𝑦 can

delete at most one neighbor, so

|𝑁𝐺′(𝑆)| ≥ |𝑁𝐺(𝑆)| − 1 ≥ |𝑆|.

By induction, 𝐺′ has an 𝑋′-saturating matching 𝑀′. Since 𝑥 and 𝑦 are gone from 𝐺′, adding 𝑥𝑦

causes no conflicts, and 𝑀 := 𝑀′ ∪ {𝑥𝑦} saturates all of 𝑋.

Case 2: There exists a nonempty proper 𝑆 ⊊ 𝑋 with |𝑆| = |𝑁(𝑆)|.

The jobs in 𝑆 have exactly |𝑆| available applicants total, so in any full assignment they must

use all of 𝑁(𝑆). Hence jobs outside 𝑆 cannot rely on applicants in 𝑁(𝑆), so we solve 𝑆 and the

remainder separately.

Let

𝐺1 := 𝐺[𝑆 ∪ 𝑁(𝑆)] and 𝐺2 := 𝐺[(𝑋 \ 𝑆) ∪ (𝑌 \ 𝑁(𝑆))].

Step 1: Match 𝑆 inside 𝐺1. For any 𝑅 ⊆ 𝑆, Hall in 𝐺 gives |𝑅| ≤ |𝑁𝐺(𝑅)|, and 𝑁𝐺(𝑅) ⊆ 𝑁(𝑆), so

𝑁𝐺1
(𝑅) = 𝑁𝐺(𝑅) and Hall holds on the left side 𝑆 in 𝐺1. By induction (since |𝑆| < |𝑋 |), 𝐺1 has

an 𝑆-saturating matching 𝑀1.

Matchings in bipartite graphs 154

Step 2: Match 𝑋 \ 𝑆 inside 𝐺2. Take 𝑇 ⊆ 𝑋 \ 𝑆. In 𝐺2 we removed the applicants 𝑁(𝑆), so

𝑁𝐺2
(𝑇) = 𝑁𝐺(𝑇) \ 𝑁(𝑆).

Also 𝑁𝐺(𝑇 ∪ 𝑆) = 𝑁𝐺(𝑇) ∪ 𝑁(𝑆), hence

|𝑁𝐺2
(𝑇)| = |𝑁𝐺(𝑇 ∪ 𝑆)| − |𝑁(𝑆)|.

By Hall in 𝐺, |𝑇 ∪ 𝑆| ≤ |𝑁𝐺(𝑇 ∪ 𝑆)|, and using |𝑁(𝑆)| = |𝑆|we get

|𝑁𝐺2
(𝑇)| ≥ |𝑇 ∪ 𝑆| − |𝑆| = |𝑇 |.

So Hall holds on 𝑋 \ 𝑆 in 𝐺2. By induction, 𝐺2 has an (𝑋 \ 𝑆)-saturating matching 𝑀2.

Step 3: Glue. 𝑀1 uses only vertices in 𝑆∪𝑁(𝑆), while𝑀2 uses only vertices in (𝑋 \𝑆)∪(𝑌\𝑁(𝑆)).
These sets are disjoint, so

𝑀 := 𝑀1 ∪𝑀2

is a matching that saturates all of 𝑋.

□

18.2 Hakimi’s Theorem on orientations with given outdegrees

Theorem 18.2 (Hakimi (1965)). Let 𝑒(𝐺) = 𝑚 and let 𝑑𝑖 be nonnegative integers assigned to

vertices 𝑣𝑖 . Then 𝐺 has an orientation with outdegree 𝑑𝑖 at each 𝑣𝑖 iff∑
𝑖

𝑑𝑖 = 𝑚 and ∀𝑈 ⊆ 𝑉(𝐺) :

∑
𝑣𝑖∈𝑈

𝑑𝑖 ≥ 𝑒(𝐺[𝑈]).

Proof. (⇒) In any orientation, each edge contributes 1 to exactly one outdegree, hence

∑
𝑖 𝑑𝑖 = 𝑚.

If some 𝑈 violated

∑
𝑣𝑖∈𝑈 𝑑𝑖 ≥ 𝑒(𝐺[𝑈]), then applying the handshake lemma in the induced

subgraph 𝐺[𝑈] would contradict that all its edges must be oriented out of some endpoint in𝑈 .

(⇐) Build an auxiliary bipartite graph 𝐻 = (𝑋,𝑌):

𝑋 = {𝑥𝑒 : 𝑒 ∈ 𝐸(𝐺)}, 𝑌 =

⋃
𝑖

{𝑑𝑖 copies of 𝑣𝑖}.

If 𝑒 = 𝑣𝑖𝑣 𝑗 , connect 𝑥𝑒 to every copy of 𝑣𝑖 and every copy of 𝑣 𝑗 .

A perfect matching in 𝐻 chooses for each edge 𝑒 exactly one of its endpoints; orient 𝑒 out of that

chosen endpoint. Then the outdegree of 𝑣𝑖 equals the number of its copies matched, namely 𝑑𝑖 .

So it suffices to prove Hall for 𝐻 with respect to 𝑋. Let 𝑆 ⊆ 𝑋 be an edge set; let 𝐹 be the set of

vertices incident to edges in 𝑆. Then 𝑁(𝑆) consists of all copies of vertices in 𝐹, and thus

|𝑁(𝑆)| =
∑
𝑣𝑖∈𝐹

𝑑𝑖 ≥ 𝑒(𝐺[𝐹]) ≥ |𝑆|.

Hence Hall holds and 𝐻 has a perfect matching, giving the desired orientation. □

Corollary 18.3. 1. Every 𝑘-regular bipartite multigraph has a perfect matching.

2. Every 𝑘-regular bipartite multigraph can be decomposed into 𝑘 edge-disjoint perfect

matchings.

Matchings in bipartite graphs 155

Proof. (i) Let 𝐺 = (𝑋,𝑌) be 𝑘-regular. For any 𝑆 ⊆ 𝑋, count edges between 𝑆 and 𝑁(𝑆):

|𝑆| · 𝑘 = 𝑒(𝑆, 𝑁(𝑆)) ≤ |𝑁(𝑆)| · 𝑘,

so |𝑆| ≤ |𝑁(𝑆)|. Hall gives a perfect matching.

(ii) Remove one perfect matching; the remaining graph is (𝑘−1)-regular. Apply (i) repeatedly. □

18.3 Birkhoff–von Neumann Theorem

Definition 18.2 (Doubly stochastic matrix). An 𝑛 × 𝑛 matrix 𝑀 is doubly stochastic if all

entries are nonnegative and every row sum and every column sum equals 1.

Definition 18.3 (Convex combination). A convex combination of matrices is a linear combi-

nation with nonnegative coefficients that sum to 1.

Theorem 18.4 (Birkhoff (1946), von Neumann (1953)). Every doubly stochastic matrix is a

convex combination of permutation matrices.

Proof. Induct on the number of nonzero entries of 𝑀.

Base case (𝑚 = 𝑛). If 𝑀 has exactly 𝑛 positive entries, then each of the 𝑛 rows has row-sum

1 so each row contains at least one positive entry, hence exactly one; likewise each column

contains exactly one positive entry. Thus every row and column contains a single 1, so 𝑀 is a

permutation matrix.

Induction step. Assume 𝑚 > 𝑛 and the claim holds for all doubly stochastic matrices with fewer

than 𝑚 positive entries.

Step 1: Build the support graph and verify Hall. Let 𝐺 = (𝑋,𝑌;𝐸) be the bipartite graph with

𝑋 = {1, . . . , 𝑛} (columns), 𝑌 = {1, . . . , 𝑛} (rows),

and

(𝑗 , 𝑖) ∈ 𝐸 ⇐⇒ 𝑀𝑖 𝑗 > 0.

(So a row-vertex 𝑖 ∈ 𝑌 is adjacent exactly to those columns 𝑗 ∈ 𝑋 where 𝑀𝑖 𝑗 is positive.)

We claim 𝐺 satisfies Hall’s condition on the left side 𝑌: for every 𝑆 ⊆ 𝑌,

|𝑁(𝑆)| ≥ |𝑆|.

Indeed, if 𝑁(𝑆) ⊆ 𝑋 is the set of columns that have a positive entry in some row of 𝑆, then rows

in 𝑆 have no positive entries outside 𝑁(𝑆), hence∑
𝑖∈𝑆

∑
𝑗∈𝑁(𝑆)

𝑀𝑖 𝑗 =

∑
𝑖∈𝑆

𝑛∑
𝑗=1

𝑀𝑖 𝑗 =

∑
𝑖∈𝑆

1 = |𝑆|.

On the other hand, for each fixed column 𝑗, the column sum is 1, so∑
𝑖∈𝑆

𝑀𝑖 𝑗 ≤
𝑛∑
𝑖=1

𝑀𝑖 𝑗 = 1.

Matchings in bipartite graphs 156

Summing this over 𝑗 ∈ 𝑁(𝑆) gives∑
𝑖∈𝑆

∑
𝑗∈𝑁(𝑆)

𝑀𝑖 𝑗 ≤
∑
𝑗∈𝑁(𝑆)

1 = |𝑁(𝑆)|.

Combining with the previous equality yields |𝑆| ≤ |𝑁(𝑆)|, proving Hall.

Therefore 𝐺 has a perfect matching 𝑃.

Step 2: Subtract a scaled permutation matrix and keep nonnegativity. Let 𝜋 be the permuta-

tion corresponding to the matching 𝑃, i.e. (𝜋(𝑖), 𝑖) ∈ 𝐸 for all rows 𝑖, and let 𝑃 also denote the

associated permutation matrix:

𝑃𝑖 𝑗 =

{
1 if 𝑗 = 𝜋(𝑖),
0 otherwise.

Since (𝜋(𝑖), 𝑖) ∈ 𝐸, we have 𝑀𝑖 ,𝜋(𝑖) > 0 for all 𝑖. Define

𝜀 := min

1≤𝑖≤𝑛
𝑀𝑖 ,𝜋(𝑖) > 0.

Now set

𝑀′ := 𝑀 − 𝜀𝑃.

Then 𝑀′ ≥ 0 entrywise, because we subtract 𝜀 only from the matched entries 𝑀𝑖 ,𝜋(𝑖), and 𝜀 was

chosen to be at most each of them.

Also, in every row and every column, exactly one entry of 𝑃 equals 1, hence

𝑛∑
𝑗=1

𝑀′𝑖 𝑗 =
𝑛∑
𝑗=1

𝑀𝑖 𝑗 − 𝜀
𝑛∑
𝑗=1

𝑃𝑖 𝑗 = 1 − 𝜀,
𝑛∑
𝑖=1

𝑀′𝑖 𝑗 =
𝑛∑
𝑖=1

𝑀𝑖 𝑗 − 𝜀
𝑛∑
𝑖=1

𝑃𝑖 𝑗 = 1 − 𝜀.

Finally, 𝑀′ has strictly fewer positive entries than 𝑀: at least one matched entry achieves the

minimum 𝜀, so for some 𝑖0 we have 𝑀′
𝑖0 ,𝜋(𝑖0) = 𝑀𝑖0 ,𝜋(𝑖0) − 𝜀 = 0, and no previously-zero entry

becomes positive.

Step 3: Renormalize and apply induction. Define

𝑀′′ :=
1

1 − 𝜀
𝑀′.

Then 𝑀′′ is doubly stochastic and has fewer than𝑚 positive entries. By the induction hypothesis,

𝑀′′ is a convex combination of permutation matrices:

𝑀′′ =
𝑟∑
𝑘=1

𝜆𝑘𝑄
(𝑘) , 𝜆𝑘 ≥ 0,

𝑟∑
𝑘=1

𝜆𝑘 = 1,

where each 𝑄(𝑘) is a permutation matrix.

Multiply by 1 − 𝜀 and substitute 𝑀′ = 𝑀 − 𝜀𝑃:

𝑀 − 𝜀𝑃 = (1 − 𝜀)
𝑟∑
𝑘=1

𝜆𝑘𝑄
(𝑘).

Matchings in bipartite graphs 157

Hence

𝑀 = 𝜀𝑃 +
𝑟∑
𝑘=1

(
(1 − 𝜀)𝜆𝑘

)
𝑄(𝑘).

The coefficients are nonnegative and sum to

𝜀 +
𝑟∑
𝑘=1

(1 − 𝜀)𝜆𝑘 = 𝜀 + (1 − 𝜀) · 1 = 1,

so this is a convex combination of permutation matrices. This completes the induction. □

18.4 Defect formula in bipartite graphs

Definition 18.4 (Matching number). Let 𝛼′(𝐺) denote the maximum size of a matching in

𝐺.

Assume 𝐺 is bipartite with bipartition (𝑋,𝑌).

Definition 18.5 (Defect). For 𝑆 ⊆ 𝑋, the defect of 𝑆 is

𝑑(𝑆) := |𝑆| − |𝑁(𝑆)|.

(So 𝑑(𝑆) = 0 is exactly Hall’s equality case.)

Theorem 18.5 (Defect Formula). For a bipartite graph 𝐺 = (𝑋,𝑌),

𝛼′(𝐺) = min

𝑆⊆𝑋

(
|𝑋 | − 𝑑(𝑆)

)
= |𝑋 | −max

𝑆⊆𝑋
𝑑(𝑆).

Proof. Let 𝑆 ⊆ 𝑋 achieve the minimum in the formula. Form 𝐺′ by adding 𝑑(𝑆) new vertices to

𝑌, each adjacent to every vertex of 𝑋.

We claim 𝐺′ satisfies Hall’s condition. Let 𝑆′ ⊆ 𝑋. Then in 𝐺′

|𝑁𝐺′(𝑆′)| = |𝑁𝐺(𝑆′)| + 𝑑(𝑆) ≥ |𝑆′| − 𝑑(𝑆′) + 𝑑(𝑆) ≥ |𝑆′|,

since 𝑑(𝑆) ≥ 𝑑(𝑆′) by maximality of 𝑆 among defects.

Hence 𝐺′ has an 𝑋-saturating matching. Restricting to 𝐺 yields a matching covering |𝑋 | − 𝑑(𝑆)
vertices of 𝑋, so 𝛼′(𝐺) ≥ |𝑋 | − 𝑑(𝑆).
Conversely, any matching in 𝐺 covers at most |𝑁(𝑆)| vertices of 𝑆, so leaves at least 𝑑(𝑆) vertices

of 𝑋 unmatched. Thus 𝛼′(𝐺) ≤ |𝑋 | − 𝑑(𝑆). □

18.5 Vertex covers and König–Egerváry

Definition 18.6 (Vertex cover). A set 𝑆 ⊆ 𝑉(𝐺) is a vertex cover if every edge has at least one

endpoint in 𝑆. Let 𝛽(𝐺) be the minimum size of a vertex cover.

Matchings in bipartite graphs 158

Lemma 18.6 (Vertex covers vs. independent sets). A set 𝑆 ⊆ 𝑉(𝐺) is a vertex cover of 𝐺 if

and only if 𝑉(𝐺) \ 𝑆 is an independent set.

Proof. (⇒) Assume 𝑆 is a vertex cover and let 𝐼 := 𝑉(𝐺) \ 𝑆. If 𝐼 were not independent, there

would be an edge 𝑢𝑣 with 𝑢, 𝑣 ∈ 𝐼. But then 𝑢, 𝑣 ∉ 𝑆, so the edge 𝑢𝑣 has no endpoint in 𝑆,

contradicting that 𝑆 is a vertex cover. Hence 𝐼 is independent.

(⇐) Assume 𝐼 := 𝑉(𝐺) \ 𝑆 is independent. Let 𝑢𝑣 be any edge of 𝐺. If neither endpoint were in

𝑆, then both endpoints would lie in 𝐼, contradicting that 𝐼 is independent. Thus every edge has

at least one endpoint in 𝑆, so 𝑆 is a vertex cover. □

Lemma 18.7. For every 𝑛-vertex graph 𝐺,

𝛼(𝐺) + 𝛽(𝐺) = 𝑛,

where 𝛼(𝐺) is the maximum size of an independent set and 𝛽(𝐺) is the minimum size of a

vertex cover.

Proof. By Lemma 18.6, 𝑆 is a vertex cover iff 𝑉(𝐺) \ 𝑆 is independent. So for any vertex cover 𝑆

we have

|𝑉(𝐺) \ 𝑆| ≤ 𝛼(𝐺) =⇒ 𝑛 − |𝑆| ≤ 𝛼(𝐺) =⇒ |𝑆| ≥ 𝑛 − 𝛼(𝐺).

Taking the minimum over all vertex covers gives 𝛽(𝐺) ≥ 𝑛 − 𝛼(𝐺).
Conversely, let 𝐼 be a maximum independent set with |𝐼| = 𝛼(𝐺). Then 𝑉(𝐺) \ 𝐼 is a vertex cover

by Lemma 18.6, hence

𝛽(𝐺) ≤ |𝑉(𝐺) \ 𝐼| = 𝑛 − 𝛼(𝐺).
Combining both inequalities yields 𝛽(𝐺) = 𝑛 − 𝛼(𝐺), i.e. 𝛼(𝐺) + 𝛽(𝐺) = 𝑛. □

Lemma 18.8. For every graph 𝐺,

𝛼′(𝐺) ≤ 𝛽(𝐺) ≤ 2𝛼′(𝐺),

where 𝛼′(𝐺) is the size of a maximum matching and 𝛽(𝐺) is the size of a minimum vertex

cover.

Proof. Lower bound 𝛼′(𝐺) ≤ 𝛽(𝐺). Let 𝑀 be a matching. Any vertex cover must contain at least

one endpoint of each edge in 𝑀, and the edges in 𝑀 are disjoint, so covering them requires at

least |𝑀| vertices. Thus 𝛽(𝐺) ≥ |𝑀| for every matching 𝑀, hence 𝛽(𝐺) ≥ 𝛼′(𝐺).

Upper bound 𝛽(𝐺) ≤ 2𝛼′(𝐺). Let 𝑀 be a maximal matching (cannot be extended by adding an

edge). Let 𝑆 be the set of endpoints of edges in 𝑀; then |𝑆| = 2|𝑀|. We claim 𝑆 is a vertex cover:

if there were an edge 𝑢𝑣 with 𝑢, 𝑣 ∉ 𝑆, then 𝑢 and 𝑣 are unmatched by 𝑀, so the edge 𝑢𝑣 could

be added to 𝑀, contradicting maximality. Hence every edge meets 𝑆.

Therefore 𝛽(𝐺) ≤ |𝑆| = 2|𝑀|. Finally, since |𝑀| ≤ 𝛼′(𝐺) (a maximum matching is at least as large

as any matching), we get 𝛽(𝐺) ≤ 2𝛼′(𝐺). □

Matchings in bipartite graphs 159

Warning: maximal vs. maximum.
A maximum matching is one with the largest possible size (globally optimal). A maximal
matching is one that cannot be extended by adding another edge (locally stuck everywhere).

Maximal ≠ maximum: a maximal matching can be far from optimal.

Proposition 18.9. Let 𝑀 be a maximal matching in a graph 𝐺, and let 𝑀∗ be a maximum

matching. Then

|𝑀| ≥ 1

2
|𝑀∗|.

Equivalently, any maximal matching is a 2-approximation to a maximum matching.

Proof. Let 𝑆 be the set of endpoints of edges in 𝑀, so |𝑆| = 2|𝑀|. Since 𝑀 is maximal, 𝑆 is a vertex

cover: if an edge had both endpoints outside 𝑆, we could add it to 𝑀, contradicting maximality.

Now every edge of the maximum matching 𝑀∗ must meet this vertex cover 𝑆. Because edges in

a matching are disjoint, each vertex of 𝑆 can cover at most one edge of 𝑀∗. Hence

|𝑀∗| ≤ |𝑆| = 2|𝑀|.

Rearranging gives |𝑀| ≥ 1

2
|𝑀∗|. □

Theorem 18.10 (König–Egerváry, 1931). In every bipartite graph 𝐺,

𝛼′(𝐺) = 𝛽(𝐺).

Equivalently: maximum matching size equals minimum vertex cover size.

Proof. First, every edge of a matching must be covered by a different vertex, hence 𝛽(𝐺) ≥ 𝛼′(𝐺).
For the reverse inequality, apply the Defect Formula. Choose 𝑇 ⊆ 𝑋 such that

𝛼′(𝐺) = |𝑋 | − |𝑇 | + |𝑁(𝑇)|.

Consider the set

𝐶 := (𝑋 \ 𝑇) ∪ 𝑁(𝑇).
We claim 𝐶 is a vertex cover. Indeed, any edge not incident to 𝑋 \ 𝑇 must meet 𝑇, hence meets

𝑁(𝑇) on the other side. So no edge is uncovered.

Therefore

𝛽(𝐺) ≤ |𝐶| = |𝑋 | − |𝑇 | + |𝑁(𝑇)| = 𝛼′(𝐺).
□

18.6 Edge covers and Gallai’s Theorem

Definition 18.7 (Edge cover). An edge cover is a set of edges that covers all vertices. Let

𝛽′(𝐺) be the minimum size of an edge cover.

Matchings in bipartite graphs 160

Theorem 18.11 (Gallai). If 𝐺 has no isolated vertices and |𝑉(𝐺)| = 𝑛, then

𝛼′(𝐺) + 𝛽′(𝐺) = 𝑛.

Proof. Let 𝑀 be a maximum matching.

Upper bound. Build an edge cover by taking all edges of 𝑀 and for each vertex not covered by 𝑀,

add one incident edge. This yields an edge cover of size 𝑛 − |𝑀|, so

𝛽′(𝐺) ≤ 𝑛 − 𝛼′(𝐺) ⇒ 𝛼′(𝐺) + 𝛽′(𝐺) ≤ 𝑛.

Lower bound. Let 𝐿 be a minimum edge cover. In 𝐿, each edge has an endpoint not covered by

any other edge of 𝐿; otherwise we could delete it and still cover all vertices. Hence 𝐿 is a forest

with no 𝑃4, so every component is a star. Say 𝐿 has 𝑘 star components. Then

|𝐿| = 𝑛 − 𝑘.

Taking one edge from each star gives a matching of size 𝑘, so 𝛼′(𝐺) ≥ 𝑘. Therefore

𝛼′(𝐺) + 𝛽′(𝐺) ≥ 𝑘 + (𝑛 − 𝑘) = 𝑛.

□

Theorem 18.12 (König, 1916). If 𝐺 is bipartite with no isolated vertices, then

𝛼(𝐺) = 𝛽′(𝐺).

Proof. Using the identities

𝛼(𝐺) + 𝛽(𝐺) = 𝑛, 𝛼′(𝐺) + 𝛽′(𝐺) = 𝑛,

and König–Egerváry 𝛼′(𝐺) = 𝛽(𝐺), we get

𝛼(𝐺) = 𝑛 − 𝛽(𝐺) = 𝑛 − 𝛼′(𝐺) = 𝛽′(𝐺).

□

Legend.

1. 𝛼(𝐺) = maximum independent set size

2. 𝛼′(𝐺) = maximum matching size

3. 𝛽(𝐺) = minimum vertex cover size

4. 𝛽′(𝐺) = minimum edge cover size

Matchings in general graphs 161

Statement General graphs Bipartite graphs Attribution / note
𝛼(𝐺) + 𝛽(𝐺) = 𝑛 equality equality Complement of a vertex cover

is an independent set.

𝛼′(𝐺) ≤ 𝛽(𝐺) inequality equality ≤ is trivial; = is Kőnig–Egerváry

(1931).

𝛽(𝐺) ≤ 2𝛼′(𝐺) inequality inequality Endpoints of a maximal match-

ing form a vertex cover.

𝛼′(𝐺) + 𝛽′(𝐺) = 𝑛

(no isolated vertices) equality equality Gallai (1959); assumes no iso-

lated vertices.

𝛼(𝐺) = 𝛽′(𝐺)
(no isolated vertices) false in general equality Kőnig (1916), derived from

Kőnig–Egerváry + the identities

above.

19 Matchings in general graphs

Definition 19.1 (𝑘-factor). A 𝑘-factor of 𝐺 is a 𝑘-regular spanning subgraph. A 1-factor is

called a perfect matching.

Definition 19.2 (Odd components). An odd component is a connected component with an

odd number of vertices. Let 𝑜(𝐺) be the number of odd components of 𝐺.

19.1 Tutte’s 1-factor theorem

Motivation: Hall’s theorem completely settles perfect matchings in bipartite graphs by looking

at neighborhoods. How about all graphs in general?

We want a clean description of all graphs that fail to have a perfect matching, so we start by

listing the most obvious obstructions and then generalize.

The first obstruction is parity of the number of vertices: if |𝑉(𝐺)| is odd, then no matching can

cover all vertices, since edges cover vertices two at a time.

The parity also shows up more subtly in disconnected graphs. Even when |𝑉(𝐺)| is even, if 𝐺

has a connected component with an odd number of vertices (an odd component), then a perfect

matching is still impossible: clearly any matching pairs vertices within components, so an odd

component must leave at least one vertex unmatched.

Now imagine 𝐺 is connected, but removing a vertex 𝑢 causes 𝐺 − 𝑢 to split into (say) two odd

components. In each odd component of 𝐺 − 𝑢, some vertex must remain unmatched internally,

and the only way to match it is to use an edge to the deleted vertex 𝑢. But 𝑢 can be matched to

at most one vertex, so if 𝐺 − 𝑢 has two odd components, at least one leftover vertex cannot be

rescued. No perfect matching exists.

Removing vertices can create many odd components, and each odd component needs an “escape”

to the removed set. Formally, let 𝑈 ⊆ 𝑉(𝐺) and consider 𝐺 −𝑈 . In any matching, every odd

component of 𝐺 −𝑈 must contribute at least one vertex that is unmatched inside that component

Matchings in general graphs 162

(because it has odd order). The only way to cover that leftover vertex is to match it across an

edge into𝑈 . Thus each odd component of 𝐺 −𝑈 demands at least one distinct vertex of𝑈 , so a

perfect matching can exist only if

𝑜(𝐺 −𝑈) ≤ |𝑈 | for every𝑈 ⊆ 𝑉(𝐺),

where 𝑜(𝐺 −𝑈) denotes the number of odd components of 𝐺 −𝑈 .

This is why Tutte’s condition is stated in terms of odd components. Tutte’s theorem says this

necessary parity obstruction is also sufficient: the only reason a general graph fails to have a perfect
matching is that, after removing some set𝑈 , too many odd components are created.
If 𝐺 has a 1-factor, then for every 𝑆 ⊆ 𝑉(𝐺),

𝑜(𝐺 − 𝑆) ≤ |𝑆|.

Theorem 19.1 (Tutte, 1947). A graph 𝐺 has a 1-factor iff

𝑜(𝐺 − 𝑆) ≤ |𝑆| for all 𝑆 ⊆ 𝑉(𝐺).

(This is called Tutte’s condition.)

The following proof of Tutte’s theorem is due to László Lovász.

Proof. Applying Tutte’s condition with 𝑋 = ∅ yields 𝑜(𝐺) = 𝑜(𝐺 −∅) ≤ |∅| = 0, so 𝐺 has no odd

components. In particular, every component of 𝐺 has even order, hence |𝑉(𝐺)| is even.

Suppose for contradiction, that there exists a graph on 𝑛 vertices satisfying Tutte’s condition but

having no perfect matching. Among all such 𝑛-vertex graphs, choose one 𝐺 with the maximum
possible number of edges. Thus:

• 𝐺 satisfies 𝑜(𝐺 − 𝑋) ≤ |𝑋 | for every 𝑋 ⊆ 𝑉(𝐺),
• 𝐺 has no perfect matching, and

• adding any missing edge to 𝐺 produces a graph with a 1-factor (indeed, 𝐺 ≠ 𝐾𝑛 else it has a

perfect matching)

Define

𝑈 := {𝑣 ∈ 𝑉(𝐺) : 𝑣 is adjacent to every other vertex of 𝐺},
and

𝑊 := 𝑉(𝐺) \𝑈.

We call vertices in𝑈 as universal vertices, and vertices in𝑊 as non-universal vertices.

Let 𝐺′′ be the subgraph of 𝐺 induced by𝑊 . Note that 𝐺′′ = 𝐺 −𝑈 .

Claim: 𝐺′′ is a disjoint union of cliques

Equivalently, adjacency is an equivalence relation on𝑊 . Reflexivity and symmetry are automatic;

we must show transitivity.

Lemma 19.2. If 𝑎, 𝑏, 𝑐 ∈𝑊 with 𝑎𝑏, 𝑏𝑐 ∈ 𝐸(𝐺), then 𝑎𝑐 ∈ 𝐸(𝐺).

Matchings in general graphs 163

Proof. Suppose for contradiction, that 𝑎, 𝑏, 𝑐 ∈𝑊 with

𝑎𝑏, 𝑏𝑐 ∈ 𝐸(𝐺) but 𝑎𝑐 ∉ 𝐸(𝐺).

Since 𝑏 ∈𝑊 is not universal, there exists some vertex 𝑑 with 𝑏𝑑 ∉ 𝐸(𝐺).
By maximality of 𝐺 with respect to edges:

• In the graph 𝐺1 := 𝐺 + 𝑎𝑐, there is a 1-factor 𝐹1.

• In the graph 𝐺2 := 𝐺 + 𝑏𝑑, there is a 1-factor 𝐹2.

Moreover, each of the added edges must lie in the corresponding 1-factor: if 𝑎𝑐 ∉ 𝐹1, then 𝐹1

would be a 1-factor of 𝐺; similarly for 𝑏𝑑 and 𝐹2. Thus

𝑎𝑐 ∈ 𝐹1 , 𝑏𝑑 ∈ 𝐹2 ,

and clearly 𝑎𝑐 ∉ 𝐹2, 𝑏𝑑 ∉ 𝐹1.

Consider the union 𝐹1 ∪ 𝐹2 as a graph on 𝑉(𝐺), with edge set contained in 𝐸(𝐺) ∪ {𝑎𝑐, 𝑏𝑑}.

Lemma 19.3. 𝐹1 ∪ 𝐹2 decomposes into a disjoint union of cycles and isolated edges; on each

cycle, edges alternate between 𝐹1 and 𝐹2.

Proof. Each vertex has degree 1 in 𝐹1 and in 𝐹2, hence degree ≤ 2 in 𝐻 := 𝐹1 ∪ 𝐹2. Thus every

component of 𝐻 is a path, a cycle, or a single edge.

If 𝑣 has 𝑑𝐻(𝑣) = 1 and 𝑒 = 𝑣𝑤 is its unique incident edge in 𝐻, then both matchings must use 𝑒

at 𝑣, so 𝑒 ∈ 𝐹1 ∩ 𝐹2. At 𝑤 the same argument shows 𝑑𝐻(𝑤) = 1; otherwise some matching would

give 𝑤 degree 2. Hence this component is just the isolated edge 𝑣𝑤 and not a longer path.

If a component has no vertex of degree 1, then all its vertices have degree 2, so it is a cycle. At

each vertex on this cycle one incident edge is from 𝐹1 and one from 𝐹2, so the edges alternate

between 𝐹1 and 𝐹2.

Thus components are alternating cycles or isolated edges, and in particular there are no nontrivial

paths. □

Let 𝐶 be the unique cycle in 𝐹1 ∪ 𝐹2 that contains the edge 𝑎𝑐. We distinguish two cases

depending on whether 𝑏𝑑 lies on 𝐶.

Case 1: 𝑏𝑑 ∉ 𝐶.
Along 𝐶 the edges alternate between 𝐹1 and 𝐹2; in particular 𝑎𝑐 is an 𝐹1-edge on 𝐶. Define

𝐹′
1

:=
(
𝐹1 \ 𝐸(𝐶)

)
∪

(
𝐹2 ∩ 𝐸(𝐶)

)
.

On 𝐶 we swap the roles of 𝐹1 and 𝐹2; outside 𝐶 we leave 𝐹1 unchanged.

Because 𝐶 is an alternating cycle, every vertex on 𝐶 still has degree 1 in 𝐹′
1
, and vertices outside

𝐶 are unchanged; thus 𝐹′
1

is a 1-factor of 𝐺1.

Note that:

• 𝑎𝑐 ∈ 𝐸(𝐶) ∩ 𝐹1 and 𝑎𝑐 ∉ 𝐹2, so 𝑎𝑐 is removed and not reinserted; hence 𝑎𝑐 ∉ 𝐹′
1
.

• All edges of 𝐶 other than 𝑎𝑐 and 𝑏𝑑 belong to 𝐸(𝐺). Since 𝑏𝑑 ∉ 𝐶 in this case, every edge of 𝐶

other than 𝑎𝑐 actually lies in 𝐸(𝐺).

Matchings in general graphs 164

Therefore every edge of 𝐹′
1

belongs to 𝐸(𝐺), so 𝐹′
1

is a 1-factor of 𝐺 itself, contradicting that 𝐺

has no 1-factor.

Thus Case 1 is impossible.

Case 2: 𝑏𝑑 ∈ 𝐶.
Now 𝐶 contains both 𝑎𝑐 and 𝑏𝑑. Deleting 𝑎𝑐 and 𝑏𝑑 from 𝐶 splits it into two vertex-disjoint

paths. Exactly one of these paths has 𝑑 as an endpoint; call that path 𝑃.

We may relabel 𝑎 and 𝑐 (if necessary) so that 𝑃 has endpoints 𝑎 and 𝑑: we assume 𝑃 goes from 𝑎

to 𝑑.

Consider the cycle

𝐶′ := 𝑃 ∪ {𝑏𝑑, 𝑎𝑏}.
Here 𝑎𝑏 ∈ 𝐸(𝐺) by assumption, and 𝑏𝑑 is the added edge used in 𝐺2.

Lemma 19.4. 𝐶′ is an alternating cycle with respect to 𝐹2.

Proof of claim. On 𝐶, edges alternate between 𝐹1 and 𝐹2. The path 𝑃 ⊆ 𝐶 therefore alternates

between 𝐹1 and 𝐹2. The edge 𝑏𝑑 is in 𝐹2 by construction, whereas 𝑎𝑏 ∉ 𝐹2 because 𝑏 is already

matched to 𝑑 in 𝐹2. Tracing around 𝐶′ we encounter edges alternately in 𝐹2 and outside 𝐹2, so

𝐶′ is an 𝐹2-alternating cycle. □

Define

𝐹′
2

:=
(
𝐹2 \ 𝐸(𝐶′)

)
∪

(
𝐸(𝐶′) \ 𝐹2

)
,

i.e., swap membership of edges along 𝐶′. Again, since 𝐶′ is alternating, 𝐹′
2

is a 1-factor of 𝐺2.

Moreover:

• 𝑏𝑑 is an 𝐹2-edge of 𝐶′, so it is removed and not reinserted; thus 𝑏𝑑 ∉ 𝐹′
2
.

• All other edges of 𝐶′ lie in 𝐸(𝐺).

Hence every edge of 𝐹′
2

belongs to 𝐸(𝐺), so 𝐹′
2

is a 1-factor of 𝐺, contradicting again that 𝐺 has

no 1-factor.

Both cases lead to contradictions. Therefore our assumption that 𝑎𝑏, 𝑏𝑐 ∈ 𝐸(𝐺) but 𝑎𝑐 ∉ 𝐸(𝐺) is
false, and adjacency is transitive on𝑊 .

Thus 𝐺′′ = 𝐺[𝑊] is a disjoint union of complete graphs (each component is a clique). □

Let the connected components of 𝐺′′ be

𝐻1 , . . . , 𝐻𝑡 , 𝐾1 , . . . , 𝐾𝑠 ,

where each 𝐻𝑖 has odd order and each 𝐾 𝑗 has even order (so there are 𝑡 odd components and 𝑠

even components in 𝐺′′).

Lemma 19.5. If 𝑡 ≤ |𝑈 |, then 𝐺 has a 1-factor.

Proof. Assume 𝑡 ≤ |𝑈 |. We explicitly construct a perfect matching 𝑀 of 𝐺.

Step 1: Match inside even components. Each 𝐾 𝑗 is a complete graph of even order, hence

admits a 1-factor. Fix one 1-factor 𝑀 𝑗 in each 𝐾 𝑗 .

Matchings in general graphs 165

Step 2: Use𝑈 to fix parity in odd components. For each odd component 𝐻𝑖 (a clique of odd

order), choose a vertex 𝑢𝑖 ∈ 𝑉(𝐻𝑖). Every vertex in 𝑈 is adjacent to all vertices of 𝐺, so in

particular each 𝑢𝑖 is adjacent to every vertex of𝑈 .

Since 𝑡 ≤ |𝑈 |, we can choose 𝑡 distinct vertices 𝑣1 , . . . , 𝑣𝑡 ∈ 𝑈 and match them with 𝑢1 , . . . , 𝑢𝑡
via edges

𝑣1𝑢1 , . . . , 𝑣𝑡𝑢𝑡 ∈ 𝐸(𝐺).

Step 3: Match remaining vertices in odd components. For each 𝑖, the induced subgraph

𝐻𝑖 − {𝑢𝑖} is a clique on |𝐻𝑖 | − 1 vertices, which is even. Thus it has a 1-factor; call it 𝑁𝑖 .

Step 4: Match remaining vertices in𝑈 . Let

𝑅 := 𝑈 \ {𝑣1 , . . . , 𝑣𝑡}

be the set of vertices in𝑈 not yet matched.

We claim that |𝑅| is even. Since 𝐺 has no odd components, we already know |𝑉(𝐺)| is even.

Count the vertices already matched in Steps 1–3:

• For each even component 𝐾 𝑗 , 𝑀 𝑗 matches all vertices of 𝐾 𝑗 .

• For each odd component 𝐻𝑖 , the matching 𝑁𝑖 covers 𝑉(𝐻𝑖) \ {𝑢𝑖}, and the edge 𝑣𝑖𝑢𝑖 covers 𝑢𝑖
and 𝑣𝑖 .

Thus all vertices outside 𝑅 are matched in pairs; their total number is even, so |𝑅| is also even.

The induced subgraph 𝐺[𝑅] is complete (as a subset of𝑈), so 𝐺[𝑅], being a clique on an even

number of vertices, has a 1-factor 𝐿.

Step 5: Combine all edges. Define

𝑀 :=

(⋃
𝑗

𝑀 𝑗

)
∪

(⋃
𝑖

𝑁𝑖

)
∪ {𝑣1𝑢1 , . . . , 𝑣𝑡𝑢𝑡} ∪ 𝐿.

By construction:

• Each vertex of each 𝐾 𝑗 is incident with exactly one edge of 𝑀 𝑗 .

• Each vertex of each 𝐻𝑖 is incident with exactly one edge in 𝑁𝑖 ∪ {𝑣𝑖𝑢𝑖}.
• Each vertex of𝑈 is incident with exactly one edge in {𝑣1𝑢1 , . . . , 𝑣𝑡𝑢𝑡} ∪ 𝐿.

These sets of edges are pairwise vertex-disjoint, so 𝑀 is a 1-factor of 𝐺.

This contradicts the assumption that 𝐺 has no 1-factor. Therefore our assumption 𝑡 ≤ |𝑈 | is
false. □

Hence we must have

𝑡 > |𝑈 |.

But the components 𝐻1 , . . . , 𝐻𝑡 are exactly the odd components of 𝐺′′, and 𝐺′′ = 𝐺[𝑊] = 𝐺−𝑈 .

Thus

𝑜(𝐺 −𝑈) = 𝑡 > |𝑈 |.

This contradicts Tutte’s condition in 𝐺. Therefore no such counterexample graph 𝐺 exists. Hence

every graph satisfying Tutte’s condition has a 1-factor, completing the proof of the sufficiency

direction of Tutte’s theorem. □

Matchings in general graphs 166

Definition 19.3 (Deficiency). For 𝑆 ⊆ 𝑉(𝐺) define the deficiency

def(𝑆) := 𝑜(𝐺 − 𝑆) − |𝑆|.

Define

def(𝐺) := max

𝑆⊆𝑉(𝐺)
def(𝑆).

Lemma 19.6 (Parity). For every 𝑆 ⊆ 𝑉(𝐺),

def(𝑆) = 𝑜(𝐺 − 𝑆) − |𝑆| ≡ 𝑛 (mod 2),

where 𝑛 = |𝑉(𝐺)|.

Idea. Count

(
𝑜(𝐺 − 𝑆) + |𝑆|

)
modulo 2 by partitioning𝑉(𝐺) into components of 𝐺 − 𝑆 plus 𝑆. □

Fix 𝑇 ⊆ 𝑉(𝐺)with def(𝑇) = def(𝐺), and among such sets choose 𝑇 maximal under inclusion.

Lemma 19.7. Let 𝑇 ⊆ 𝑉(𝐺) be such that def𝐺(𝑇) = def(𝐺) and, among all such sets, 𝑇 is

maximal with respect to inclusion. Then:

1. If 𝑢 lies in an odd component 𝐶 of 𝐺 −𝑇, then 𝐶 − 𝑢 satisfies Tutte’s condition (i.e. 𝐶 − 𝑢
has a 1-factor).

2. 𝐺 − 𝑇 has no even component.

Proof. Recall the definitions:

def𝐺(𝑆) := 𝑜(𝐺 − 𝑆) − |𝑆|, def(𝐺) := max

𝑆⊆𝑉(𝐺)
def𝐺(𝑆),

where 𝑜(𝐻) denotes the number of odd components of a graph 𝐻.

(i) 𝐶 − 𝑢 satisfies Tutte’s condition.
Let 𝐶 be an odd component of 𝐺 − 𝑇, and fix 𝑢 ∈ 𝑉(𝐶). Consider the graph 𝐶 − 𝑢, and for each

𝑆 ⊆ 𝑉(𝐶 − 𝑢) define the local deficiency

def𝐶−𝑢(𝑆) := 𝑜
(
(𝐶 − 𝑢) − 𝑆

)
− |𝑆|.

We want to show def𝐶−𝑢(𝑆) ≤ 0 for all 𝑆, which is exactly Tutte’s condition on 𝐶 − 𝑢.

Key idea. If for some 𝑆 the local deficiency def𝐶−𝑢(𝑆) were positive, then by combining 𝑆 with

𝑇 and 𝑢 we would build a larger set 𝑇′ := 𝑇 ∪ 𝑆 ∪ {𝑢} whose global deficiency def𝐺(𝑇′) is at

least as large as def𝐺(𝑇), contradicting the maximality of 𝑇.

Fix 𝑆 ⊆ 𝑉(𝐶 − 𝑢). Define

𝑇′ := 𝑇 ∪ 𝑆 ∪ {𝑢}.
We compare def𝐺(𝑇′)with def𝐺(𝑇).
First, analyze the odd components:

Matchings in general graphs 167

• In 𝐺 − 𝑇, the component 𝐶 is odd. When we pass from 𝐺 − 𝑇 to 𝐺 − 𝑇′, we are removing

the vertices 𝑢 and 𝑆 from 𝐶, and we do nothing to any other component of 𝐺 − 𝑇, because

𝑆 ⊆ 𝑉(𝐶 − 𝑢) lies entirely inside 𝐶.

• The other components of 𝐺 − 𝑇 (besides 𝐶) remain exactly as they are when we go to 𝐺 − 𝑇′,
so they keep their odd/even status.

Inside 𝐶, after removing 𝑢 and 𝑆, the remaining part is (𝐶 − 𝑢) − 𝑆, whose odd components are

exactly the ones counted by 𝑜((𝐶 − 𝑢) − 𝑆).
Therefore the total number of odd components of 𝐺 − 𝑇′ is

𝑜(𝐺 − 𝑇′) =
(
𝑜(𝐺 − 𝑇) − 1

)
+ 𝑜

(
(𝐶 − 𝑢) − 𝑆

)
.

(The “−1” accounts for the fact that 𝐶 itself disappears and is replaced by the components of

(𝐶 − 𝑢) − 𝑆.)

Now compute the deficiency:

def𝐺(𝑇′) = 𝑜(𝐺 − 𝑇′) − |𝑇′|
=

(
𝑜(𝐺 − 𝑇) − 1 + 𝑜((𝐶 − 𝑢) − 𝑆)

)
−

(
|𝑇 | + |𝑆| + 1

)
=

(
𝑜(𝐺 − 𝑇) − |𝑇 |

)
+

(
𝑜((𝐶 − 𝑢) − 𝑆) − |𝑆| − 2

)
= def𝐺(𝑇) + def𝐶−𝑢(𝑆) − 2.

Thus we have the exact relation

def𝐺(𝑇′) = def𝐺(𝑇) + def𝐶−𝑢(𝑆) − 2.

Now recall the parity lemma (applied to 𝐶 − 𝑢): since 𝐶 is odd, 𝐶 − 𝑢 has an even number of

vertices, and for any 𝑆 ⊆ 𝑉(𝐶 − 𝑢)we have

def𝐶−𝑢(𝑆) ≡ |𝑉(𝐶 − 𝑢)| ≡ 0 (mod 2),

so def𝐶−𝑢(𝑆) is an even integer.

Suppose, for contradiction, that there exists 𝑆 with def𝐶−𝑢(𝑆) > 0. Then def𝐶−𝑢(𝑆) ≥ 2, and so

def𝐺(𝑇′) = def𝐺(𝑇) + def𝐶−𝑢(𝑆) − 2 ≥ def𝐺(𝑇).

Now two things happen:

• Since def(𝐺) is the maximum deficiency, we must have def𝐺(𝑇′) ≤ def(𝐺) = def𝐺(𝑇), so in fact

def𝐺(𝑇′) = def𝐺(𝑇).
• But 𝑇′ ⊋ 𝑇 (we added at least 𝑢), so we have found a strictly larger set with the same maximal

deficiency, contradicting the assumption that 𝑇 was maximal by inclusion among those sets.

Therefore our assumption was impossible, and we conclude that

def𝐶−𝑢(𝑆) ≤ 0 for all 𝑆 ⊆ 𝑉(𝐶 − 𝑢),

which means 𝐶 − 𝑢 satisfies Tutte’s condition.

(ii) 𝐺 − 𝑇 has no even component.
Assume, for contradiction, that 𝐺 − 𝑇 has an even component 𝐷. We will enlarge 𝑇 by one

vertex in 𝐷 without changing its deficiency, again contradicting the maximality of 𝑇.

Matchings in general graphs 168

Because 𝐷 is connected and finite, we can choose some vertex 𝑣 ∈ 𝐷 that is not a cut vertex of 𝐷

(for instance, a leaf of a spanning tree of 𝐷). Then 𝐷 − 𝑣 remains connected, and since |𝐷| is
even, |𝐷 − 𝑣| is odd. So 𝐷 − 𝑣 is a single odd component.
Now consider 𝑇′ := 𝑇 ∪ {𝑣}. Then

𝐺 − 𝑇′ = (𝐺 − 𝑇) − 𝑣.

In 𝐺 − 𝑇 the component 𝐷 was even, so it did not contribute to 𝑜(𝐺 − 𝑇). In 𝐺 − 𝑇′, that same

vertex set becomes 𝐷 − 𝑣, which is an odd component. All other components are unaffected.

Thus the number of odd components increases by 1:

𝑜(𝐺 − 𝑇′) = 𝑜(𝐺 − 𝑇) + 1.

At the same time, the size of 𝑇 increases by 1:

|𝑇′| = |𝑇 | + 1.

Hence

def𝐺(𝑇′) = 𝑜(𝐺 − 𝑇′) − |𝑇′| = (𝑜(𝐺 − 𝑇) + 1) − (|𝑇 | + 1) = 𝑜(𝐺 − 𝑇) − |𝑇 | = def𝐺(𝑇).

So 𝑇′ has the same (maximal) deficiency as 𝑇, but 𝑇′ ⊋ 𝑇, again contradicting the maximality of

𝑇 with respect to inclusion.

Therefore no such even component 𝐷 can exist, and 𝐺 − 𝑇 has only odd components. □

19.2 Berge-Tutte formula

Theorem 19.8 (Berge–Tutte Formula). For every graph 𝐺 on 𝑛 vertices,

𝛼′(𝐺) = 1

2

(
𝑛 − def(𝐺)

)
.

Proof. Let 𝑑 := def(𝐺) = max𝑆 def(𝑆). For any 𝑆, a matching misses at least def(𝑆) vertices,

hence

𝛼′(𝐺) ≤ 1

2

(
𝑛 − def(𝑆)

)
,

so 𝛼′(𝐺) ≤ 1

2
(𝑛 − 𝑑).

It remains to find a matching covering all but 𝑑 vertices. Proceed by induction on 𝑛.

Let 𝑇 be maximal with deficiency 𝑑. By the previous lemma, 𝐺 − 𝑇 has only odd components,

and for every odd component 𝐶 and every 𝑢 ∈ 𝑉(𝐶), the graph 𝐶−𝑢 has a 1-factor; by induction,

each 𝐶 − 𝑢 has a perfect matching.

There are |𝑇 | + 𝑑 odd components of 𝐺 − 𝑇. It suffices to match the vertices of 𝑇 into distinct

odd components.

Form an auxiliary bipartite graph 𝐻 as follows:

• left class: the vertices of 𝑇,

• right class: the odd components of 𝐺 − 𝑇,

• we put an edge 𝑡𝐶 in 𝐻 if the vertex 𝑡 ∈ 𝑇 has at least one neighbor in the component 𝐶 (in

the original graph 𝐺).

Matchings in general graphs 169

Goal. We want to use Hall’s theorem on 𝐻 to match every vertex 𝑡 ∈ 𝑇 to a distinct odd

component of 𝐺 − 𝑇. Intuitively, this means: each vertex of 𝑇 will be “assigned” to a different

odd component where it has a neighbor, so we can later attach 𝑡 into that component and use

the perfect matching of 𝐶 − 𝑢 inside.

Thus we must show that 𝐻 satisfies Hall’s condition:

∀ 𝑆 ⊆ 𝑇 : |𝑆| ≤ |𝑁𝐻(𝑆)|.

Fix some subset 𝑆 ⊆ 𝑇. We will prove |𝑆| ≤ |𝑁𝐻(𝑆)| by comparing deficiencies.

First recall that

def𝐺(𝑇) = 𝑑 and def𝐺(𝑇) = 𝑜(𝐺 − 𝑇) − |𝑇 |
so

𝑜(𝐺 − 𝑇) = |𝑇 | + 𝑑.
In words: the graph 𝐺 − 𝑇 has exactly |𝑇 | + 𝑑 odd components.

Now consider the smaller set 𝑇 \ 𝑆. The graph 𝐺 − (𝑇 \ 𝑆) is obtained from 𝐺 − 𝑇 by adding back
the vertices of 𝑆 (together with their incident edges). We want a lower bound on the number of

odd components of 𝐺 − (𝑇 \ 𝑆).

Key observation. An odd component 𝐶 of 𝐺 − 𝑇 is adjacent to 𝑆 in 𝐻 iff some vertex of 𝐶 has a

neighbor in 𝑆 (in 𝐺).

Now look at 𝐺 − (𝑇 \ 𝑆):

• The vertices of 𝑆 are present again, so any odd component of 𝐺 − 𝑇 that has a neighbor in 𝑆

might merge with some other components or change its structure. These components are

exactly those in 𝑁𝐻(𝑆).
• On the other hand, any odd component 𝐶 of 𝐺 − 𝑇 that is not adjacent to 𝑆 in 𝐻 (i.e. has no

edges to 𝑆) is completely untouched by adding back 𝑆: no new edges connect 𝐶 to anything,

so 𝐶 remains an isolated component of 𝐺 − (𝑇 \ 𝑆), and it stays odd.

Therefore, when passing from 𝐺 − 𝑇 to 𝐺 − (𝑇 \ 𝑆), at least all odd components of 𝐺 − 𝑇 that are

not in 𝑁𝐻(𝑆) remain odd components. Hence

𝑜
(
𝐺 − (𝑇 \ 𝑆)

)
≥

(
all odd components of 𝐺 − 𝑇

)
−

(
those adjacent to 𝑆

)
= (|𝑇 | + 𝑑) − |𝑁𝐻(𝑆)|.

Now compute the deficiency of 𝑇 \ 𝑆:

def𝐺(𝑇 \ 𝑆) = 𝑜
(
𝐺 − (𝑇 \ 𝑆)

)
− |𝑇 \ 𝑆|

≥ (|𝑇 | + 𝑑) − |𝑁𝐻(𝑆)| − (|𝑇 | − |𝑆|)
= 𝑑 − |𝑁𝐻(𝑆)| + |𝑆|.

By the definition of 𝑑 = def(𝐺) as the maximum deficiency over all vertex sets, we know

def𝐺(𝑇 \ 𝑆) ≤ 𝑑.

Combining this with the inequality above gives

𝑑 − |𝑁𝐻(𝑆)| + |𝑆| ≤ def𝐺(𝑇 \ 𝑆) ≤ 𝑑,

so

|𝑆| ≤ |𝑁𝐻(𝑆)|.

Matchings in general graphs 170

Since this is true for every 𝑆 ⊆ 𝑇, the bipartite graph 𝐻 satisfies Hall’s condition and therefore

has a matching that saturates 𝑇.

Finishing the construction. Thus we can assign to each 𝑡 ∈ 𝑇 a distinct odd component 𝐶 of

𝐺 − 𝑇 in which 𝑡 has a neighbor. In each such 𝐶, we already know (from part (i)) that for any

chosen vertex 𝑢 ∈ 𝐶, the graph 𝐶 − 𝑢 has a perfect matching. We choose 𝑢 to be the neighbor of

𝑡 in 𝐶.

So for each matched pair (𝑡 , 𝐶):

• take the perfect matching of 𝐶 − 𝑢 inside 𝐶,

• add the edge 𝑡𝑢.

This covers every vertex of 𝑇 and all vertices in those components except for exactly one leftover

vertex per component. Counting carefully (using that 𝐺 − 𝑇 has |𝑇 | + 𝑑 odd components) shows

that in total we miss exactly 𝑑 vertices of 𝐺.

Hence we obtain a matching of size

𝑛 − 𝑑
2

,

so

𝛼′(𝐺) ≥ 𝑛 − 𝑑
2

.

Together with the upper bound 𝛼′(𝐺) ≤ (𝑛 − 𝑑)/2 proved earlier, this yields

𝛼′(𝐺) = 1

2

(
𝑛 − 𝑑

)
,

which is the Berge–Tutte formula.

□

Theorem 19.9. Let 𝐺 be a 𝑘-regular multigraph on an even number 𝑛 of vertices. Assume

𝐺 is (𝑘 − 1)-edge-connected (i.e., removing any 𝑘 − 2 edges keeps 𝐺 connected, equivalently

every nontrivial edge cut has size at least 𝑘 − 1). Let 𝐺′ = 𝐺 − 𝐹 where 𝐹 is any set of 𝑘 − 1

edges. Then 𝐺′ has a 1-factor (a perfect matching).

Proof. We argue by contradiction. Suppose 𝐺′ has no perfect matching. By Tutte’s 1-factor

theorem, there exists a set 𝑆 ⊆ 𝑉(𝐺′) such that

𝑜(𝐺′ − 𝑆) − |𝑆| ≥ 2. (★)

So the deficiency of 𝑆 in 𝐺′ is at least 2.

Let 𝑚 be the number of edges of 𝐺′ that join 𝑆 to the odd components of 𝐺′ − 𝑆 (i.e. edges with

one endpoint in 𝑆 and the other in an odd component of 𝐺′ − 𝑆).

Upper bound on 𝑚. Every vertex in 𝐺 has degree 𝑘, and 𝐺′ is obtained from 𝐺 by deleting

𝑘 − 1 edges, so in 𝐺′ every vertex has degree at most 𝑘. Each edge counted in 𝑚 is incident with

exactly one vertex of 𝑆, and each vertex of 𝑆 is incident with at most 𝑘 edges in 𝐺′. Hence

𝑚 ≤ 𝑘|𝑆|. (6)

Now we derive a lower bound on 𝑚 using regularity and edge-connectivity.

Matchings in general graphs 171

Fix an odd component𝐻 of 𝐺′−𝑆. Let ℓ𝐻 be the number of edges of 𝐺 with exactly one endpoint

in 𝐻:

ℓ𝐻 := |{𝑢𝑣 ∈ 𝐸(𝐺) : 𝑢 ∈ 𝑉(𝐻), 𝑣 ∉ 𝑉(𝐻)}|.
In other words, ℓ𝐻 is the size of the edge cut [𝑉(𝐻), 𝑉(𝐻)] in 𝐺.

Because 𝐺 is 𝑘-regular, ∑
𝑣∈𝑉(𝐻)

𝑑𝐺(𝑣) = 𝑘|𝐻|.

Counting degrees inside 𝐻 another way: each edge of 𝐻 contributes 2, and each edge leaving 𝐻

contributes 1. Thus ∑
𝑣∈𝑉(𝐻)

𝑑𝐺(𝑣) = 2|𝐸(𝐻)| + ℓ𝐻 ,

hence

𝑘|𝐻| = 2|𝐸(𝐻)| + ℓ𝐻 ⇒ ℓ𝐻 = 𝑘|𝐻| − 2|𝐸(𝐻)|.

Parity of ℓ𝐻 . The term 2|𝐸(𝐻)| is even, so ℓ𝐻 has the same parity as 𝑘|𝐻|. Since 𝐻 is an odd

component, |𝐻| is odd, hence

ℓ𝐻 ≡ 𝑘|𝐻| ≡ 𝑘 (mod 2).

Using edge-connectivity. 𝐺 is (𝑘 − 1)-edge-connected, so every nontrivial edge cut has size at

least 𝑘 − 1; in particular ℓ𝐻 ≥ 𝑘 − 1. Combining with ℓ𝐻 ≡ 𝑘 (mod 2) forces

ℓ𝐻 ≥ 𝑘. (7)

(Indeed, the smallest integer ≥ 𝑘 − 1 with the same parity as 𝑘 is 𝑘.)

Relating ℓ𝐻 to 𝑚 and the deleted edges.
For each odd component 𝐻 of 𝐺′ − 𝑆, define:

• 𝑎𝐻 = number of edges of 𝐺′ with one endpoint in 𝐻 and the other in 𝑆. These are exactly the

edges of 𝐺′ from 𝐻 to 𝑆. By definition,

𝑚 =

∑
𝐻

𝑎𝐻 .

• 𝑏𝐻 = number of edges in the deleted set 𝐹 with exactly one endpoint in 𝐻.

Claim: For each odd component 𝐻,

ℓ𝐻 = 𝑎𝐻 + 𝑏𝐻 .

Reason: any edge of 𝐺 with exactly one endpoint in 𝐻 either:

• survives in 𝐺′ and then must go from 𝐻 to 𝑆 (it cannot go to another component of 𝐺′ − 𝑆, or

those components would be connected), and is counted in 𝑎𝐻 ;

• or it is one of the deleted edges in 𝐹 and is counted in 𝑏𝐻 .

There are no other possibilities. Thus ℓ𝐻 = 𝑎𝐻 + 𝑏𝐻 .

Summing over all odd components of 𝐺′ − 𝑆 gives∑
𝐻

ℓ𝐻 =

∑
𝐻

𝑎𝐻 +
∑
𝐻

𝑏𝐻 = 𝑚 +
∑
𝐻

𝑏𝐻 .

Matchings in general graphs 172

From (7), summing over all odd components yields∑
𝐻

ℓ𝐻 ≥ 𝑘 · 𝑜(𝐺′ − 𝑆).

So

𝑚 +
∑
𝐻

𝑏𝐻 ≥ 𝑘 · 𝑜(𝐺′ − 𝑆).

Each deleted edge in 𝐹 can be incident with at most two odd components of 𝐺′ − 𝑆, so it

contributes at most 2 to the sum

∑
𝐻 𝑏𝐻 . Therefore∑
𝐻

𝑏𝐻 ≤ 2|𝐹| = 2(𝑘 − 1),

and hence

𝑚 + 2(𝑘 − 1) ≥ 𝑘 · 𝑜(𝐺′ − 𝑆),
i.e.

𝑚 ≥ 𝑘 · 𝑜(𝐺′ − 𝑆) − 2(𝑘 − 1). (8)

Final contradiction. Combine the upper bound (6) and lower bound (8):

𝑘|𝑆| ≥ 𝑚 ≥ 𝑘 · 𝑜(𝐺′ − 𝑆) − 2(𝑘 − 1),

so

𝑘
(
𝑜(𝐺′ − 𝑆) − |𝑆|

)
≤ 2(𝑘 − 1).

Dividing by 𝑘 > 0,

𝑜(𝐺′ − 𝑆) − |𝑆| ≤ 2(𝑘 − 1)
𝑘

.

Since
2(𝑘−1)
𝑘 < 2 for all 𝑘 ≥ 2 and the left-hand side is an integer, we must have

𝑜(𝐺′ − 𝑆) − |𝑆| ≤ 1.

But this contradicts (★), which says 𝑜(𝐺′ − 𝑆) − |𝑆| ≥ 2. Therefore our assumption that 𝐺′ has no

perfect matching was false, and 𝐺′ does in fact have a perfect matching. □

Remark 19.1 (Petersen (1891)). If 𝐺 is 3-regular and has no cut-edge (i.e., is 2-edge-connected),

then 𝐺 has a 1-factor. This is the case 𝑘 = 3 of the theorem.

Theorem 19.10 (Berge). Let 𝐺 be a 𝑘-regular multigraph on an even number of vertices,

and assume 𝐺 is (𝑘 − 1)-edge-connected. Then every edge of 𝐺 lies in some perfect matching.

Proof. Fix an edge 𝑢𝑣 ∈ 𝐸(𝐺). Remove the other 𝑘 − 1 edges incident to 𝑢, obtaining a graph 𝐺′.
By the previous theorem 𝐺′ has a perfect matching, and since 𝑢 has only the edge 𝑢𝑣 remaining,

that matching must contain 𝑢𝑣. □

Definition 19.4 (𝑓 -factor). Given 𝐺 and a function 𝑓 : 𝑉(𝐺) → N, an 𝑓 -factor of 𝐺 is a

spanning subgraph 𝐻 ⊆ 𝐺 such that

𝑑𝐻(𝑣) = 𝑓 (𝑣) for all 𝑣 ∈ 𝑉(𝐺).

A 𝑘-factor is an 𝑓 -factor with 𝑓 ≡ 𝑘. A 1-factor is a perfect matching.

Matchings in general graphs 173

Theorem 19.11 (Petersen 2-factor theorem). Every 2𝑘-regular multigraph has a 2-factor. In

fact, every 2𝑘-regular multigraph decomposes into edge-disjoint 2-factors.

Proof. Assume 𝐺 is connected (work componentwise otherwise). Since all degrees are even, 𝐺

has an Eulerian circuit. Orient each edge in the direction traversed by the Eulerian circuit. Then

each vertex has indegree 𝑘 and outdegree 𝑘.

Build a bipartite graph 𝐵 = (𝑈,𝑊) with 𝑈 =𝑊 = 𝑉(𝐺), and put an edge 𝑢 ∈ 𝑈 to 𝑤 ∈𝑊 for

each directed edge 𝑢 → 𝑤 in 𝐺. Then 𝐵 is 𝑘-regular bipartite, hence decomposes into 𝑘 perfect

matchings. Each perfect matching selects exactly one outgoing edge and one incoming edge at

every vertex of 𝐺, which forms a 2-factor. Taking all 𝑘 perfect matchings yields a decomposition

of 𝐺 into 𝑘 2-factors. □

19.3 Algorithmic aspects of matchings

This section is about how you can actually find matchings (not just prove they exist). The recurring

theme is the same in every setting:

Find an augmenting path, flip it, and your matching gets bigger.

Definition 19.5 (𝑀-alternating and 𝑀-augmenting paths). Let 𝑀 be a matching in 𝐺. A

path 𝑃 is 𝑀-alternating if its edges alternate between belonging to 𝑀 and not belonging to

𝑀. An 𝑀-alternating path whose endpoints are not covered by 𝑀 is an 𝑀-augmenting path.

Theorem 19.12 (Berge). A matching 𝑀 in 𝐺 is maximum iff there is no 𝑀-augmenting

path.

Proof. (⇒) If 𝑃 is an 𝑀-augmenting path, then replacing the 𝑀-edges of 𝑃 by the non-𝑀 edges

of 𝑃 increases the size of the matching:

𝑀′ := 𝑀△𝐸(𝑃) satisfies |𝑀′| = |𝑀| + 1,

contradicting maximality.

(⇐) Assume 𝑀 has no augmenting path, but 𝑀′ is a larger matching. Consider the symmetric

difference

𝐹 := 𝑀△𝑀′.
Every vertex has degree at most 2 in 𝐹, so each component of 𝐹 is an even cycle or a path

alternating between edges of 𝑀 and 𝑀′. Since |𝑀′| > |𝑀|, some component must be a path with

more 𝑀′-edges than 𝑀-edges. Such a path begins and ends with 𝑀′-edges, so its endpoints are

not covered by 𝑀, making it an 𝑀-augmenting path—contradiction. □

Algorithms for bipartite matchings: In bipartite graphs 𝐺 = (𝑋,𝑌), augmenting paths are

easy to compute since no odd cycles exist. There are efficient polynomial-time algorithms for

maximum matching (e.g. Hopcroft–Karp).

The key structural bonus is Kőnig–Egerváry:

𝛼′(𝐺) = 𝛽(𝐺) (bipartite 𝐺).

Matchings in general graphs 174

This is algorithmically important because minimum vertex cover is NP-hard in general graphs:
outside the bipartite world, we should not expect an efficient exact algorithm.

In bipartite graphs, however, Kőnig–Egerváry says the “hard” problem (minimum vertex cover)

collapses to the “easy” one (maximum matching):

compute a maximum matching 𝑀 (polynomial time), then extract from 𝑀 a vertex

cover 𝐶 with |𝐶| = |𝑀| (also polynomial time).

In general graphs, the augmenting-path search can be obstructed by odd cycles. Edmonds’

blossom algorithm handles this by contracting odd cycles during the search.

Edmonds’ idea is: treat the entire odd cycle as a single super-vertex. After contracting the

blossom, the parity ambiguity disappears and the search can continue in the smaller graph. If

an augmenting path is found in the contracted graph, you can expand the blossom and lift that

augmenting path back to the original graph (there is a guaranteed way to route through the

cycle so the matching increases by 1).

Approximation algorithms for maximum matchings and minimum vertex covers

From earlier we have:

(a) 𝛼′(𝐺) ≤ 𝛽(𝐺) ≤ 2𝛼′(𝐺).
(b) If 𝑀 is a maximal matching and 𝑀∗ is maximum, then

|𝑀| ≥ 1

2
|𝑀∗| = 1

2
𝛼′(𝐺).

These two facts turn one greedy routine into several certified approximations.

Greedy routine. Build a maximal matching 𝑀 (scan edges; add an edge if both endpoints

are free). This runs in 𝑂(|𝐸|) time.

(1) A 2-approximation for maximum matching size. By (b), we have 𝛼′(𝐺) ≤ 2|𝑀|. So 𝑀 is a

factor-2 approximation to the maximum matching: it is guaranteed to be at least half-optimal.

(2) A certified factor-2 vertex cover. Let 𝐶 be the set of endpoints of edges in 𝑀. Maximality

implies 𝐶 is a vertex cover, and |𝐶| = 2|𝑀|.
Moreover, any vertex cover must hit every edge in 𝑀, so 𝛽(𝐺) ≥ |𝑀|. Hence we get the certificate
sandwich

|𝑀| ≤ 𝛽(𝐺) ≤ |𝐶| = 2|𝑀|.
So in linear time we produce both

• a feasible cover 𝐶 of size 2|𝑀|, and

• a matching lower bound |𝑀| proving no cover smaller than |𝑀| exists,

which immediately certifies that 𝐶 is within factor 2 of optimal.

Bottom line. Even though minimum vertex cover is NP-hard in general graphs, the previously

proved lemmas imply that a maximal matching computed in 𝑂(|𝐸|) time simultaneously yields:

a large matching (within factor 2 of optimal) and a small cover (within factor 2 of optimal),

Connectivity 175

20 Connectivity

20.1 Vertex connectivity

Recall: Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑆 ⊆ 𝑉 . We write 𝐺 − 𝑆 for the graph obtained from 𝐺

by deleting all vertices in 𝑆 and all edges incident to those vertices. Equivalently, 𝐺 − 𝑆 is the

induced subgraph on 𝑉 \ 𝑆.

Definition 20.1 (Cut-set / vertex cut). A set 𝑆 ⊆ 𝑉(𝐺) is a cut-set (or vertex cut) if 𝐺 − 𝑆 is

not connected.

Definition 20.2 (𝑘-connected). A graph 𝐺 is 𝑘-connected if

|𝑉(𝐺)| > 𝑘 and for every 𝑆 ⊆ 𝑉(𝐺)with |𝑆| < 𝑘, 𝐺 − 𝑆 is connected.

You must delete at least 𝑘 vertices before you can disconnect the graph.

Definition 20.3 (Vertex connectivity). The (vertex) connectivity of 𝐺, denoted 𝜅(𝐺), is the

maximum integer 𝑘 such that 𝐺 is 𝑘-connected.

𝜅(𝐺) := min

{
|𝑆| : 𝑆 ⊆ 𝑉(𝐺) and 𝐺 − 𝑆 is disconnected or has at most one vertex

}
.

If |𝑉(𝐺)| = 1, we set 𝜅(𝐺) = 0 by convention.

Remark 20.1. For vertex connectivity, multiedges do not matter. Therefore we may assume

𝐺 is a simple graph.

Example 20.1. For 𝑛 ≥ 2, the complete graph 𝐾𝑛 satisfies

𝜅(𝐾𝑛) = 𝑛 − 1.

Reason: if you remove fewer than 𝑛 − 1 vertices, at least two vertices remain, and any two

remaining vertices are adjacent, so the remaining graph is still connected. But if you remove

𝑛 − 1 vertices, exactly one vertex remains, so you certainly cannot have connectivity > 𝑛 − 1.

Example 20.2. The graph 𝐾1 is connected, but

𝜅(𝐾1) = 0

by the convention built into the definition of 𝑘-connected (you cannot have |𝑉(𝐺)| > 𝑘 for any

𝑘 ≥ 1).

Example 20.3 (Cycles). For 𝑛 ≥ 3,

𝜅(𝐶𝑛) = 2.

Reason: deleting one vertex from a cycle leaves a path, which is connected. Deleting another

internal vertex of the path breaks it into two path components.

Connectivity 176

Example 20.4 (Complete bipartite graphs). For 𝑟, 𝑠 ≥ 1,

𝜅(𝐾𝑟,𝑠) = min{𝑟, 𝑠}.

Reason: if you delete fewer than min{𝑟, 𝑠} vertices, at least one vertex remains in each part, and

then every remaining vertex in one part is adjacent to every remaining vertex in the other, so

the graph stays connected. On the other hand, deleting all vertices from the smaller part (size

min{𝑟, 𝑠}) leaves an independent set, hence disconnected (unless only one vertex remains, in

which case you still cannot do better than min{𝑟, 𝑠}).

If a graph is 𝑘-connected, then in particular every vertex has degree at least 𝑘:

𝜅(𝐺) ≥ 𝑘 =⇒ 𝛿(𝐺) ≥ 𝑘.

Hence, for an 𝑛-vertex 𝑘-connected graph,

2|𝐸(𝐺)| =
∑

𝑣∈𝑉(𝐺)
𝑑(𝑣) ≥ 𝑛𝑘 =⇒ |𝐸(𝐺)| ≥

⌈
𝑛𝑘

2

⌉
.

The Harary graph𝐻𝑘,𝑛 is 𝑘-connected and has exactly

⌈
𝑛𝑘
2

⌉
edges, proving this crude lower bound

is actually tight.
Fix integers 2 ≤ 𝑘 < 𝑛. Place vertices on a cycle and label them

𝑉(𝐻𝑘,𝑛) = {1, 2, . . . , 𝑛}

with arithmetic taken modulo 𝑛.

Let 𝑡 = ⌊𝑘/2⌋. Connect each vertex 𝑖 to its 𝑡 nearest neighbors on each side on the cycle:

𝑖 ∼ 𝑖 ± 1, 𝑖 ± 2, . . . , 𝑖 ± 𝑡.

After this step, every vertex has degree 2𝑡.

When 𝑘 is odd: If 𝑘 is even, we are done (since 2𝑡 = 𝑘). If 𝑘 is odd, then 2𝑡 = 𝑘 − 1, so we add

one more “(almost) diagonal” per vertex in the following standard way.

• Case A: 𝑘 odd and 𝑛 even. Add the perfect matching of opposite vertices:

𝑖 ∼ 𝑖 + 𝑛
2

for all 𝑖 ∈ {1, . . . , 𝑛}.

Now every vertex has degree (𝑘 − 1) + 1 = 𝑘.

• Case B: 𝑘 odd and 𝑛 odd. A 𝑘-regular simple graph on 𝑛 odd vertices is impossible (since

𝑛𝑘 is odd), so the best you can do is “almost” regular while still hitting

⌈
𝑛𝑘
2

⌉
edges. Add

the (𝑛 − 1)/2 edges

𝑖 ∼ 𝑖 + 𝑛 − 1

2

for 𝑖 = 1, 2, . . . ,
𝑛 − 1

2

.

This increases the degrees of 𝑛 − 1 vertices by 1, leaving exactly one vertex with degree

𝑘 − 1 after Step 1 (or equivalently: all but one vertex have degree 𝑘). One may also present

an equivalent variant where exactly one vertex has degree 𝑘 + 1 and the rest have degree 𝑘;

either way the edge-count is optimal.

Connectivity 177

Definition 20.4 (Vertex 𝑘-split). Let 𝐺 be a graph, let 𝑥 ∈ 𝑉(𝐺), and let 𝑘 ≥ 1. A graph 𝐻 is

obtained from 𝐺 by a vertex 𝑘-split at 𝑥 if 𝐻 is formed by:

• deleting 𝑥;

• introducing two new vertices 𝑥1 , 𝑥2 with an edge 𝑥1𝑥2;

• redistributing the edges incident to 𝑥 among 𝑥1 and 𝑥2 so that

𝑁𝐻(𝑥1) ∪ 𝑁𝐻(𝑥2) = 𝑁𝐺(𝑥) ∪ {𝑥1 , 𝑥2},

and

𝑑𝐻(𝑥𝑖) ≥ 𝑘 for each 𝑖 ∈ {1, 2}.

Intuitively: you “split” 𝑥 into two adjacent vertices 𝑥1 , 𝑥2 so that together they see all the

old neighbors of 𝑥, and each new vertex still has degree at least 𝑘.

Lemma 20.1. If 𝐺 is 𝑘-connected and 𝐻 is obtained from 𝐺 by a vertex 𝑘-split, then 𝐻 is

𝑘-connected.

Proof. Suppose for contradiction that 𝐻 has a vertex cut 𝑆 with |𝑆| ≤ 𝑘 − 1. Let 𝑥 be the vertex of

𝐺 that is split into adjacent vertices 𝑥1 , 𝑥2 in 𝐻, and define

𝑇 := {𝑥1 , 𝑥2} ∩ 𝑆.

We distinguish cases according to |𝑇 |.

Case 1: |𝑇 | = 0 (so 𝑥1 , 𝑥2 ∉ 𝑆). We claim that𝐺−𝑆 is disconnected. Indeed, suppose instead that

𝐺−𝑆 is connected. Take any two vertices 𝑢, 𝑣 ∈ 𝑉(𝐻) \𝑆. Note that𝑉(𝐻) \ {𝑥1 , 𝑥2} = 𝑉(𝐺) \ {𝑥},
and 𝑆 ⊆ 𝑉(𝐻) \ {𝑥1 , 𝑥2} in this case, so 𝑢 and 𝑣 correspond to vertices of 𝐺 − 𝑆 as well. Since

𝐺 − 𝑆 is connected, there is a 𝑢–𝑣 path 𝑃 in 𝐺 − 𝑆.

If 𝑃 avoids 𝑥, then 𝑃 is also a path in 𝐻 − 𝑆 (all edges away from the split are unchanged), so 𝑢

and 𝑣 are connected in 𝐻 − 𝑆.

If 𝑃 uses 𝑥, write 𝑃 as a sequence of vertices and focus on every subwalk of the form 𝑎 − 𝑥 − 𝑏
where 𝑎, 𝑏 ∈ 𝑁𝐺(𝑥). In 𝐻, the neighbors of 𝑥 were redistributed so that each old neighbor

𝑎 ∈ 𝑁𝐺(𝑥) is adjacent to at least one of 𝑥1 or 𝑥2. Now replace each occurrence of 𝑎 − 𝑥 − 𝑏 in 𝑃 by:

𝑎 − 𝑥𝑖 − 𝑏 if 𝑎, 𝑏 ∈ 𝑁𝐻(𝑥𝑖) \ {𝑥3−𝑖},

and otherwise by 𝑎 − 𝑥𝑖 − 𝑥3−𝑖 − 𝑏, where 𝑥𝑖 is chosen so that 𝑎 ∈ 𝑁𝐻(𝑥𝑖) and 𝑥3−𝑖 is the other

split vertex. This replacement is always possible because 𝑥1𝑥2 ∈ 𝐸(𝐻) and 𝑎 (resp. 𝑏) is adjacent

in 𝐻 to whichever split vertex it was assigned to. Moreover, since 𝑥1 , 𝑥2 ∉ 𝑆, none of the new

internal vertices we introduce lies in 𝑆, so the modified walk lies in 𝐻 − 𝑆. After suppressing

repeated vertices if necessary, we obtain a 𝑢–𝑣 path in 𝐻 − 𝑆.

Thus any two vertices of 𝐻 − 𝑆 are connected, so 𝐻 − 𝑆 is connected, contradicting that 𝑆 is a

vertex cut. Therefore 𝐺 − 𝑆 must be disconnected, and 𝑆 is a vertex cut of 𝐺 with |𝑆| ≤ 𝑘 − 1,

contradicting that 𝐺 is 𝑘-connected.

Connectivity 178

Case 2: |𝑇 | = 1. Without loss of generality, assume 𝑇 = {𝑥1}, i.e. 𝑥1 ∈ 𝑆 and 𝑥2 ∉ 𝑆. Define

𝑆𝐺 := (𝑆 \ {𝑥1}) ∪ {𝑥} ⊆ 𝑉(𝐺).

Then |𝑆𝐺 | = |𝑆| ≤ 𝑘 − 1.

We claim that 𝐺 − 𝑆𝐺 is disconnected. Suppose for contradiction that 𝐺 − 𝑆𝐺 is connected.

Consider the subgraph induced by 𝑉(𝐻) \ (𝑆 ∪ {𝑥2}) inside 𝐻 − 𝑆. Its vertex set is exactly

𝑉(𝐺) \ 𝑆𝐺, and all edges among these vertices are the same in 𝐺 and 𝐻 (because the only

modification from 𝐺 to 𝐻 involves 𝑥 and its incident edges). Hence, since 𝐺 − 𝑆𝐺 is connected,

all vertices of 𝐻 − 𝑆 other than 𝑥2 lie in a single component of 𝐻 − 𝑆.

It remains to show that 𝑥2 also lies in that component. Because 𝑑𝐻(𝑥2) ≥ 𝑘, the vertex 𝑥2 has at

least 𝑘 − 1 neighbors in 𝐻 other than 𝑥1. But 𝑆 \ {𝑥1} has size at most 𝑘 − 2, so it cannot contain

all those neighbors. Therefore there exists a vertex

𝑦 ∈ 𝑁𝐻(𝑥2) \ 𝑆.

In particular, 𝑦 ≠ 𝑥1 and 𝑦 ≠ 𝑥2, so 𝑦 is one of the vertices already in the big component of 𝐻 − 𝑆,

and the edge 𝑥2𝑦 survives in 𝐻 − 𝑆. Thus 𝑥2 is connected to that big component, so 𝐻 − 𝑆 is

connected, contradicting that 𝑆 is a vertex cut.

Hence 𝐺 − 𝑆𝐺 is disconnected, so 𝑆𝐺 is a vertex cut of 𝐺 with |𝑆𝐺 | ≤ 𝑘 − 1, again contradicting

that 𝐺 is 𝑘-connected.

Case 3: |𝑇 | = 2 (so 𝑥1 , 𝑥2 ∈ 𝑆). Define

𝑆𝐺 := (𝑆 \ {𝑥1 , 𝑥2}) ∪ {𝑥} ⊆ 𝑉(𝐺).

Then |𝑆𝐺 | = |𝑆| − 1 ≤ 𝑘 − 2.

Now observe that 𝐻 − 𝑆 is exactly the same graph as 𝐺 − 𝑆𝐺: both have vertex set

𝑉(𝐺) \
(
(𝑆 \ {𝑥1 , 𝑥2}) ∪ {𝑥}

)
= 𝑉(𝐺) \ 𝑆𝐺 ,

and the edge sets on this vertex set coincide (since the only altered edges were those incident to

𝑥, and 𝑥 is removed in 𝐺− 𝑆𝐺, while 𝑥1 , 𝑥2 are removed in 𝐻 − 𝑆). Therefore 𝐻 − 𝑆 disconnected

implies 𝐺 − 𝑆𝐺 disconnected, so 𝑆𝐺 is a vertex cut of 𝐺 of size at most 𝑘 − 2, contradicting

𝑘-connectedness of 𝐺.

In all cases we obtain a vertex cut of 𝐺 of size at most 𝑘 − 1, contradicting that 𝐺 is 𝑘-connected.

Therefore no such set 𝑆 exists, and 𝐻 is 𝑘-connected. □

Lemma 20.2. For the hypercube 𝑄𝑘 ,

𝜅(𝑄𝑘) = 𝑘.

Proof. Write

𝑄𝑘 = 𝑄𝑘−1□𝑄1 ,

which consists of two copies of 𝑄𝑘−1, call them 𝐺1 and 𝐺2, joined by a perfect matching between

corresponding vertices.

Since𝑄𝑘−1 is (𝑘−1)-connected by the induction hypothesis, each of𝐺1 and𝐺2 is (𝑘−1)-connected.

Let 𝑆 be a separating set in 𝑄𝑘 . We show that |𝑆| ≥ 𝑘, which proves 𝜅(𝑄𝑘) ≥ 𝑘. Combined with

𝜅(𝑄𝑘) ≤ 𝛿(𝑄𝑘) = 𝑘, we obtain 𝜅(𝑄𝑘) = 𝑘.

Connectivity 179

Case 1: 𝑆 disconnects 𝐺1 or 𝐺2:

Assume 𝑆 disconnects 𝐺1. Since 𝐺1 is (𝑘 − 1)-connected, removing fewer than 𝑘 − 1 vertices

cannot disconnect it. Thus 𝑆 must contain at least 𝑘 − 1 vertices of 𝐺1. Furthermore, 𝑆 must

contain at least one vertex from 𝐺2; otherwise, all vertices of 𝐺2–𝑆 remain connected inside 𝐺2,

and through the matching edges they reconnect the separated parts of 𝐺1 − 𝑆. Hence in this

case,

|𝑆| ≥ (𝑘 − 1) + 1 = 𝑘.

Case 2: 𝐺1 − 𝑆 and 𝐺2 − 𝑆 are both connected:

In this case, the only way for 𝑄𝑘 − 𝑆 to be disconnected is for 𝑆 to delete all matching edges

between the two copies. Each matching edge has one endpoint in 𝐺1 and one in 𝐺2. Thus 𝑆

must contain the endpoint of every matching edge, so

|𝑆| ≥ |𝑉(𝐺1)| = 2
𝑘−1.

Since 𝑘 ≥ 2, we have 2
𝑘−1 ≥ 𝑘, so again |𝑆| ≥ 𝑘.

In all cases, every separating set has size at least 𝑘. Thus 𝜅(𝑄𝑘) ≥ 𝑘, and since 𝛿(𝑄𝑘) = 𝑘 we

obtain

𝜅(𝑄𝑘) = 𝑘.

□

Theorem 20.3 (Niu–Zhu (1994), Chiue–Shieh (1999)). If 𝐺 and 𝐻 are connected graphs,

then

𝜅(𝐺□𝐻) ≥ 𝜅(𝐺) + 𝜅(𝐻).

The proof follows the same idea as the lemma and is omitted (can be found in the textbook).

This theorem strengthens the lemma, which in particular recovers 𝜅(𝑄𝑘) ≥ 𝜅(𝑄𝑘−1) + 𝜅(𝐾2) = 𝑘

as a corollary.

20.2 Edge connectivity

Definition 20.5. An edge cut of 𝐺 is a set of edges 𝐹 ⊆ 𝐸 such that the graph 𝐺− 𝐹 (obtained

by deleting all edges in 𝐹) is disconnected.

Definition 20.6. A connected graph 𝐺 is 𝑘-edge-connected if it stays connected after the

deletion of any set of fewer than 𝑘 edges; that is, for every 𝐹 ⊆ 𝐸(𝐺) with |𝐹| ≤ 𝑘 − 1, the

graph 𝐺 − 𝐹 is connected.

Definition 20.7. The edge-connectivity of a connected graph 𝐺 is

𝜅′(𝐺) := min{|𝐹| : 𝐹 is an edge cut of 𝐺}.

Equivalently, 𝜅′(𝐺) is the largest integer 𝑘 such that 𝐺 is 𝑘-edge-connected.

Connectivity 180

Definition 20.8 (Cut edges across a partition). For a partition of the vertex set into two

nonempty parts 𝑆 and 𝑆 := 𝑉(𝐺) \ 𝑆, write

[𝑆, 𝑆] := {𝑢𝑣 ∈ 𝐸(𝐺) : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆}.

These are exactly the edges crossing from 𝑆 to its complement; deleting [𝑆, 𝑆] isolates 𝑆 from

𝑆.

𝛿(𝑆) := [𝑆, 𝑆] = {𝑢𝑣 ∈ 𝐸 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆 := 𝑉 \ 𝑆}.
A bond is a nonempty cut 𝛿(𝑆) that is minimal (by inclusion, not “minimum size") as a

disconnecting set. This is weaker than being minimum (having smallest cardinality among

all edge cuts).

Motivation: It is often useful to think of a graph as a communication network: vertices are

routers/servers and edges are physical links like cables. A failed hub can wipe out many
connections at once.

Vertex connectivity measures robustness to these node failures. If a graph is 𝑘-connected, then

deleting any 𝑘 − 1 vertices (and all incident edges) still leaves the network connected, meaning

there is still a route between every remaining pair of devices. Equivalently, 𝜅(𝐺) is the minimum

number of hubs you must lose (by failure) before the network splits into separate islands that

cannot communicate. Vertex cuts therefore identify the critical choke points: the small set of

nodes whose removal fragments the system. A larger 𝜅(𝐺)means connectivity is spread out

rather than concentrated in a few fragile hubs, so the network is genuinely harder to break.

Edge-connectivity quantifies robustness to link failures. If a network is 𝑘-edge-connected, then it

still has a functioning route between every pair of nodes even after any 𝑘 − 1 links disappear.

Equivalently, 𝜅′(𝐺) is the minimum number of links an adversary (or bad luck) must remove to

split the network into disconnected pieces. Cuts of the form [𝑆, 𝑆] capture the bottlenecks: they

are precisely the links that carry all communication between two regions of the network. So

studying edge cuts and 𝜅′(𝐺) is really studying where the network links are fragile, how many

redundant links it has, and how hard it is to knock it offline.

Proposition 20.4.

1. Every minimal disconnecting set is an edge cut (i.e. equals 𝛿(𝑆) for some nontrivial

𝑆 ⊂ 𝑉).

2. If 𝐺 is connected and ∅ ≠ 𝑆 ⊊ 𝑉(𝐺), then 𝛿(𝑆) is a bond if and only if both induced

subgraphs 𝐺[𝑆] and 𝐺[𝑆] are connected.

(i) Let 𝐹 ⊆ 𝐸(𝐺) be a minimal disconnecting set, so 𝐺 − 𝐹 is disconnected. Let 𝐶 be the vertex

set of one connected component of 𝐺 − 𝐹, and put 𝐶 := 𝑉(𝐺) \ 𝐶. By definition of component,

there are no edges of 𝐺 − 𝐹 between 𝐶 and 𝐶; hence every edge of 𝐺 with one endpoint in 𝐶

and the other in 𝐶 must have been removed, i.e.

𝛿(𝐶) = [𝐶, 𝐶] ⊆ 𝐹.

We claim equality holds. If not, choose 𝑒 ∈ 𝐹 \ 𝛿(𝐶). Then both ends of 𝑒 lie in 𝐶 or both lie

in 𝐶, so removing 𝑒 is irrelevant to separating 𝐶 from 𝐶. In particular, 𝐺 − (𝐹 \ {𝑒}) is still

Connectivity 181

disconnected (since 𝐶 is still isolated from 𝐶), contradicting the minimality of 𝐹. Thus 𝐹 = 𝛿(𝐶),
so 𝐹 is an edge cut.

(ii) Assume 𝐺 is connected and fix ∅ ≠ 𝑆 ⊊ 𝑉 , writing 𝑆 := 𝑉 \ 𝑆.

(⇒) Suppose 𝛿(𝑆) is a bond. If 𝐺[𝑆]were disconnected, let 𝐶 be the vertex set of a component

of 𝐺[𝑆] (with ∅ ≠ 𝐶 ⊊ 𝑆). Because 𝐶 is a component inside 𝑆, there are no edges between 𝐶 and

𝑆 \ 𝐶, so any edge leaving 𝐶 must go to 𝑆. Hence

𝛿(𝐶) = [𝐶,𝑉 \ 𝐶] = [𝐶, 𝑆] ⊆ [𝑆, 𝑆] = 𝛿(𝑆).

Moreover, 𝛿(𝐶) ≠ ∅: since 𝐺 is connected, the set 𝐶 cannot be isolated from 𝑉 \ 𝐶, so at least

one edge leaves 𝐶. Therefore 𝛿(𝐶) is a nonempty disconnecting set properly contained in

𝛿(𝑆), contradicting that 𝛿(𝑆) is minimal. Thus 𝐺[𝑆]must be connected; by symmetry, 𝐺[𝑆] is
connected as well.

(⇐) Now assume 𝐺[𝑆] and 𝐺[𝑆] are both connected. We show 𝛿(𝑆) is minimal. Let 𝐹 ⊊
𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 𝛿(𝑆) be a proper subset. Then some crossing edge 𝑢𝑣 ∈ 𝛿(𝑆) \ 𝐹 remains, with

𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆. Since 𝐹 removes only crossing edges, the induced subgraphs 𝐺[𝑆] and 𝐺[𝑆]
are unchanged and remain connected inside 𝐺 − 𝐹. The surviving edge 𝑢𝑣 links these two

connected pieces, so 𝐺 − 𝐹 is connected. Thus removing any proper subset of 𝛿(𝑆) cannot

disconnect the graph, i.e. 𝛿(𝑆) is a bond.

This proves both directions.

Theorem 20.5 (Whitney, 1932).

𝜅(𝐺) ≤ 𝜅′(𝐺) ≤ 𝛿(𝐺).

Proof. Let 𝑣 be a vertex of minimum degree 𝛿(𝐺). Delete all edges incident to 𝑣. Then 𝑣 becomes

isolated so these 𝛿(𝐺) edges form an edge cut. Hence

𝜅′(𝐺) ≤ 𝛿(𝐺).

To prove 𝜅(𝐺) ≤ 𝜅′(𝐺), let 𝜆 = 𝜅′(𝐺), and let [𝑆, 𝑆] be a smallest edge cut of size 𝜆. We will show

that from this edge cut we can build a vertex cut of size at most 𝜅′(𝐺). That will immediately

imply 𝜅(𝐺) ≤= 𝜅′(𝐺). If every vertex of 𝑆 is adjacent to every vertex of 𝑆, then the cut contains

all possible edges between the two sides, hence

𝜆 = |[𝑆, 𝑆]| = |𝑆| |𝑆|.

In particular, since both 𝑆 and 𝑆 are nonempty, |𝑆| |𝑆| = |𝑆|(|𝑉 | − |𝑆|) ≥ |𝑉 | − 1 (the product is

minimized when one side has size 1). Thus 𝜅′(𝐺) ≥ |𝑉(𝐺)| − 1. But always 𝜅(𝐺) ≤ |𝑉(𝐺)| − 1, so

𝜅(𝐺) ≤ 𝜅′(𝐺) and we are done.

Otherwise, there exist 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆 with 𝑥𝑦 ∉ 𝐸(𝐺). We will construct a set of vertices 𝑇 with

|𝑇 | ≤ 𝜆 such that removing 𝑇 separates 𝑥 from 𝑦.

Define 𝑇 by “picking one endpoint” from each cut edge, carefully arranged so that every 𝑥–𝑦

path hits 𝑇:

• For each cut edge incident to 𝑥 (i.e. edges 𝑥𝑣 with 𝑣 ∈ 𝑆), put the other endpoint 𝑣 into 𝑇.

• For every remaining cut edge 𝑢𝑣 with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆 and 𝑢 ≠ 𝑥, put the endpoint in 𝑆

(namely 𝑢) into 𝑇.

Connectivity 182

So each cut edge contributes at most one vertex to 𝑇, and therefore

|𝑇 | ≤ |[𝑆, 𝑆]| = 𝜅′(𝐺).

Why does 𝑇 separate 𝑥 and 𝑦? Consider any path 𝑃 from 𝑥 to 𝑦 in 𝐺. Since 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, the

path must at some point cross from 𝑆 to 𝑆. Let 𝑢𝑣 be the first edge of 𝑃 that has one endpoint in

𝑆 and the next vertex in 𝑆. Then 𝑢𝑣 ∈ [𝑆, 𝑆] is a cut edge.

There are two possibilities:

• If 𝑢 = 𝑥, then 𝑢𝑣 is a cut edge incident to 𝑥, and by construction we placed the other

endpoint 𝑣 ∈ 𝑆 into 𝑇. So 𝑃 hits 𝑇 at the vertex 𝑣.

• If 𝑢 ≠ 𝑥, then 𝑢𝑣 is one of the “remaining” cut edges, and by construction we placed its

𝑆-endpoint 𝑢 into 𝑇. So 𝑃 hits 𝑇 at the vertex 𝑢.

In either case, every 𝑥–𝑦 path meets 𝑇. Equivalently, in the graph 𝐺 − 𝑇 there is no path from 𝑥

to 𝑦, so 𝑇 is a vertex separator for 𝑥 and 𝑦. □

Proposition 20.6. If 𝑆 ⊆ 𝑉(𝐺), then��[𝑆, 𝑆]�� =

∑
𝑣∈𝑆

𝑑(𝑣) − 2 |𝐸(𝐺[𝑆])|.

Proof. The sum

∑
𝑣∈𝑆 𝑑(𝑣) counts every edge with both endpoints in 𝑆 twice, and it counts each

edge in [𝑆, 𝑆] once. Subtracting 2|𝐸(𝐺[𝑆])| leaves exactly the number of edges joining 𝑆 and

𝑆. □

Proposition 20.7. Let 𝐺 be a simple graph and 𝑆 ≠ ∅. If [𝑆, 𝑆] < 𝛿(𝐺), then |𝑆| > 𝛿(𝐺).

Proof. Since 𝛿(𝐺) > [𝑆, 𝑆], we have

𝛿(𝐺) >
∑
𝑣∈𝑆

𝑑(𝑣) − 2𝑒(𝐺[𝑆]).

Because 𝑒(𝐺[𝑆]) ≤ |𝑆|(|𝑆| − 1)/2, we obtain∑
𝑣∈𝑆

𝑑(𝑣) − 2𝑒(𝐺[𝑆]) ≥ |𝑆|𝛿(𝐺) − |𝑆|(|𝑆| − 1).

Hence

𝛿(𝐺) > |𝑆|
(
𝛿(𝐺) − (|𝑆| − 1)

)
.

Thus

0 > (|𝑆| − 1)
(
𝛿(𝐺) − |𝑆|

)
.

Since |𝑆| − 1 ≥ 0, the inequality implies

0 > 𝛿(𝐺) − |𝑆|,

and therefore |𝑆| > 𝛿(𝐺). □

Connectivity 183

Theorem 20.8. If diam(𝐺) = 2, then 𝜅′(𝐺) = 𝛿(𝐺).

Proof. We want to show that 𝜅′(𝐺) ≥ 𝛿(𝐺). Suppose for a contradiction that there is a smallest

edge cut of size

[𝑆, 𝑆] < 𝛿(𝐺).
Pick 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆 such that all edges joining 𝑆 and 𝑆 lie between these two sides. Since

𝑑(𝑥), 𝑑(𝑦) ≥ 𝛿(𝐺) and fewer than 𝛿(𝐺) edges join 𝑆 and 𝑆, both 𝑥 and 𝑦 have neighbors on their

own side. Because diam(𝐺) = 2, the distance between 𝑥 and 𝑦 is at most 2. But any 𝑥–𝑦 path

must use an edge between 𝑆 and 𝑆, and there are fewer than 𝛿(𝐺) such edges, contradicting the

assumption that 𝑑(𝑥), 𝑑(𝑦) ≥ 𝛿(𝐺).
Hence 𝜅′(𝐺) ≥ 𝛿(𝐺), and since always 𝜅′(𝐺) ≤ 𝛿(𝐺), we obtain 𝜅′(𝐺) = 𝛿(𝐺). □

Connectivity 184

20.3 Block decomposition

When we study the structure of a graph, the first coarse decomposition is into connected

components. Inside a connected component, however, connectivity can still be “fragile”: there

may be a single vertex whose removal breaks the component apart. Such vertices are the

cut-vertices.
Blocks isolate the parts that have no such vulnerability. Informally, a block is a maximal region

of the graph that cannot be separated by deleting a single vertex. Thus blocks are the natural

“2-connected pieces” of a graph, and a connected graph can be viewed as blocks stitched together

at cut-vertices (this leads to the block–cutvertex tree).

Definition 20.9 (Block). A block of a graph 𝐺 is a maximal connected subgraph of 𝐺 that

has no cut-vertex (with cut-vertices understood inside that subgraph).

Remark 20.2. With this definition, blocks include the “degenerate” cases: an isolated vertex

forms a block, and a bridge edge 𝑢𝑣 forms a block. In general, distinct blocks intersect in at

most one vertex, and any common vertex must be a cut-vertex of 𝐺.

Proposition 20.9 (Basic properties of blocks). Let 𝐺 be a graph, and let a block mean a

maximal connected subgraph of 𝐺 with no cut-vertex (with cut-vertices understood inside

the subgraph). Then:

1. If an edge 𝑒 lies on a cycle, then 𝑒 is not a block. In fact, the unique block containing 𝑒

contains the entire cycle.

2. An edge 𝑢𝑣 is a block (i.e. {𝑢, 𝑣}with the edge 𝑢𝑣) if and only if 𝑢𝑣 is a cut-edge (bridge)

of 𝐺.

3. If 𝑇 is a tree with |𝑉(𝑇)| ≥ 2, then the blocks of 𝑇 are exactly its edges.

4. Every block with at least 3 vertices is 2-connected.

5. Any two distinct blocks intersect in at most one vertex.

6. Only cut-vertices can lie in more than one block.

7. Every edge of 𝐺 lies in exactly one block.

Proof. (i) Let 𝐶 be a cycle containing 𝑒. The cycle 𝐶 is connected and has no cut-vertex (removing

any one vertex from a cycle still leaves a path), so 𝐶 is contained in some block 𝐵 by maximality.

In particular, 𝑒 ⊆ 𝐵, so 𝑒 cannot itself be a block unless 𝐶 had only 2 vertices, which is impossible

in a simple graph. Moreover, since 𝐵 contains 𝐶, the block containing 𝑒 contains the entire cycle.

(ii) If 𝑢𝑣 is a cut-edge, then in 𝐺 − 𝑢𝑣 the vertices 𝑢 and 𝑣 lie in different components. Any

connected subgraph of 𝐺 that contains 𝑢𝑣 and also contains any vertex besides 𝑢, 𝑣 must include

Connectivity 185

vertices from at least one side of the separation, and then removing 𝑢 or 𝑣 disconnects that

subgraph (it isolates the other side through the bridge). Hence the only connected subgraph

containing 𝑢𝑣 with no cut-vertex is the edge itself, so 𝑢𝑣 is a block.

Conversely, if 𝑢𝑣 is a block and 𝑢𝑣 were not a cut-edge, then 𝑢𝑣 lies on a cycle. By (i), an edge on

a cycle cannot be a block. So 𝑢𝑣 must be a cut-edge.

(iii) In a tree every edge is a cut-edge. Thus by (ii) every edge is a block. There are no other

blocks when |𝑉(𝑇)| ≥ 2.

(iv) A connected graph on at least 3 vertices is 2-connected if and only if it has no cut-vertex. So

a block with at least 3 vertices is 2-connected by definition.

(v) Let 𝐵1 ≠ 𝐵2 be blocks. Suppose for contradiction that 𝐵1 ∩ 𝐵2 contains two distinct vertices

𝑎 ≠ 𝑏. Then 𝐵1 ∪ 𝐵2 is connected (they share vertices) and has no cut-vertex: removing any

vertex 𝑤 cannot disconnect 𝐵1 ∪ 𝐵2 because 𝐵1 − 𝑤 and 𝐵2 − 𝑤 remain connected (each block

has no cut-vertex), and even if 𝑤 = 𝑎 (or 𝑤 = 𝑏) the other common vertex 𝑏 (or 𝑎) still links

the two pieces. Thus 𝐵1 ∪ 𝐵2 is a larger connected subgraph with no cut-vertex, contradicting

maximality of 𝐵1 and 𝐵2. Hence |𝐵1 ∩ 𝐵2| ≤ 1.

(vii) (Existence.) Fix an edge 𝑒 ∈ 𝐸(𝐺). Consider the collection of connected subgraphs of 𝐺 that

contain 𝑒 and have no cut-vertex. Since 𝐺 is finite, there is one with a maximum number of

vertices; call it 𝐵. By construction, 𝐵 is connected, has no cut-vertex, contains 𝑒, and is maximal

with these properties, hence 𝐵 is a block. So every edge lies in at least one block.

(Uniqueness.) If an edge 𝑒 = 𝑢𝑣 lay in two distinct blocks 𝐵1 and 𝐵2, then 𝑢, 𝑣 ∈ 𝐵1 ∩ 𝐵2, so

|𝐵1 ∩ 𝐵2| ≥ 2, contradicting (v). Hence every edge lies in exactly one block.

(vi) Suppose a vertex 𝑣 lies in two distinct blocks 𝐵1 ≠ 𝐵2. Then 𝐵1 and 𝐵2 cannot both be the

single vertex {𝑣}, so in each 𝐵𝑖 there is an edge incident to 𝑣. Choose 𝑣𝑎 ∈ 𝐸(𝐵1) and 𝑣𝑏 ∈ 𝐸(𝐵2)
with 𝑎 ≠ 𝑣 and 𝑏 ≠ 𝑣. If 𝐺 − 𝑣 had a path 𝑃 from 𝑎 to 𝑏, then 𝑣 − 𝑎 − 𝑃 − 𝑏 − 𝑣 would be a cycle

containing both edges 𝑣𝑎 and 𝑣𝑏. By (i), edges on a cycle belong to a block containing that cycle,

and by (vii) an edge lies in a unique block; this would force 𝑣𝑎 and 𝑣𝑏 to lie in the same block,

contradicting 𝐵1 ≠ 𝐵2. Therefore no such path exists, so 𝑎 and 𝑏 lie in different components of

𝐺 − 𝑣, meaning 𝐺 − 𝑣 is disconnected. Hence 𝑣 is a cut-vertex. □

Properties of 𝑘-connected graphs 186

21 Properties of 𝑘-connected graphs

Definition 21.1. A digraph
®𝐺 is strongly connected if for all 𝑥, 𝑦 ∈ 𝑉(®𝐺) there exists a

directed 𝑥, 𝑦-path.

Definition 21.2.
𝜅(®𝐺) = max{𝑘 :

®𝐺 is 𝑘-strongly connected},

that is, removing any 𝑘 − 1 vertices leaves
®𝐺 strongly connected.

Remark 21.1. For a directed cut, [𝑆, 𝑆] and [𝑆, 𝑆] need not be equal.

Definition 21.3. A digraph
®𝐺 is 𝑘-edge-connected if every directed edge cut has size at

least 𝑘.

21.1 Menger’s Theorem

Definition 21.4. For vertices 𝑥, 𝑦 in a graph 𝐺 with 𝑥𝑦 ∉ 𝐸(𝐺), an (𝑥, 𝑦)-separating set is a

set

𝑆 ⊆ 𝑉(𝐺) \ {𝑥, 𝑦}
such that 𝐺 − 𝑆 has no (𝑥, 𝑦)-path.

Definition 21.5. Let 𝜅(𝑥, 𝑦) be the minimum size of an (𝑥, 𝑦)-separating set in 𝐺.

Definition 21.6. A family of (𝑥, 𝑦)-paths is independent if the paths share no internal

vertices. Let 𝜆(𝑥, 𝑦) be the maximum number of pairwise independent (𝑥, 𝑦)-paths.

Remark 21.2. It is always true that

𝜅(𝑥, 𝑦) ≥ 𝜆(𝑥, 𝑦),

since removing one vertex from each path in an independent family separates 𝑥 and 𝑦.

Theorem 21.1 (Menger, 1927). For all vertices 𝑥, 𝑦 in a graph 𝐺 with 𝑥𝑦 ∉ 𝐸(𝐺),

𝜅(𝑥, 𝑦) = 𝜆(𝑥, 𝑦).

We will prove a stronger version and obtain this as a corollary.

Definition 21.7. Let 𝑋,𝑌 ⊆ 𝑉(𝐺) be two disjoint vertex sets. An (𝑋,𝑌)-path is a path in 𝐺

that starts in 𝑋, ends in 𝑌, and has all internal vertices in 𝑉(𝐺) \ (𝑋 ∪ 𝑌).

Properties of 𝑘-connected graphs 187

Definition 21.8. A strict (𝑋,𝑌)-path is an (𝑋,𝑌)-path whose only vertices in 𝑋 ∪ 𝑌 are its

endpoints.

Definition 21.9. An (𝑋,𝑌)-cut is a set 𝑍 ⊆ 𝑉(𝐺) such that 𝐺 − 𝑍 contains no (𝑋,𝑌)-path.

Definition 21.10. An (𝑋,𝑌)-link is a collection of pairwise internally disjoint (𝑋,𝑌)-paths.

Theorem 21.2 (Pym, 1969). Let 𝐺 be a graph and let 𝑋,𝑌 ⊆ 𝑉(𝐺) be disjoint. Then the

minimum size of an (𝑋,𝑌)-cut equals the maximum size of an (𝑋,𝑌)-link.

Proof. Let

𝜆 := min{|𝑍| : 𝑍 is an (𝑋,𝑌)-cut}, 𝜈 := max{size of an (𝑋,𝑌)-link}.

Easy direction: 𝜈 ≤ 𝜆. If 𝒫 is an (𝑋,𝑌)-link of size 𝑟, then its paths are vertex-disjoint. Any

cut must meet each path of 𝒫 in at least one vertex, and those vertices must be distinct. Hence

every barrier has size at least 𝑟, hence 𝜈 ≤ 𝜆.

Hard direction: 𝜆 ≤ 𝜈. We prove 𝜈 ≥ 𝜆 by induction on |𝑉(𝐺)| + |𝐸(𝐺)|. The statement is trivial

for graphs with very few vertices/edges, so assume |𝑉(𝐺)| + |𝐸(𝐺)| is large and the theorem

holds for all smaller graphs/digraphs.

If 𝐺 has no (𝑋,𝑌)-path, then 𝑋 itself is an (𝑋,𝑌)-barrier, so 𝜆 = |𝑋 | and 𝜈 = |𝑋 ∩𝑌| (because the

only (𝑋,𝑌)-paths have length 0). In particular 𝜈 ≥ 𝜆 holds trivially in this degenerate case. So

assume (𝑋,𝑌)-paths exist, hence 𝜆 ≥ 1.

Fix a minimum (𝑋,𝑌)-barrier 𝑍 with |𝑍| = 𝜆. We split into two cases.

Case 1: there is a minimum barrier 𝑍 with 𝑍 ≠ 𝑋 and 𝑍 ≠ 𝑌. Because 𝐺−𝑍 has no (𝑋,𝑌)-path,

every (𝑋,𝑌)-path must visit 𝑍. Consider paths from 𝑋 to 𝑍 and from 𝑍 to 𝑌, avoiding 𝑍 until

the endpoint:

• Let 𝐺1 be the subgraph of 𝐺 induced by all vertices that lie on some (𝑋, 𝑍)-path whose

internal vertices avoid 𝑍.

• Let 𝐺2 be the subgraph of 𝐺 induced by all vertices that lie on some (𝑍,𝑌)-path whose

internal vertices avoid 𝑍.

Claim 1: 𝑉(𝐺1) ∩𝑉(𝐺2) = 𝑍. Certainly 𝑍 ⊆ 𝑉(𝐺1) ∩𝑉(𝐺2) (every 𝑧 ∈ 𝑍 is on a trivial 𝑧–𝑧 path).

Conversely, suppose 𝑣 ∉ 𝑍 lies in both 𝑉(𝐺1) and 𝑉(𝐺2). Then there is an (𝑋, 𝑍)-path 𝑃1 that

reaches some 𝑧 ∈ 𝑍 and passes through 𝑣 without meeting 𝑍 earlier, and there is a (𝑍,𝑌)-path

𝑃2 starting at some 𝑧′ ∈ 𝑍 and passing through 𝑣 without meeting 𝑍 again. By following 𝑃1

from 𝑋 to 𝑣 and then 𝑃2 from 𝑣 to 𝑌, we obtain an (𝑋,𝑌)-path that avoids 𝑍, contradicting that

𝑍 is a barrier. Thus 𝑉(𝐺1) ∩𝑉(𝐺2) = 𝑍.

In particular, 𝐺1 and 𝐺2 are both smaller than 𝐺 (since 𝑍 ≠ 𝑋,𝑌 and 𝜆 ≥ 1), so the induction

hypothesis applies to each.

Properties of 𝑘-connected graphs 188

Claim 2: the minimum size of an (𝑋, 𝑍)-barrier in 𝐺1 is exactly 𝜆. First, 𝑍 itself is an (𝑋, 𝑍)-barrier

in 𝐺1, so the minimum is at most 𝜆. On the other hand, any (𝑋, 𝑍)-barrier in 𝐺1 is automatically

an (𝑋,𝑌)-barrier in 𝐺: every (𝑋,𝑌)-path hits 𝑍, and its initial segment from 𝑋 to the first vertex

of 𝑍 is a 𝑍-avoiding (𝑋, 𝑍)-path, hence lives in 𝐺1. So blocking all such (𝑋, 𝑍)-paths blocks all

(𝑋,𝑌)-paths. Since 𝜆 is the minimum size of an (𝑋,𝑌)-barrier, no (𝑋, 𝑍)-barrier in 𝐺1 can have

size < 𝜆. Therefore the minimum size is 𝜆.

By induction applied to 𝐺1, there exists an (𝑋, 𝑍)-link in 𝐺1 of size 𝜆. Because the paths are

vertex-disjoint and there are only |𝑍| = 𝜆 possible endpoints in 𝑍, this link uses every vertex of 𝑍

as an endpoint exactly once.

Similarly, applying the same argument to 𝐺2 shows that 𝐺2 contains a (𝑍,𝑌)-link of size 𝜆, again

using every 𝑧 ∈ 𝑍 exactly once as an endpoint.

Now for each 𝑧 ∈ 𝑍, concatenate the unique 𝑋–𝑧 path from the first link with the unique 𝑧–𝑌

path from the second link. These concatenated paths are pairwise vertex-disjoint: within each

link they are disjoint, and outside 𝑍 the two links live in 𝐺1 \ 𝑍 and 𝐺2 \ 𝑍, which are disjoint

by Claim 1. Thus we obtain an (𝑋,𝑌)-link of size 𝜆, so 𝜈 ≥ 𝜆.

Case 2: every minimum barrier is 𝑋 and/or 𝑌.
By symmetry we may assume 𝑋 is a minimum barrier, so |𝑋 | = 𝜆.

If 𝑋 ⊆ 𝑌, then for each 𝑥 ∈ 𝑋 the length-0 path (𝑥) is an (𝑋,𝑌)-path. These |𝑋 | = 𝜆 trivial paths

are vertex-disjoint, giving an (𝑋,𝑌)-link of size 𝜆. Hence 𝜈 ≥ 𝜆.

Otherwise pick 𝑥 ∈ 𝑋 \𝑌. Since 𝑋 is a minimum barrier, 𝑋 \ {𝑥} is not a barrier. So 𝐺 − (𝑋 \ {𝑥})
contains an (𝑋,𝑌)-path, and that path must start at 𝑥 and immediately leave 𝑋 along some edge

(or arc) 𝑥𝑤 with 𝑤 ∉ 𝑋. Fix such an edge 𝑒 := 𝑥𝑤, and consider the smaller graph 𝐺′ := 𝐺 − 𝑒.
Let 𝑍′ be a minimum (𝑋,𝑌)-barrier in 𝐺′. There are two subcases.

Subcase 2a: 𝐺′ has an (𝑋,𝑌)-link of size 𝜆. Then the same link also exists in 𝐺 (adding an edge

cannot destroy existing paths), so 𝜈 ≥ 𝜆.

Subcase 2b: 𝐺′ has no (𝑋,𝑌)-link of size 𝜆. Then the maximum link size in 𝐺′ is < 𝜆, so by the

induction hypothesis (applied to 𝐺′),

|𝑍′| = min{barrier size in 𝐺′} = max{link size in 𝐺′} < 𝜆.

In particular, |𝑍′| ≤ 𝜆 − 1.

Now 𝑍′ cannot be an (𝑋,𝑌)-barrier in 𝐺 (otherwise 𝜆 ≤ |𝑍′| < 𝜆), so 𝐺 − 𝑍′ contains an

(𝑋,𝑌)-path. But 𝐺′ − 𝑍′ contains no (𝑋,𝑌)-path (since 𝑍′ is a barrier in 𝐺′). Therefore every
(𝑋,𝑌)-path in 𝐺 − 𝑍′ must use the deleted edge 𝑒 = 𝑥𝑤. Consequently, every (𝑋,𝑌)-path meets

𝑍′ ∪ {𝑥} and also meets 𝑍′ ∪ {𝑤}. Thus both sets are (𝑋,𝑌)-barriers in 𝐺.

Since 𝜆 is the minimum barrier size in 𝐺,

𝜆 ≤ |𝑍′ ∪ {𝑥}| = |𝑍′| + 1 ≤ 𝜆,

so |𝑍′| = 𝜆 − 1 and both 𝑍′ ∪ {𝑥} and 𝑍′ ∪ {𝑤} are minimum barriers of size 𝜆. By the hypothesis

of Case 2, the only minimum barriers are 𝑋 and/or 𝑌. Because 𝑥 ∈ 𝑋 \ 𝑌, the barrier 𝑍′ ∪ {𝑥}
cannot equal 𝑌, hence

𝑍′ ∪ {𝑥} = 𝑋.

Also 𝑤 ∉ 𝑋 by construction, so 𝑍′ ∪ {𝑤} ≠ 𝑋, and therefore

𝑍′ ∪ {𝑤} = 𝑌.

Properties of 𝑘-connected graphs 189

It follows that

𝑍′ = 𝑋 \ {𝑥} = 𝑌 \ {𝑤},
so every vertex of 𝑍′ lies in 𝑋 ∩ 𝑌.

Finally, we build an (𝑋,𝑌)-link of size 𝜆 in 𝐺: take the 𝜆 − 1 trivial paths (𝑧) for each 𝑧 ∈ 𝑍′
(these are (𝑋,𝑌)-paths since 𝑧 ∈ 𝑋 ∩ 𝑌), together with the length-1 path 𝑥𝑤. These 𝜆 paths are

vertex-disjoint (their vertices are all distinct), so 𝜈 ≥ 𝜆.

In all cases we have shown 𝜈 ≥ 𝜆. Together with 𝜈 ≤ 𝜆, we conclude 𝜈 = 𝜆. □

Corollary 21.3 (Menger’s Theorem). Let 𝐺 be a graph and let 𝑥 ≠ 𝑦 be vertices. Then

the minimum size of an 𝑥–𝑦 vertex separator equals the maximum number of pairwise

internally vertex-disjoint 𝑥–𝑦 paths from Pym’s Theorem with 𝑋 = {𝑥}, 𝑌 = {𝑦}.

Definition 21.11. Let 𝐺 be a graph (or digraph) and let 𝑥, 𝑦 ∈ 𝑉(𝐺). Define 𝜅′(𝑥, 𝑦) to be

the minimum size of an 𝑥–𝑦 edge cut, i.e.

𝜅′(𝑥, 𝑦) := min{|𝐹| : 𝐹 ⊆ 𝐸(𝐺) and 𝑦 is not reachable from 𝑥 in 𝐺 − 𝐹}.

Definition 21.12. For vertices 𝑥, 𝑦 in a graph 𝐺, let 𝜆′(𝑥, 𝑦) be the maximum size of a set of

pairwise edge-disjoint (𝑥, 𝑦)-paths.

Definition 21.13 (Line graph). Let 𝐺 be a (multi)graph. The line graph 𝐿(𝐺) is the graph

with vertex set 𝐸(𝐺), where two distinct vertices 𝑒 , 𝑓 ∈ 𝐸(𝐺) are adjacent in 𝐿(𝐺) exactly

when the corresponding edges share an endpoint in 𝐺.

Definition 21.14 (Line digraph). Let 𝐷 be a digraph. The line digraph 𝐿(𝐷) has vertex set

𝐸(𝐷), and two arcs 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤) are adjacent (i.e. there is an arc from 𝑒 to 𝑓)

precisely when they are consecutive directed edges in 𝐷.

Properties of 𝑘-connected graphs 190

Theorem 21.4 (Menger’s theorem, edge form). Let 𝐺 be a graph (or digraph) and let

𝑥, 𝑦 ∈ 𝑉(𝐺)with 𝑥 ≠ 𝑦. Then

𝜅′(𝑥, 𝑦) = 𝜆′(𝑥, 𝑦).

Proof. The inequality 𝜆′(𝑥, 𝑦) ≤ 𝜅′(𝑥, 𝑦) is immediate: if 𝐹 is any 𝑥–𝑦 edge cut and 𝒫 is a set

of pairwise edge-disjoint 𝑥–𝑦 paths, then each path in 𝒫 must use at least one edge of 𝐹, and

since the paths are edge-disjoint those edges of 𝐹 must be distinct. Hence |𝐹| ≥ |𝒫|, and taking

minima/maxima gives 𝜆′(𝑥, 𝑦) ≤ 𝜅′(𝑥, 𝑦).
For the reverse inequality, reduce to the vertex version of Menger by subdividing edges. Form a

new graph (or digraph) 𝐺∗ by subdividing every edge 𝑒 = 𝑢𝑣 once: replace 𝑒 by a length-2 path

𝑢 − 𝑠𝑒 − 𝑣, where 𝑠𝑒 is a new vertex unique to 𝑒 (and in the directed case, replace (𝑢, 𝑣) by (𝑢, 𝑠𝑒)
and (𝑠𝑒 , 𝑣)). Then:

• An 𝑥–𝑦 path in 𝐺 corresponds to an 𝑥–𝑦 path in 𝐺∗ whose internal vertices among the new

subdivision vertices are exactly the 𝑠𝑒 for edges used by the original path.

• Two 𝑥–𝑦 paths in 𝐺 are edge-disjoint if and only if the corresponding 𝑥–𝑦 paths in 𝐺∗

are internally vertex-disjoint (because distinct edges correspond to distinct subdivision

vertices).

• A set of edges 𝐹 separates 𝑥 from 𝑦 in 𝐺 if and only if the set of subdivision vertices

{𝑠𝑒 : 𝑒 ∈ 𝐹} separates 𝑥 from 𝑦 in 𝐺∗.

Therefore

𝜆′(𝑥, 𝑦) = 𝜆𝐺∗(𝑥, 𝑦) and 𝜅′(𝑥, 𝑦) = 𝜅𝐺∗(𝑥, 𝑦),
where the right-hand sides are the vertex-disjoint-path / vertex-separator parameters in 𝐺∗.
Applying the vertex form of Menger to 𝐺∗ yields 𝜆𝐺∗(𝑥, 𝑦) = 𝜅𝐺∗(𝑥, 𝑦), and hence 𝜆′(𝑥, 𝑦) =
𝜅′(𝑥, 𝑦) as desired. □

Corollary 21.5 (Global connectivity via local disjoint paths). Let 𝐺 be a graph (or digraph),

and let 𝜆(𝑥, 𝑦) denote the maximum number of pairwise internally vertex-disjoint 𝑥–𝑦

paths.

1. 𝐺 is 𝑘-connected ⇐⇒ 𝜆(𝑥, 𝑦) ≥ 𝑘 for all distinct 𝑥, 𝑦 ∈ 𝑉(𝐺).
2. 𝐺 is 𝑘-edge-connected ⇐⇒ 𝜆′(𝑥, 𝑦) ≥ 𝑘 for all distinct 𝑥, 𝑦 ∈ 𝑉(𝐺).

Proof. (2) Recall the standard identity

𝜅′(𝐺) = min

𝑥,𝑦∈𝑉(𝐺)
𝑥≠𝑦

𝜅′(𝑥, 𝑦).

Thus 𝐺 is 𝑘-edge-connected iff 𝜅′(𝑥, 𝑦) ≥ 𝑘 for all 𝑥 ≠ 𝑦. By Theorem 21.4, 𝜅′(𝑥, 𝑦) = 𝜆′(𝑥, 𝑦) for

all 𝑥 ≠ 𝑦, giving the equivalence.

(1) Similarly,

𝜅(𝐺) = min

𝑥,𝑦∈𝑉(𝐺)
𝑥≠𝑦

𝜅(𝑥, 𝑦),

where 𝜅(𝑥, 𝑦) is the minimum size of an 𝑥–𝑦 vertex separator. By the vertex form of Menger,

𝜅(𝑥, 𝑦) = 𝜆(𝑥, 𝑦) for all 𝑥 ≠ 𝑦. Hence 𝜅(𝐺) ≥ 𝑘 iff 𝜆(𝑥, 𝑦) ≥ 𝑘 for all 𝑥 ≠ 𝑦, i.e. 𝐺 is 𝑘-connected

iff the stated local path condition holds. □

Properties of 𝑘-connected graphs 191

21.2 Network flows and Max-Flow Min-Cut Theorem

Menger’s theorems say, roughly, that “many disjoint routes” between two terminals exist if and

only if you must delete many vertices/edges to separate the terminals. Network flows package

this idea into an optimization problem: instead of asking for disjoint paths directly, we send

flow through a capacitated network and compare it to the cheapest way to block the flow.

Definition 21.15 (Flow network). A flow network is a digraph 𝐷 = (𝑉, 𝐴) together with a

capacity function 𝑐 : 𝐴→ R≥0 and two distinct vertices 𝑠, 𝑡 ∈ 𝑉 called the source and sink.

Definition 21.16 (Feasible flow and its value). A flow is a function 𝑓 : 𝐴→ R≥0 such that:

• (Capacity constraints) 0 ≤ 𝑓 (𝑎) ≤ 𝑐(𝑎) for every arc 𝑎 ∈ 𝐴.

• (Flow conservation) For every 𝑣 ∈ 𝑉 \ {𝑠, 𝑡},∑
(𝑢,𝑣)∈𝐴

𝑓 (𝑢, 𝑣) =

∑
(𝑣,𝑤)∈𝐴

𝑓 (𝑣, 𝑤).

The value of 𝑓 is the net flow out of 𝑠,

| 𝑓 | :=

∑
(𝑠,𝑤)∈𝐴

𝑓 (𝑠, 𝑤) −
∑
(𝑢,𝑠)∈𝐴

𝑓 (𝑢, 𝑠),

which equals the net flow into 𝑡 by conservation.

Definition 21.17 (𝑠–𝑡 cut and its capacity). An 𝑠–𝑡 cut is a partition (𝑆, 𝑆) of 𝑉 with 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑆. Its capacity is

𝑐(𝑆, 𝑆) :=

∑
(𝑢,𝑣)∈𝐴
𝑢∈𝑆, 𝑣∈𝑆

𝑐(𝑢, 𝑣),

the total capacity of arcs leaving 𝑆.

Theorem 21.6 (Max-Flow Min-Cut). In any flow network,

max{| 𝑓 | : 𝑓 is a feasible flow} = min{𝑐(𝑆, 𝑆) : (𝑆, 𝑆) is an 𝑠–𝑡 cut}.

How this recovers Menger: Let 𝐺 be an undirected graph and fix distinct vertices 𝑥, 𝑦. Turn

𝐺 into a flow network by replacing each undirected edge {𝑢, 𝑣} with two opposite arcs (𝑢, 𝑣)
and (𝑣, 𝑢), and assign capacity 1 to every arc. Take 𝑠 = 𝑥 and 𝑡 = 𝑦.

• Any set of 𝑘 edge-disjoint 𝑥–𝑦 paths gives a flow of value 𝑘: send one unit of flow along

each path. (With unit capacities, edge-disjointness ensures no edge is asked to carry more

than 1.)

• Any 𝑥–𝑦 edge cut 𝐹 gives an 𝑠–𝑡 cut of capacity |𝐹|: choose 𝑆 to be the vertices reachable

from 𝑥 in 𝐺 − 𝐹; then every arc from 𝑆 to 𝑆 corresponds to an edge of 𝐹, and conversely.

Properties of 𝑘-connected graphs 192

Thus the maximum flow value equals the maximum number of edge-disjoint 𝑥–𝑦 paths, and

the minimum cut capacity equals the minimum size of an 𝑥–𝑦 edge cut. By Theorem 21.6 these

are equal, which is exactly the edge form of Menger:

𝜆′(𝑥, 𝑦) = 𝜅′(𝑥, 𝑦).

Vertex version: Replace each vertex 𝑣 ∉ {𝑥, 𝑦} by two vertices 𝑣in
and 𝑣out

joined by an arc

𝑣in𝑣out
of capacity 1, and redirect every original arc entering 𝑣 to 𝑣in

and every original arc

leaving 𝑣 from 𝑣out
. Give all redirected arcs capacity∞ (or a sufficiently large number).

Then sending one unit of flow through 𝑣in𝑣out
“uses up” the capacity-1 vertex 𝑣, so integral flows

correspond to collections of internally vertex-disjoint 𝑥–𝑦 paths, and minimum cuts correspond

to minimum 𝑥–𝑦 vertex separators. Applying Max-Flow Min-Cut in this transformed network

yields Menger’s theorem in its vertex form.

Menger’s theorems are the unit-capacity, disjoint-path special cases of Max-Flow Min-Cut.

Flows generalize them by allowing arbitrary capacities (not just 0/1), fractional routing, and

weighted “cost to destroy” bottlenecks, which is exactly why they became the framework of

modern network design.

21.3 The Ford–Fulkerson algorithm

The max-flow min-cut theorem tells us the optimum flow value equals the minimum cut capacity.

Ford–Fulkerson is the basic method that actually finds a maximum flow by repeatedly routing

more flow along an augmenting path in a residual network.

Definition 21.18 (Residual network). Let (𝐷 = (𝑉, 𝐴), 𝑐, 𝑠 , 𝑡) be a flow network and let 𝑓

be a feasible flow. The residual capacity of an arc (𝑢, 𝑣) ∈ 𝐴 is 𝑐(𝑢, 𝑣) − 𝑓 (𝑢, 𝑣). The residual
network 𝐷 𝑓 has vertex set 𝑉 and contains:

• a forward arc (𝑢, 𝑣)with capacity 𝑐(𝑢, 𝑣) − 𝑓 (𝑢, 𝑣)whenever 𝑐(𝑢, 𝑣) − 𝑓 (𝑢, 𝑣) > 0;

• a backward arc (𝑣, 𝑢)with capacity 𝑓 (𝑢, 𝑣)whenever 𝑓 (𝑢, 𝑣) > 0.

Definition 21.19 (Augmenting path). An augmenting path (with respect to 𝑓) is a directed

𝑠–𝑡 path in the residual network 𝐷 𝑓 . Its bottleneck (or residual capacity) is

Δ := min{𝑐 𝑓 (𝑒) : 𝑒 is an arc on the path},

where 𝑐 𝑓 denotes residual capacities.

The Ford-Fulkerson algorithm runs as follows:

1. Initialize 𝑓 ≡ 0.

2. While there exists an augmenting path 𝑃 from 𝑠 to 𝑡 in 𝐷 𝑓 :

(a) Let Δ be the bottleneck residual capacity of 𝑃.

(b) For each arc on 𝑃:

• if the arc is a forward arc (𝑢, 𝑣) (original direction), increase 𝑓 (𝑢, 𝑣) by Δ;

• if the arc is a backward arc (𝑣, 𝑢) (undoing flow), decrease 𝑓 (𝑢, 𝑣) by Δ.

Properties of 𝑘-connected graphs 193

(c) Update the residual network and repeat.

3. Output 𝑓 .

Theorem 21.7 (Correctness of Ford–Fulkerson). If all capacities are integers, Ford–Fulkerson

terminates and outputs a maximum 𝑠–𝑡 flow. Moreover, when it terminates, the set 𝑆 of

vertices reachable from 𝑠 in the residual network 𝐷 𝑓 defines a minimum cut (𝑆, 𝑆).

Proof. Let 𝑓 be the current flow and let 𝑃 be an augmenting path with bottleneck Δ. Augmenting

byΔpreserves feasibility: on forward arcs we do not exceed capacity becauseΔ ≤ 𝑐(𝑢, 𝑣)− 𝑓 (𝑢, 𝑣),
and on backward arcs we do not make flow negative because Δ ≤ 𝑓 (𝑢, 𝑣). Flow conservation

is preserved at internal vertices of 𝑃 because we add Δ to exactly one incoming/outgoing arc

in the residual sense, so net flow at each internal vertex remains 0. Thus each augmentation

produces a feasible flow whose value increases by Δ > 0.

If capacities are integers, then every residual capacity is an integer, so each Δ is a positive

integer. Hence the flow value strictly increases by at least 1 each iteration. Since the flow value

is always at most the total capacity leaving 𝑠, only finitely many augmentations are possible, so

the algorithm terminates.

Now suppose the algorithm terminates at flow 𝑓 , so there is no augmenting path in 𝐷 𝑓 . Let 𝑆

be the set of vertices reachable from 𝑠 in 𝐷 𝑓 . Then 𝑡 ∉ 𝑆 by assumption, so (𝑆, 𝑆) is an 𝑠–𝑡 cut.

We claim the value of 𝑓 equals the capacity of this cut. Consider any arc (𝑢, 𝑣) of the original

network with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆. If 𝑓 (𝑢, 𝑣) < 𝑐(𝑢, 𝑣), then the forward residual arc (𝑢, 𝑣) would

have positive residual capacity, so 𝑣 would be reachable from 𝑠, contradicting 𝑣 ∈ 𝑆. Hence

every such arc is saturated: 𝑓 (𝑢, 𝑣) = 𝑐(𝑢, 𝑣).
Similarly, for any original arc (𝑢, 𝑣) with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆, if 𝑓 (𝑢, 𝑣) > 0 then the backward

residual arc (𝑣, 𝑢) would exist with positive residual capacity, making 𝑢 reachable from 𝑠, again

a contradiction. Thus every arc entering 𝑆 from 𝑆 carries zero flow: 𝑓 (𝑢, 𝑣) = 0.

Therefore the net flow crossing from 𝑆 to 𝑆 equals∑
(𝑢,𝑣)∈𝐴
𝑢∈𝑆, 𝑣∈𝑆

𝑓 (𝑢, 𝑣) −
∑
(𝑢,𝑣)∈𝐴
𝑢∈𝑆, 𝑣∈𝑆

𝑓 (𝑢, 𝑣) =

∑
(𝑢,𝑣)∈𝐴
𝑢∈𝑆, 𝑣∈𝑆

𝑐(𝑢, 𝑣) = 𝑐(𝑆, 𝑆).

But the left-hand side is exactly | 𝑓 | (the flow value), by flow conservation inside 𝑆. Hence

| 𝑓 | = 𝑐(𝑆, 𝑆).
Finally, for any feasible flow 𝑔 and any cut (𝑆, 𝑆) we always have |𝑔| ≤ 𝑐(𝑆, 𝑆) (the cut is an

upper bound on flow). Thus | 𝑓 | = 𝑐(𝑆, 𝑆) implies 𝑓 is a maximum flow and (𝑆, 𝑆) is a minimum

cut. □

Remark 21.3 (Complexity and a standard refinement). Ford–Fulkerson depends on how

augmenting paths are chosen. With irrational capacities it may not terminate. With integer

capacities it terminates, but the number of iterations can be large. Choosing augmenting paths

by BFS in the residual network gives the Edmonds–Karp algorithm, which runs in polynomial

time 𝑂(|𝑉 ||𝐸|2).

Bipartite matching via max flow Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be bipartite. Build a flow network by

adding a source 𝑠 and sink 𝑡, directing edges left-to-right, and giving unit capacities:

𝑠 → ℓ (1) (ℓ ∈ 𝐿), ℓ → 𝑟 (1) (ℓ 𝑟 ∈ 𝐸), 𝑟 → 𝑡 (1) (𝑟 ∈ 𝑅).

Properties of 𝑘-connected graphs 194

Because all capacities are 1, any integral 𝑠–𝑡 flow is a collection of edge-disjoint paths 𝑠 → ℓ →
𝑟 → 𝑡. Reading off the middle edges gives a matching

𝑀 𝑓 := {ℓ 𝑟 ∈ 𝐸 : 𝑓 (ℓ , 𝑟) = 1}, |𝑀 𝑓 | = | 𝑓 |.

Conversely, any matching 𝑀 yields a flow of value |𝑀| by sending one unit along 𝑠 → ℓ → 𝑟 → 𝑡

for each ℓ 𝑟 ∈ 𝑀. Hence maximum matching size equals maximum flow value, and Ford–

Fulkerson becomes exactly the usual augmenting-path algorithm for matchings.

21.4 Expansion and Fan Lemma

Lemma 21.8 (Expansion Lemma). Let 𝑘 ≥ 1 and let 𝐺 be a 𝑘-connected graph. Let 𝐺′ be

obtained from 𝐺 by adding a new vertex 𝑦 adjacent to at least 𝑘 vertices of 𝐺. Then 𝐺′ is

𝑘-connected.

Proof. We must show that deleting any set of at most 𝑘 − 1 vertices leaves 𝐺′ connected.

Let 𝑆 ⊆ 𝑉(𝐺′)with |𝑆| ≤ 𝑘 − 1. We prove that 𝐺′ − 𝑆 is connected.

Case 1: 𝑦 ∈ 𝑆. Then

𝐺′ − 𝑆 = 𝐺 − (𝑆 \ {𝑦}).
Since |𝑆 \ {𝑦}| ≤ 𝑘 − 2 < 𝑘 and 𝐺 is 𝑘-connected, the graph 𝐺 − (𝑆 \ {𝑦}) is connected. Hence

𝐺′ − 𝑆 is connected.

Case 2: 𝑦 ∉ 𝑆. Because 𝑦 has at least 𝑘 neighbors in 𝐺 and 𝑆 contains at most 𝑘 − 1 vertices, 𝑆

cannot contain all neighbors of 𝑦. Thus we may choose a neighbor

𝑢 ∈ 𝑁𝐺′(𝑦) \ 𝑆.

Consider the subgraph induced by the original vertices 𝑉(𝐺) \ 𝑆. This is exactly the graph

𝐺− (𝑆∩𝑉(𝐺)), and since |𝑆∩𝑉(𝐺)| ≤ |𝑆| ≤ 𝑘 − 1, 𝑘-connectivity of 𝐺 implies that 𝐺− (𝑆∩𝑉(𝐺))
is connected.

Therefore, for every vertex 𝑣 ∈ 𝑉(𝐺) \ 𝑆, there is a path from 𝑢 to 𝑣 in 𝐺 − (𝑆 ∩𝑉(𝐺)) ⊆ 𝐺′ − 𝑆.

Appending the edge 𝑦𝑢 shows that 𝑦 is connected to every vertex of 𝑉(𝐺) \ 𝑆 inside 𝐺′ − 𝑆.

Hence 𝐺′ − 𝑆 is connected.

In all cases, deleting at most 𝑘−1 vertices does not disconnect𝐺′. Therefore𝐺′ is 𝑘-connected. □

Definition 21.20 (𝑥,𝑈-fan). Let 𝐺 be a graph, let 𝑥 ∈ 𝑉(𝐺), and let𝑈 ⊆ 𝑉(𝐺)with 𝑥 ∉ 𝑈 .

An 𝑥,𝑈-fan of size 𝑘 is a family of paths 𝑃1 , . . . , 𝑃𝑘 such that:

1. each 𝑃𝑖 is an 𝑥–𝑢𝑖 path for some (not necessarily distinct) 𝑢𝑖 ∈ 𝑈 ;

2. the paths are internally vertex-disjoint: for 𝑖 ≠ 𝑗,(
𝑉(𝑃𝑖) \ {𝑥, 𝑢𝑖}

)
∩

(
𝑉(𝑃𝑗) \ {𝑥, 𝑢𝑗}

)
= ∅;

3. each 𝑃𝑖 meets𝑈 only at its endpoint 𝑢𝑖 (equivalently, 𝑉(𝑃𝑖) ∩𝑈 = {𝑢𝑖}).

Equivalently: the paths all start at 𝑥, end in 𝑈 , and are pairwise disjoint except for the

common start vertex 𝑥.

Properties of 𝑘-connected graphs 195

Lemma 21.9 (Fan Lemma; Dirac (1960)). Let 𝑘 ≥ 1 and let 𝐺 be a graph with |𝑉(𝐺)| ≥ 𝑘 + 1.

Then 𝐺 is 𝑘-connected if and only if for every vertex 𝑥 ∈ 𝑉(𝐺) and every set𝑈 ⊆ 𝑉(𝐺)with

𝑥 ∉ 𝑈 and |𝑈 | ≥ 𝑘, there exists an 𝑥,𝑈-fan of size 𝑘.

Proof. (⇒) Assume 𝐺 is 𝑘-connected. Fix 𝑥 ∈ 𝑉(𝐺) and 𝑈 ⊆ 𝑉(𝐺) with 𝑥 ∉ 𝑈 and |𝑈 | ≥ 𝑘.

Choose any subset𝑈0 ⊆ 𝑈 with |𝑈0| = 𝑘.

Form a new graph 𝐺′ from 𝐺 by adding a new vertex 𝑦 adjacent to every vertex of 𝑈0. By

Lemma 21.8 (Expansion Lemma), 𝐺′ is 𝑘-connected.

Apply Menger’s theorem (vertex form) in 𝐺′ to the vertices 𝑥 and 𝑦. Since 𝐺′ is 𝑘-connected,

every 𝑥–𝑦 separator has size at least 𝑘, hence Menger yields 𝑘 pairwise internally vertex-disjoint

𝑥–𝑦 paths 𝑄1 , . . . , 𝑄𝑘 in 𝐺′.

Each𝑄𝑖 must enter 𝑦 through one of its neighbors, and 𝑁𝐺′(𝑦) = 𝑈0. Let 𝑢𝑖 ∈ 𝑈0 be the neighbor

of 𝑦 used by 𝑄𝑖 , and let 𝑃𝑖 be the subpath of 𝑄𝑖 from 𝑥 to the first vertex of 𝑈0 encountered

along 𝑄𝑖 (which is necessarily 𝑢𝑖).

Then 𝑃𝑖 is an 𝑥–𝑢𝑖 path in the original graph 𝐺 (it does not use 𝑦), and by construction it meets

𝑈0 only at its endpoint 𝑢𝑖 . Moreover, because the 𝑄𝑖 are internally disjoint, the truncated paths

𝑃𝑖 are still internally disjoint and share only the start vertex 𝑥. Thus 𝑃1 , . . . , 𝑃𝑘 form an 𝑥,𝑈0-fan

of size 𝑘, and since𝑈0 ⊆ 𝑈 , they are also an 𝑥,𝑈-fan of size 𝑘.

(⇐) Assume the fan condition holds for all 𝑥 and 𝑈 with |𝑈 | ≥ 𝑘. Suppose for contradiction

that 𝐺 is not 𝑘-connected. Then there exists a vertex cut 𝑆 ⊆ 𝑉(𝐺) with |𝑆| ≤ 𝑘 − 1 such that

𝐺 − 𝑆 is disconnected. Choose vertices 𝑥 and 𝑧 in distinct components of 𝐺 − 𝑆.

Let𝑈 := 𝑆 ∪ {𝑧}. Then 𝑥 ∉ 𝑈 and

|𝑈 | = |𝑆| + 1 ≤ 𝑘.
If |𝑈 | < 𝑘, enlarge𝑈 by adding arbitrary vertices of𝑉(𝐺) \ ({𝑥}∪𝑈) until |𝑈 | = 𝑘; this is possible

since |𝑉(𝐺)| ≥ 𝑘 + 1. Call the resulting set still𝑈 . Then 𝑥 ∉ 𝑈 and |𝑈 | = 𝑘.

Now consider any 𝑥,𝑈-fan of size 𝑘. Since the paths in a fan are internally vertex-disjoint, and

all of them must reach𝑈 , at most one of the fan paths can end at 𝑧. The remaining 𝑘 − 1 paths

must end in𝑈 \ {𝑧}.
But every 𝑥–𝑧 path in 𝐺 meets 𝑆 (because 𝑥 and 𝑧 are in different components of 𝐺 − 𝑆). In

particular, every path from 𝑥 to any vertex of𝑈 that lies in the component of 𝑧 in 𝐺 − 𝑆 must

pass through 𝑆. Since |𝑆| ≤ 𝑘 − 1, pigeonhole says 𝑘 internally disjoint 𝑥–𝑈 paths cannot all

avoid sharing an internal vertex in 𝑆: with 𝑘 paths, at least two would have to pass through the

same vertex of 𝑆.

Thus no 𝑥,𝑈-fan of size 𝑘 can exist, contradicting the hypothesis. Therefore 𝐺 must be

𝑘-connected. □

21.5 Dirac’s theorem on 𝑘 vertices on common cycle

Theorem 21.10 (Dirac (1960)). Let 𝑘 ≥ 2. Every set of 𝑘 vertices in a 𝑘-connected graph 𝐺

lies on a common cycle of 𝐺.

Proof. We argue by induction on 𝑘.

Base case 𝑘 = 2. Let 𝑆 = {𝑥, 𝑦}. Since 𝐺 is 2-connected, Menger’s theorem gives two internally

vertex-disjoint 𝑥–𝑦 paths. Their union is a cycle containing 𝑥 and 𝑦.

Properties of 𝑘-connected graphs 196

Induction step. Assume 𝑘 ≥ 3 and the statement holds for 𝑘 − 1. Let 𝑆 be any set of 𝑘 vertices

in 𝐺, and fix 𝑥 ∈ 𝑆. Because 𝐺 is 𝑘-connected it is also (𝑘 − 1)-connected, so the induction

hypothesis applies to

𝑆0 := 𝑆 \ {𝑥}, |𝑆0| = 𝑘 − 1.

Hence there exists a cycle 𝐶 in 𝐺 containing all vertices of 𝑆0.

If 𝑥 ∈ 𝑉(𝐶), then 𝐶 already contains 𝑆 and we are done. So assume 𝑥 ∉ 𝑉(𝐶). Write the vertices

of 𝑆0 in their cyclic order along 𝐶 as

𝑠1 , 𝑠2 , . . . , 𝑠𝑘−1 ,

and let 𝐴𝑖 denote the 𝑠𝑖–𝑠𝑖+1 segment of 𝐶 (indices taken modulo 𝑘 − 1). Thus the segments

𝐴1 , . . . , 𝐴𝑘−1 partition the edges of 𝐶, and by construction each 𝐴𝑖 contains no vertex of 𝑆0

internally.

We now insert 𝑥 into the cycle using the Fan Lemma (Lemma 21.9).

Case 1: |𝑉(𝐶)| ≥ 𝑘. Apply the Fan Lemma in the 𝑘-connected graph 𝐺 to the vertex 𝑥 and the

set𝑈 := 𝑉(𝐶) (note that |𝑈 | ≥ 𝑘). We obtain an 𝑥,𝑈-fan of size 𝑘, i.e. internally disjoint paths

𝑃1 , . . . , 𝑃𝑘

from 𝑥 to distinct vertices 𝑢1 , . . . , 𝑢𝑘 ∈ 𝑉(𝐶), each meeting 𝐶 only at its endpoint.

Since the 𝑘 endpoints 𝑢1 , . . . , 𝑢𝑘 lie on 𝐶 and the cycle 𝐶 is partitioned into only 𝑘 − 1 segments

𝐴1 , . . . , 𝐴𝑘−1, by the pigeonhole principle there exist two endpoints, say 𝑢 and 𝑣, that lie on

the same segment 𝐴𝑖 . Let 𝑄 be the 𝑢–𝑣 subpath of 𝐶 contained in 𝐴𝑖 . By definition of 𝐴𝑖 , the

interior of 𝑄 contains no vertex of 𝑆0.

Let 𝑅 be the complementary 𝑢–𝑣 subpath of 𝐶 (so 𝐶 = 𝑄 ∪ 𝑅 and 𝑄 ∩ 𝑅 = {𝑢, 𝑣}). Then 𝑅

contains every vertex of 𝑆0. Now consider the subgraph

𝐶′ := 𝑅 ∪ 𝑃𝑢 ∪ 𝑃𝑣 ,

where 𝑃𝑢 , 𝑃𝑣 are the two fan paths ending at 𝑢 and 𝑣. Because 𝑃𝑢 and 𝑃𝑣 are internally disjoint

and meet 𝐶 only at their endpoints, the union 𝑅 ∪ 𝑃𝑢 ∪ 𝑃𝑣 is a simple cycle: it goes from 𝑢 along

𝑃𝑢 to 𝑥, back along 𝑃𝑣 to 𝑣, and then along 𝑅 to return to 𝑢.

This cycle 𝐶′ contains 𝑥 and all of 𝑆0 ⊆ 𝑉(𝑅), hence contains 𝑆.

Case 2: |𝑉(𝐶)| = 𝑘 − 1. Then 𝑉(𝐶) = 𝑆0 (a cycle on 𝑘 − 1 vertices cannot contain more than 𝑘 − 1

distinct vertices). Apply the Fan Lemma with parameter 𝑘 − 1 (valid since 𝐺 is (𝑘 − 1)-connected)

to 𝑥 and 𝑈 := 𝑉(𝐶). We obtain an 𝑥,𝑈-fan of size 𝑘 − 1, whose endpoints must therefore be

all vertices of 𝐶. In particular, choose two adjacent vertices 𝑢, 𝑣 on 𝐶, and let 𝑢𝑣 denote the

corresponding edge of 𝐶. Let 𝑅 be the 𝑢–𝑣 path on 𝐶 that avoids the edge 𝑢𝑣; then 𝑅 contains

all other vertices of 𝐶.

Let 𝑃𝑢 , 𝑃𝑣 be the fan paths from 𝑥 to 𝑢 and to 𝑣. As above, 𝑃𝑢 and 𝑃𝑣 meet 𝐶 only at their

endpoints and are internally disjoint, so

𝐶′ := 𝑅 ∪ 𝑃𝑢 ∪ 𝑃𝑣

is a cycle. This cycle contains 𝑥 and all vertices of 𝐶 = 𝑉(𝐶), hence it contains 𝑆.

In both cases we found a cycle containing all 𝑘 vertices of 𝑆. This completes the induction. □

Properties of 𝑘-connected graphs 197

21.6 Ford-Fulkerson CSDR

Definition 21.21 (CSDR). Let 𝐴 = {𝐴1 , . . . , 𝐴𝑚} be a family of sets. Recall a system of distinct
representatives (SDR) for 𝐴 is an injective map

𝜑 : [𝑚] →
𝑚⋃
𝑖=1

𝐴𝑖 such that 𝜑(𝑖) ∈ 𝐴𝑖 for all 𝑖.

Equivalently, it is a set 𝑅 = {𝜑(1), . . . , 𝜑(𝑚)} of 𝑚 distinct elements with 𝜑(𝑖) ∈ 𝐴𝑖 .
Now let 𝐴 = {𝐴1 , . . . , 𝐴𝑚} and 𝐵 = {𝐵1 , . . . , 𝐵𝑚} be two families of 𝑚 sets. A common system
of distinct representatives (CSDR) for 𝐴 and 𝐵 is a set 𝑅 of 𝑚 elements such that 𝑅 is an SDR

for 𝐴 and also an SDR for 𝐵 (possibly with different assignments). Equivalently, there exist

bĳections

𝜑𝐴 : [𝑚] → 𝑅, 𝜑𝐵 : [𝑚] → 𝑅

with 𝜑𝐴(𝑖) ∈ 𝐴𝑖 and 𝜑𝐵(𝑗) ∈ 𝐵𝑗 for all 𝑖 , 𝑗.

Theorem 21.11 (Ford–Fulkerson (1958)). Let 𝐴 = {𝐴1 , . . . , 𝐴𝑚} and 𝐵 = {𝐵1 , . . . , 𝐵𝑚} be

families of 𝑚 sets. For 𝐼 , 𝐽 ⊆ [𝑚]write

𝐴(𝐼) :=

⋃
𝑖∈𝐼
𝐴𝑖 , 𝐵(𝐽) :=

⋃
𝑗∈𝐽
𝐵 𝑗 .

Then 𝐴 and 𝐵 have a CSDR if and only if

|𝐴(𝐼) ∩ 𝐵(𝐽)| ≥ |𝐼| + |𝐽 | − 𝑚 for all 𝐼 , 𝐽 ⊆ [𝑚].

Proof. It is convenient to rewrite the condition as

|𝐴(𝐼) ∩ 𝐵(𝐽)| + (𝑚 − |𝐼|) + (𝑚 − |𝐽 |) ≥ 𝑚 for all 𝐼 , 𝐽 ⊆ [𝑚], (∗)

which is equivalent by rearranging terms.

Step 1: Build a layered digraph. Let 𝑋 :=
(⋃

𝑖 𝐴𝑖
)
∪

(⋃
𝑗 𝐵 𝑗

)
be the ground set of elements.

Construct a digraph 𝐷 with vertex set

𝑉(𝐷) = {𝑠, 𝑡} ∪ 𝐴′ ∪ 𝑋 ∪ 𝐵′ , where 𝐴′ := {𝑎1 , . . . , 𝑎𝑚}, 𝐵′ := {𝑏1 , . . . , 𝑏𝑚}.

Add arcs

𝑠 → 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑚), 𝑎𝑖 → 𝑥 (𝑥 ∈ 𝐴𝑖),
𝑥 → 𝑏 𝑗 (𝑥 ∈ 𝐵𝑗), 𝑏 𝑗 → 𝑡 (1 ≤ 𝑗 ≤ 𝑚).

Every directed 𝑠–𝑡 path in 𝐷 has the form

𝑠 → 𝑎𝑖 → 𝑥 → 𝑏 𝑗 → 𝑡 with 𝑥 ∈ 𝐴𝑖 ∩ 𝐵 𝑗 .

Step 2: CSDR⇐⇒ 𝑚 internally disjoint 𝑠–𝑡 paths. We claim: 𝐴 and 𝐵 have a CSDR if and

only if 𝐷 contains 𝑚 pairwise internally vertex-disjoint directed 𝑠–𝑡 paths.

(⇒) Suppose 𝑅 is a CSDR. Choose bĳections 𝜑𝐴 , 𝜑𝐵 as in Definition 21.21. For each 𝑖 ∈ [𝑚]
consider the path

𝑃𝑖 : 𝑠 → 𝑎𝑖 → 𝜑𝐴(𝑖) → 𝑏𝜑−1

𝐵
(𝜑𝐴(𝑖)) → 𝑡.

Properties of 𝑘-connected graphs 198

All these paths are internally vertex-disjoint because: distinct 𝑖 give distinct 𝑎𝑖 ; the representatives

𝜑𝐴(𝑖) are distinct elements of 𝑅; and distinct representatives also force distinct 𝑏-vertices (since

𝜑𝐵 is a bĳection onto 𝑅). Hence we obtain 𝑚 internally disjoint 𝑠–𝑡 paths.

(⇐) Conversely, suppose 𝐷 has 𝑚 internally vertex-disjoint 𝑠–𝑡 paths. Each such path uses

exactly one vertex of 𝐴′ and one of 𝐵′. Since there are only 𝑚 vertices in each of 𝐴′ and 𝐵′,
disjointness forces the paths to use all vertices 𝑎1 , . . . , 𝑎𝑚 and all vertices 𝑏1 , . . . , 𝑏𝑚 exactly once.

Let 𝑅 be the set of the 𝑚 distinct element-vertices 𝑥 ∈ 𝑋 used by the paths. Assign to each 𝐴𝑖
the unique 𝑥 ∈ 𝑅 lying on the path through 𝑎𝑖 , and to each 𝐵 𝑗 the unique 𝑥 ∈ 𝑅 lying on the

path through 𝑏 𝑗 . This makes 𝑅 an SDR for both 𝐴 and 𝐵, i.e. a CSDR.

So the claim holds.

Step 3: Apply Menger and identify the relevant separators. By the directed vertex version of

Menger’s theorem, 𝐷 has 𝑚 internally disjoint 𝑠–𝑡 paths if and only if every 𝑠–𝑡 separating set

(vertex cut) has size at least 𝑚.

Fix any 𝑠–𝑡 separating set 𝑅 ⊆ 𝑉(𝐷) \ {𝑠, 𝑡}, and define index sets

𝐼 := { 𝑖 ∈ [𝑚] : 𝑎𝑖 ∉ 𝑅 }, 𝐽 := { 𝑗 ∈ [𝑚] : 𝑏 𝑗 ∉ 𝑅 }.

Then 𝑅 must contain every element-vertex in 𝐴(𝐼) ∩ 𝐵(𝐽): indeed, if 𝑥 ∈ 𝐴(𝐼) ∩ 𝐵(𝐽) and 𝑥 ∉ 𝑅,

then there exist 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 with 𝑥 ∈ 𝐴𝑖 ∩ 𝐵 𝑗 , so the path 𝑠 → 𝑎𝑖 → 𝑥 → 𝑏 𝑗 → 𝑡 avoids 𝑅,

contradicting that 𝑅 separates 𝑠 from 𝑡. Therefore

𝐴(𝐼) ∩ 𝐵(𝐽) ⊆ 𝑅.

Also, 𝑅 contains exactly the 𝐴′-vertices not in 𝐼 and the 𝐵′-vertices not in 𝐽, so

|𝑅| ≥ |𝐴(𝐼) ∩ 𝐵(𝐽)| + (𝑚 − |𝐼|) + (𝑚 − |𝐽 |).

Conversely, for every choice of 𝐼 , 𝐽 ⊆ [𝑚], the set

𝑅𝐼 ,𝐽 :=
(
{𝑎𝑖 : 𝑖 ∉ 𝐼}

)
∪

(
𝐴(𝐼) ∩ 𝐵(𝐽)

)
∪

(
{𝑏 𝑗 : 𝑗 ∉ 𝐽}

)
is an 𝑠–𝑡 separating set (it destroys every possible 𝑠 → 𝑎𝑖 → 𝑥 → 𝑏 𝑗 → 𝑡 path), and it has size

exactly

|𝑅𝐼 ,𝐽 | = |𝐴(𝐼) ∩ 𝐵(𝐽)| + (𝑚 − |𝐼|) + (𝑚 − |𝐽 |).
Hence the minimum size of an 𝑠–𝑡 separating set is

min

𝐼 ,𝐽⊆[𝑚]

(
|𝐴(𝐼) ∩ 𝐵(𝐽)| + (𝑚 − |𝐼|) + (𝑚 − |𝐽 |)

)
.

Therefore, every 𝑠–𝑡 separator has size at least 𝑚 if and only if (∗) holds for all 𝐼 , 𝐽. By Step 2 and

Menger’s theorem, this is equivalent to existence of a CSDR. □

Remark 21.4. The inequality |𝐴(𝐼) ∩ 𝐵(𝐽)| ≥ |𝐼| + |𝐽 | − 𝑚 says: no matter how many 𝐴-sets you

insist on representing (|𝐼|) and how many 𝐵-sets you insist on representing (|𝐽 |), the overlap pool

𝐴(𝐼) ∩ 𝐵(𝐽) must be large enough to supply the representatives that must serve both families

simultaneously.

Theorem 21.12. If 𝐺 is a 3-regular graph with |𝑉(𝐺)| ≥ 4, then

𝜅(𝐺) = 𝜅′(𝐺).

Properties of 𝑘-connected graphs 199

Proof. Since 𝐺 is 3-regular, 𝛿(𝐺) = 3. The general inequalities

𝜅(𝐺) ≤ 𝜅′(𝐺) ≤ 𝛿(𝐺)

imply 𝜅(𝐺) ≤ 𝜅′(𝐺) ≤ 3. Thus it suffices to prove the reverse inequality

𝜅′(𝐺) ≤ 𝜅(𝐺),

i.e. for each possible value of 𝜅(𝐺) ∈ {0, 1, 2, 3}we will exhibit an edge cut of size 𝜅(𝐺).

Case 0: 𝜅(𝐺) = 0. Then 𝐺 is disconnected, so 𝜅′(𝐺) = 0 as well. Hence 𝜅′(𝐺) = 𝜅(𝐺) = 0.

Case 1: 𝜅(𝐺) = 1. Then 𝐺 has a cut-vertex 𝑣. Let the components of 𝐺 − 𝑣 have vertex sets

𝐶1 , . . . , 𝐶𝑟 with 𝑟 ≥ 2. Every component 𝐶𝑖 must contain at least one neighbor of 𝑣; otherwise

it would already be a component of 𝐺. Since 𝑑(𝑣) = 3, by the pigeonhole principle there is

a component, say 𝐶1, containing exactly one neighbor 𝑢 of 𝑣. (Indeed, if every component

contained at least two neighbors of 𝑣, then 𝑑(𝑣) ≥ 2𝑟 ≥ 4.)

We claim that the edge 𝑢𝑣 is a cut-edge. After deleting 𝑢𝑣, the vertex set 𝐶1 has no remaining

edges to𝑉(𝐺) \𝐶1: it had no edges to the other 𝐶𝑖 (different components of 𝐺− 𝑣), and by choice

it had no other edge to 𝑣. Hence 𝐶1 is isolated in 𝐺 − 𝑢𝑣, so 𝑢𝑣 is a bridge and 𝜅′(𝐺) = 1 = 𝜅(𝐺).

Case 2: 𝜅(𝐺) = 2. Then 𝐺 has no cut-vertex, but it does have a 2-vertex separator. Fix one, say

{𝑢, 𝑣}. Let the components of 𝐺 − {𝑢, 𝑣} have vertex sets 𝐶1 , . . . , 𝐶𝑟 , where 𝑟 ≥ 2.

Observation: each component meets both 𝑢 and 𝑣. That is, for every 𝑖 there is at least one edge from

𝑢 into 𝐶𝑖 and at least one edge from 𝑣 into 𝐶𝑖 . Indeed, if some component 𝐶𝑖 had no neighbor

of 𝑢, then all its connections to the rest of the graph would go through 𝑣, and removing 𝑣 alone

would disconnect 𝐺, making 𝑣 a cut-vertex, contradicting 𝜅(𝐺) = 2. Symmetrically for 𝑢.

For each 𝑖 define

𝑎𝑖 := |[{𝑢}, 𝐶𝑖]|, 𝑏𝑖 := |[{𝑣}, 𝐶𝑖]|.
By the observation, 𝑎𝑖 ≥ 1 and 𝑏𝑖 ≥ 1 for all 𝑖.

Now distinguish whether 𝑢𝑣 ∈ 𝐸(𝐺).

Subcase 2a: 𝑢𝑣 ∈ 𝐸(𝐺). Then 𝑢 has exactly 2 edges to 𝐺 − {𝑢, 𝑣}, so

∑
𝑖 𝑎𝑖 = 2; similarly

∑
𝑖 𝑏𝑖 = 2.

Since each 𝑎𝑖 , 𝑏𝑖 ≥ 1, we must have 𝑟 = 2 and

(𝑎1 , 𝑎2) = (1, 1), (𝑏1 , 𝑏2) = (1, 1).

Fix 𝐶1. Then exactly two edges join 𝐶1 to {𝑢, 𝑣}, namely one from 𝑢 and one from 𝑣. Deleting

these two edges disconnects 𝐶1 from the rest of the graph, so 𝐺 has an edge cut of size 2. Hence

𝜅′(𝐺) ≤ 2 = 𝜅(𝐺).

Subcase 2b: 𝑢𝑣 ∉ 𝐸(𝐺). Then 𝑢 has 3 edges to 𝐺 − {𝑢, 𝑣}, so

∑
𝑖 𝑎𝑖 = 3; similarly

∑
𝑖 𝑏𝑖 = 3. Since

each 𝑎𝑖 , 𝑏𝑖 ≥ 1, we have 𝑟 ∈ {2, 3}.
If 𝑟 = 3, then necessarily 𝑎𝑖 = 𝑏𝑖 = 1 for all 𝑖, and again any component 𝐶𝑖 is joined to {𝑢, 𝑣} by

exactly two edges; deleting those two edges disconnects 𝐶𝑖 .

If 𝑟 = 2, then (𝑎1 , 𝑎2) is either (1, 2) or (2, 1), and the same holds for (𝑏1 , 𝑏2). Let 𝑒𝑢 be the unique
edge from 𝑢 to the component to which 𝑢 has only one neighbor (so 𝑒𝑢 is the edge accounting

for the “1” in (𝑎1 , 𝑎2)). Define 𝑒𝑣 analogously for 𝑣.

• If 𝑒𝑢 and 𝑒𝑣 go to the same component, then that component has 𝑎𝑖 = 𝑏𝑖 = 1, so the two

edges 𝑒𝑢 , 𝑒𝑣 form a 2-edge cut isolating it.

Properties of 𝑘-connected graphs 200

• If 𝑒𝑢 and 𝑒𝑣 go to different components, then deleting {𝑒𝑢 , 𝑒𝑣} disconnects 𝐺 as follows: after

deletion, 𝑢 has all remaining edges into one component and none into the other, while 𝑣

has all remaining edges into the other component and none into the first. Since 𝑢𝑣 ∉ 𝐸(𝐺)
and there are no edges between 𝐶1 and 𝐶2, there is no path from 𝑢 to 𝑣 in 𝐺 − {𝑒𝑢 , 𝑒𝑣}, so

the graph is disconnected.

In all situations we obtain an edge cut of size 2, hence 𝜅′(𝐺) ≤ 2 = 𝜅(𝐺).

Case 3: 𝜅(𝐺) = 3. Then 𝜅′(𝐺) ≥ 𝜅(𝐺) = 3, but also 𝜅′(𝐺) ≤ 𝛿(𝐺) = 3, so 𝜅′(𝐺) = 3.

Combining all cases yields 𝜅′(𝐺) = 𝜅(𝐺) for every 3-regular graph with |𝑉(𝐺)| ≥ 4. □

21.7 Characterization of 2-connected graphs

Definition 21.22 (Subdivision of an edge). Let 𝐺 be a graph and let 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺).
Subdividing 𝑒 means deleting 𝑒, introducing a new vertex 𝑤, and adding the edges

𝑒1 := 𝑢𝑤, 𝑒2 := 𝑤𝑣.

The resulting graph is denoted 𝐺′.

Theorem 21.13 (Characterizations of 2-connected graphs). Let 𝐺 be a graph with |𝑉(𝐺)| ≥ 3.

The following conditions are equivalent:

1. (A)𝐺 is connected and has no cut-vertices.

2. (B) For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there exist two internally vertex-disjoint 𝑥–𝑦 paths.

3. (C) For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there exists a cycle containing both 𝑥 and 𝑦.

4. (D) 𝛿(𝐺) ≥ 1 and for all edges 𝑒 , 𝑒′ ∈ 𝐸(𝐺), there exists a cycle containing both 𝑒 and 𝑒′.

5. (F) 𝛿(𝐺) ≥ 2 and for all edges 𝑒 , 𝑒′ ∈ 𝐸(𝐺), there exists a cycle containing both 𝑒 and 𝑒′.

Proof. We prove a cycle of implications.

(A)⇐⇒ (B). This is exactly Menger’s theorem in the case 𝑘 = 2.

(B)⇐⇒ (C). There are two internally disjoint 𝑥–𝑦 paths iff their union contains a cycle through

𝑥 and 𝑦.

(C)⇒(A). Condition (C) implies 𝐺 is connected because any two vertices lie on a common cycle,

hence are connected by a path. To see there is no cut-vertex, suppose (for contradiction) that 𝑣 is

a cut-vertex. Then 𝐺 − 𝑣 has at least two components; pick 𝑥, 𝑦 in different components of 𝐺 − 𝑣.

Any cycle containing 𝑥 and 𝑦 would give two 𝑥–𝑦 paths on the cycle, and at least one of them

avoids 𝑣, contradicting that 𝑥 and 𝑦 are disconnected in 𝐺 − 𝑣. Hence no cut-vertex exists.

(C)⇒(F). Assume (C). Clearly 𝛿(𝐺) ≥ 2.

First, 𝛿(𝐺) ≥ 2.CNow fix two edges 𝑒 = 𝑥𝑦 and 𝑒′ = 𝑢𝑣 of 𝐺 (they may share endpoints, and

may even coincide). Form a new graph 𝐻 from 𝐺 by adding two new vertices 𝑎 and 𝑏 such that

𝑁𝐻(𝑎) = {𝑥, 𝑦}, 𝑁𝐻(𝑏) = {𝑢, 𝑣},

Properties of 𝑘-connected graphs 201

and no other new edges are added. In particular, deg𝐻(𝑎) = deg𝐻(𝑏) = 2.

By the Expansion Lemma, 𝐻 is 2-connected. Hence 𝐻 satisfies property (C): any two vertices lie

on a common cycle. Applying this to 𝑎 and 𝑏, there exists a cycle 𝐶 in 𝐻 containing both 𝑎 and 𝑏.

Since 𝑎 has degree 2 in 𝐻, the cycle 𝐶 must use both edges incident to 𝑎, namely 𝑎𝑥 and 𝑎𝑦.

Thus 𝐶 contains the length-2 subpath 𝑥 − 𝑎 − 𝑦 (in one direction around the cycle). Similarly, 𝐶

must use both 𝑏𝑢 and 𝑏𝑣, so it contains the subpath 𝑢 − 𝑏 − 𝑣.

Now delete the vertices 𝑎 and 𝑏 from the cycle 𝐶 and replace the subpaths 𝑥 − 𝑎 − 𝑦 and 𝑢 − 𝑏 − 𝑣
by the edges 𝑥𝑦 and 𝑢𝑣, respectively. Concretely, we obtain a closed walk in 𝐺 by

𝑥 − 𝑎 − 𝑦 { 𝑥𝑦, 𝑢 − 𝑏 − 𝑣 { 𝑢𝑣.

Because 𝐶 was a simple cycle and 𝑎, 𝑏 appear only on those forced subpaths, this operation

produces a simple cycle in 𝐺. That resulting cycle contains the edges 𝑥𝑦 = 𝑒 and 𝑢𝑣 = 𝑒′, as

desired.

(F)⇒(D). Ask a toddler on the street.

(D)⇒(C). We prove the contrapositive: ¬(C)⇒ ¬(D).

Assume ¬(C). Then there exist vertices 𝑥, 𝑦 ∈ 𝑉(𝐺) that do not lie on a common cycle. Assume

for contradiction that (D) holds.

Since 𝛿(𝐺) ≥ 1, both 𝑥 and 𝑦 are incident with at least one edge. Choose an edge 𝑒 ∈ 𝐸(𝐺)
incident with 𝑥, and an edge 𝑒′ ∈ 𝐸(𝐺) incident with 𝑦.

If there were a cycle 𝐶 containing both 𝑒 and 𝑒′, then 𝐶 would contain both endpoints of 𝑒,

hence it would contain 𝑥; similarly it would contain 𝑦. Thus 𝑥 and 𝑦 would lie on a common

cycle, contradicting our choice of 𝑥, 𝑦.

Therefore no cycle contains both 𝑒 and 𝑒′, so (D) fails. This proves ¬(C) ⇒ ¬(D), hence

(D)⇒ (C).

We have shown (A) ⇐⇒ (B) ⇐⇒ (C) and (C)⇒(F)⇒(D)⇒(C), so all listed conditions are

equivalent. □

Corollary 21.14. If 𝐺 is 2-connected, then the graph 𝐺′ obtained by subdividing any edge

of 𝐺 is also 2-connected.

Proof. Let 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺), and let 𝐺′ be obtained from 𝐺 by subdividing 𝑒 with a new vertex 𝑤,

creating edges 𝑒1 = 𝑢𝑤 and 𝑒2 = 𝑤𝑣.

We use (F) from the previous theorem: a graph is 2-connected if and only if it has minimum

degree at least 2 and every pair of edges lies on a common cycle. First note that subdividing

an edge does not create any vertex of degree < 2 (the new vertex 𝑤 has degree 2, and all other

vertices keep their degrees), hence

𝛿(𝐺′) ≥ 2.

It remains to verify condition (F) for 𝐺′. Let 𝑔, ℎ ∈ 𝐸(𝐺′) be arbitrary. We will show that there is

a cycle in 𝐺′ containing both 𝑔 and ℎ.

Define the following simple operation on cycles: if 𝐶 is a cycle in 𝐺 and 𝑒 ∈ 𝐸(𝐶), let 𝐶′ denote

the cycle in 𝐺′ obtained from 𝐶 by subdividing the edge 𝑒 = 𝑢𝑣 with the 𝑢–𝑣 path 𝑢 − 𝑤 − 𝑣
(i.e., replace 𝑒 by 𝑒1 , 𝑒2). If 𝑒 ∉ 𝐸(𝐶), we simply view 𝐶 as a cycle in 𝐺′.

Now consider cases according to how {𝑔, ℎ} intersects {𝑒1 , 𝑒2}.

Properties of 𝑘-connected graphs 202

Case 1: {𝑔, ℎ} ∩ {𝑒1 , 𝑒2} = ∅. Then 𝑔, ℎ ∈ 𝐸(𝐺) \ {𝑒}. Since 𝐺 is 2-connected, condition (F) holds

in 𝐺, so there exists a cycle 𝐶 in 𝐺 containing both 𝑔 and ℎ. If 𝑒 ∉ 𝐸(𝐶), then 𝐶 is also a cycle in

𝐺′ containing 𝑔 and ℎ. If 𝑒 ∈ 𝐸(𝐶), replace 𝑒 by the path 𝑢 − 𝑤 − 𝑣 to obtain 𝐶′, a cycle in 𝐺′

containing 𝑔 and ℎ.

Case 2: |{𝑔, ℎ} ∩ {𝑒1 , 𝑒2}| = 1. Without loss of generality, 𝑔 = 𝑒1 and ℎ ≠ 𝑒2. Then ℎ ∈
𝐸(𝐺′) \ {𝑒1 , 𝑒2} ⊆ 𝐸(𝐺) \ {𝑒}. Because 𝐺 satisfies (F), there exists a cycle 𝐶 in 𝐺 containing the

two edges 𝑒 and ℎ. Replacing 𝑒 by the path 𝑢 − 𝑤 − 𝑣 yields a cycle 𝐶′ in 𝐺′ that contains ℎ and

also contains both 𝑒1 and 𝑒2, in particular it contains 𝑔 = 𝑒1 and ℎ.

Case 3: {𝑔, ℎ} = {𝑒1 , 𝑒2}. Since 𝐺 is 2-connected, (F) implies there exists a cycle 𝐶 in 𝐺 containing

𝑒. Replacing 𝑒 by the path 𝑢 − 𝑤 − 𝑣 produces a cycle 𝐶′ in 𝐺′ containing both 𝑒1 and 𝑒2, hence

containing 𝑔 and ℎ.

In all cases, 𝑔 and ℎ lie on a common cycle in 𝐺′, so 𝐺′ satisfies condition (F). Therefore 𝐺′ is

2-connected. □

Definition 21.23 (Ear). Let 𝐺 be a graph. An ear in 𝐺 is a path 𝑃 with distinct endvertices

𝑠, 𝑡 such that deg𝐺(𝑠) ≥ 3, deg𝐺(𝑡) ≥ 3, and every internal vertex of 𝑃 has degree 2 in 𝐺.

21.8 Whitney’s Ear Decomposition

Definition 21.24 (Ear decomposition). An ear decomposition of a graph 𝐺 is a sequence

(𝑃0 , 𝑃1 , . . . , 𝑃𝑘) of subgraphs whose edge-sets partition 𝐸(𝐺) and such that:

(a) 𝑃0 is a cycle of length at least 3, and

(b) for each 𝑖 = 1, . . . , 𝑘, the graph 𝑃𝑖 is a path whose endvertices lie in 𝑉(𝑃0 ∪ · · · ∪ 𝑃𝑖−1)
while its internal vertices are not in 𝑉(𝑃0 ∪ · · · ∪ 𝑃𝑖−1).

Equivalently, if we set 𝐺𝑖 := 𝑃0 ∪ · · · ∪ 𝑃𝑖 , then 𝐺𝑖 is obtained from 𝐺𝑖−1 by adding an ear 𝑃𝑖 .

Theorem 21.15 (Whitney’s Ear Decomposition Theorem). A graph 𝐺 is 2-connected if and

only if 𝐺 has an ear decomposition. Moreover, if 𝐺 is 2-connected, then every cycle 𝐶 in 𝐺

of length at least 3 can be chosen as the initial ear 𝑃0 of some ear decomposition of 𝐺.

Proof. (⇐) Suppose (𝑃0 , 𝑃1 , . . . , 𝑃𝑘) is an ear decomposition of 𝐺. We prove the stronger claim

that for every 𝑖 ∈ {0, 1, . . . , 𝑘}, the partial union

𝐺𝑖 := 𝑃0 ∪ 𝑃1 ∪ · · · ∪ 𝑃𝑖

is 2-connected.

For 𝑖 = 0, 𝐺0 = 𝑃0 is a cycle of length at least 3, hence 2-connected.

Assume 𝑖 ≥ 1 and that 𝐺𝑖−1 is 2-connected. By definition, 𝐺𝑖 is obtained from 𝐺𝑖−1 by adding

the ear 𝑃𝑖 , i.e., a path whose endpoints lie in 𝑉(𝐺𝑖−1) and whose internal vertices are new.

View the operation “add a path” as follows: first add an edge between the two endpoints of 𝑃𝑖 ,

obtaining a graph 𝐻; then subdivide this new edge repeatedly to create the internal vertices of

𝑃𝑖 and thus recover 𝐺𝑖 from 𝐻. Adding an edge to a 2-connected graph preserves 2-connectivity,

so 𝐻 is 2-connected. By Corollary 4.7, subdividing an edge of a 2-connected graph preserves

Properties of 𝑘-connected graphs 203

2-connectivity. Therefore 𝐺𝑖 is 2-connected. This completes the induction, and in particular

𝐺𝑘 = 𝐺 is 2-connected.

(⇒) Now assume 𝐺 is 2-connected, and let 𝐶 be any cycle in 𝐺 of length at least 3. We will

construct an ear decomposition starting with 𝑃0 = 𝐶.

Set 𝐺0 := 𝐶. Inductively, suppose we have constructed a subgraph 𝐺𝑖−1 of 𝐺 that is 2-connected

and satisfies 𝐸(𝐺𝑖−1) ⊆ 𝐸(𝐺). If 𝐺𝑖−1 = 𝐺, stop; the process will yield an ear decomposition.

Otherwise, there exists an edge 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺) \ 𝐸(𝐺𝑖−1)with at least one endpoint in 𝑉(𝐺𝑖−1).
Choose such an edge with 𝑢 ∈ 𝑉(𝐺𝑖−1). Since 𝑢 lies in 𝐺𝑖−1, there is an edge 𝑒′ ∈ 𝐸(𝐺𝑖−1) incident

to 𝑢.

Because 𝐺 is 2-connected, it satisfies condition (F) of Theorem 4.6: any two edges of 𝐺 lie on a

common cycle. Hence there exists a cycle Γ in 𝐺 containing both 𝑒 and 𝑒′.

Traverse Γ starting at 𝑢 in the direction that uses the edge 𝑒 first. Continue along Γ until you

encounter, for the first time after leaving 𝑢, a vertex 𝑤 ∈ 𝑉(𝐺𝑖−1). Let 𝑃𝑖 be the 𝑢–𝑤 subpath of Γ

obtained this way.

By the choice of 𝑤 as the first vertex of Γ (after 𝑢) that lies in 𝑉(𝐺𝑖−1), every internal vertex of 𝑃𝑖
lies outside 𝑉(𝐺𝑖−1). Thus 𝑃𝑖 is an ear of 𝐺𝑖−1. Define

𝐺𝑖 := 𝐺𝑖−1 ∪ 𝑃𝑖 .

Then 𝐺𝑖 strictly increases the edge set (it contains 𝑒), so the construction must terminate after

finitely many steps, producing 𝐺𝑘 = 𝐺.

Finally, define 𝑃0 := 𝐶 and let 𝑃1 , . . . , 𝑃𝑘 be the successive added ears. By construction, the

𝑃𝑖 partition 𝐸(𝐺) (each step adds edges not previously present), and each 𝑃𝑖 is an ear of the

previous union. Hence (𝑃0 , 𝑃1 , . . . , 𝑃𝑘) is an ear decomposition of 𝐺 with initial cycle 𝐶. □

Hamiltonian Cycles 204

22 Hamiltonian Cycles

Definition 22.1 (Hamilton cycle / Hamiltonian graph). A spanning cycle in a graph 𝐺 is a

cycle 𝐶 with

𝑉(𝐶) = 𝑉(𝐺).
Such a cycle is called a Hamilton cycle (or 𝐻-cycle). A graph is Hamiltonian if it contains a

Hamilton cycle.

Remark 22.1. Determining whether a graph is Hamiltonian is computationally intractable

in general (the decision problem is NP-complete). So, unlike matchings, we typically do not

expect a clean “if and only if” characterization that is also easy to check. Instead, we look for

necessary and sufficient conditions that are strong enough to be useful.

Example 22.1. The Petersen graph is not Hamiltonian

Example 22.2 (Complete bipartite graphs). For the complete bipartite graph 𝐾𝑟,𝑠 ,

𝐾𝑟,𝑠 is Hamiltonian ⇐⇒ 𝑟 = 𝑠 ≥ 2.

Proof. Any cycle in a bipartite graph alternates between the two partite sets, so a spanning cycle

can exist only if it uses the same number of vertices from each side. Hence a Hamilton cycle in

𝐾𝑟,𝑠 forces 𝑟 = 𝑠. Also we must have 𝑟 = 𝑠 ≥ 2 to even have a cycle.

Conversely, if 𝑟 = 𝑠 ≥ 2 with bipartition 𝐿 = {ℓ1 , . . . , ℓ𝑟} and 𝑅 = {𝑟1 , . . . , 𝑟𝑟}, then

ℓ1 𝑟1 ℓ2 𝑟2 · · · ℓ𝑟 𝑟𝑟 ℓ1

is a Hamilton cycle, since all ℓ𝑖𝑟 𝑗 edges exist in 𝐾𝑟,𝑟 . □

22.1 Necessary conditions

Theorem 22.1 (A necessary connectivity condition for Hamiltonicity). If 𝐺 has a Hamilton

cycle, then for every nonempty set 𝑆 ⊆ 𝑉(𝐺),

𝑐(𝐺 − 𝑆) ≤ |𝑆|,

where 𝑐(𝐻) denotes the number of connected components of a graph 𝐻.

Proof. Let 𝐶 be a Hamilton cycle of 𝐺, and fix a nonempty set 𝑆 ⊆ 𝑉(𝐺). Delete the vertices of 𝑆

from the cycle 𝐶. Since removing vertices from a cycle can only break it, the graph 𝐶 − 𝑆 is a

disjoint union of paths (possibly trivial), say

𝐶 − 𝑆 = 𝑃1 ∪ · · · ∪ 𝑃𝑞 ,

where 𝑞 is the number of path components of 𝐶 − 𝑆.

Now walk once around the cyclic order of 𝐶. Between two consecutive vertices of 𝑆 on the

cycle (in this cyclic order), there is a (possibly empty) segment of vertices from 𝑉(𝐺) \ 𝑆. Each

Hamiltonian Cycles 205

nonempty such segment forms exactly one of the paths 𝑃𝑖 . Since there are exactly |𝑆| “gaps”

between consecutive vertices of 𝑆 on the cycle, we get

𝑞 ≤ |𝑆|.

Finally, note that every component of 𝐺 − 𝑆 contains at least one path 𝑃𝑖 : indeed, the vertices

of 𝐺 − 𝑆 are precisely the vertices of 𝐶 − 𝑆, and each vertex lies in exactly one 𝑃𝑖 . Thus the

components of 𝐺 − 𝑆 are obtained by possibly merging some of the paths 𝑃𝑖 together using edges

of 𝐺 − 𝑆, so the number of components cannot exceed the number of path pieces:

𝑐(𝐺 − 𝑆) ≤ 𝑞 ≤ |𝑆|.

This proves the claim. □

Remark 22.2 (Not sufficient). The condition 𝑐(𝐺 − 𝑆) ≤ |𝑆| is a strong obstruction test: a

Hamilton cycle cannot “visit” more than |𝑆| different components after removing 𝑆, because

each component must be entered and exited through vertices of 𝑆. However, this condition

is not sufficient: there exist non-Hamiltonian graphs that still satisfy 𝑐(𝐺 − 𝑆) ≤ |𝑆| for every

nonempty 𝑆 (see the example in the figure).

22.2 Ore’s Lemma and Dirac’s Theorem on Hamiltonian graphs

Lemma 22.2 (Ore’s Lemma; Ore (1960)). Let 𝑥 and 𝑦 be distinct nonadjacent vertices of an

𝑛-vertex graph 𝐺. If

𝑑(𝑥) + 𝑑(𝑦) ≥ 𝑛,
then 𝐺 is Hamiltonian if and only if 𝐺 + 𝑥𝑦 is Hamiltonian.

Proof. (⇒) If 𝐺 is Hamiltonian, then adding the extra edge 𝑥𝑦 preserves the Hamiltonian cycle,

so 𝐺 + 𝑥𝑦 is Hamiltonian.

(⇐) Assume 𝐺 + 𝑥𝑦 has a Hamiltonian cycle, but 𝐺 does not. In every Hamiltonian cycle of

𝐺 + 𝑥𝑦, the edge 𝑥𝑦 must appear, since otherwise it would also be a Hamiltonian cycle of 𝐺.

Traverse the Hamiltonian cycle in 𝐺 + 𝑥𝑦 from 𝑥 to 𝑦 along the 𝑥, 𝑦-path that lies in 𝐺. Index

the vertices on this path as

𝑥 = 𝑣1 , 𝑣2 , . . . , 𝑣𝑛 = 𝑦.

Define

𝑆 = { 𝑖 : 𝑣𝑖+1 ∈ 𝑁(𝑥) }, 𝑇 = { 𝑖 : 𝑣𝑖 ∈ 𝑁(𝑦) }.
Thus |𝑆| = 𝑑(𝑥) and |𝑇 | = 𝑑(𝑦), and both 𝑆 and 𝑇 are subsets of {1, 2, . . . , 𝑛 − 1}.
Since

|𝑆| + |𝑇 | = 𝑑(𝑥) + 𝑑(𝑦) ≥ 𝑛,

Hamiltonian Cycles 206

we have

|𝑆 ∪ 𝑇 | + |𝑆 ∩ 𝑇 | = |𝑆| + |𝑇 | ≥ 𝑛.
But 𝑆 ∪ 𝑇 ⊆ {1, . . . , 𝑛 − 1} has size at most 𝑛 − 1. Therefore

|𝑆 ∩ 𝑇 | ≥ 1.

Choose 𝑖 in 𝑆 ∩𝑇. Then 𝑣𝑖+1 ∈ 𝑁(𝑥) and 𝑣𝑖 ∈ 𝑁(𝑦), meaning on the 𝑥, 𝑦-path in 𝐺 a neighbor of

𝑥 immediately follows a neighbor of 𝑦. Omitting the edge 𝑣𝑖𝑣𝑖+1 and using edges 𝑥𝑣𝑖+1 and 𝑣𝑖𝑦

instead produces a spanning cycle entirely in 𝐺.

Hence 𝐺 is Hamiltonian. □

Theorem 22.3 (Dirac). For 𝑛 ≥ 3, an 𝑛-vertex graph 𝐺 with 𝛿(𝐺) ≥ 𝑛
2

is Hamiltonian.

Proof. The requirement 𝑛 ≥ 3 is necessary, since 𝐾2 satisfies the degree condition but is not

Hamiltonian.

For 𝑛 ≥ 3, the complete bipartite graph

𝐾⌊(𝑛−1)/2⌋, ⌈(𝑛+1)/2⌉

is not Hamiltonian, yet all of its vertices have degree at least 𝑛/2. Thus the condition 𝛿(𝐺) ≥ 𝑛/2
is best possible.

For sufficiency, if 𝛿(𝐺) ≥ 𝑛/2, then for any 𝑥, 𝑦 ∈ 𝑉(𝐺) we have 𝑑(𝑥) + 𝑑(𝑦) ≥ 𝑛. Therefore Ore’s

condition holds, the graph 𝐺 is Hamiltonian. □

Figure 1: Dirac’s bound 𝛿(𝐺) ≥ 𝑛/2 is sharp; the above graphs do not have Hamilton cycles

22.3 Chvatal’s Theorem

Definition 22.2. The Hamiltonian closure of a graph 𝐺 is the graph 𝐶(𝐺) obtained by

repeatedly adding an edge 𝑢𝑣 whenever 𝑢𝑣 is not already an edge and

𝑑(𝑢) + 𝑑(𝑣) ≥ 𝑛,

where 𝑛 = |𝑉(𝐺)|.

Hamiltonian Cycles 207

Lemma 22.4. 𝐺 has a Hamiltonian cycle if and only if 𝐶(𝐺) has a Hamiltonian cycle.

Proposition 22.5 (Chvátal condition). Let 𝑑𝑛 ≥ 𝑑𝑛−1 ≥ · · · ≥ 𝑑1 be the degree sequence of a

graph 𝐺. Assume that for every 𝑖 < 𝑛
2
,

𝑑𝑖 > 𝑖 or 𝑑𝑛−𝑖 ≥ 𝑛 − 𝑖.

Then 𝐺 is Hamiltonian.

Proof. If 𝐺 is the complete graph 𝐾𝑛 , then it is Hamiltonian. Assume 𝐺 ≠ 𝐾𝑛 . Then some

nonedge 𝑢𝑣 ∉ 𝐸(𝐺) exists. Choose such a nonedge 𝑢𝑣 for which 𝑑(𝑢) + 𝑑(𝑣) is maximum among

all nonadjacent pairs. Since 𝐺 is not complete, we have

𝑑(𝑢) + 𝑑(𝑣) ≤ 𝑛 − 1. (1)

Without loss of generality, let 𝑑(𝑢) ≤ 𝑑(𝑣) and set 𝑖 = 𝑑(𝑢). Thus

𝑑(𝑢) = 𝑖 <
𝑛

2

.

Consider any vertex 𝑤 not adjacent to 𝑢. If 𝑤 ∉ 𝑁(𝑢), then by maximality of 𝑑(𝑢) + 𝑑(𝑣)we must

have

𝑑(𝑤) ≤ 𝑑(𝑣).
There are 𝑛 − 1 − 𝑑(𝑢) such vertices. In the degree ordering, this means

𝑑𝑛−𝑖 ≤ 𝑑(𝑣).

But 𝑑(𝑣) ≤ 𝑛 − 𝑑(𝑢) = 𝑛 − 𝑖, so we obtain

𝑑𝑛−𝑖 ≤ 𝑛 − 𝑖.

By the hypothesis of the Chvátal condition, since 𝑖 < 𝑛
2

and 𝑑𝑖 = 𝑖, we must have

𝑑𝑛−𝑖 ≥ 𝑛 − 𝑖.

Combining both inequalities yields

𝑑𝑛−𝑖 = 𝑛 − 𝑖.

Now apply the same argument symmetrically to 𝑣. Since 𝑑(𝑢) ≤ 𝑑(𝑣), every nonneighbor of 𝑣

has degree at most 𝑑(𝑢), which implies

𝑑𝑖 ≤ 𝑑(𝑢) < 𝑖.

This contradicts the assumption that for every 𝑖 < 𝑛
2

we have

𝑑𝑖 > 𝑖 or 𝑑𝑛−𝑖 ≥ 𝑛 − 𝑖.

Therefore the assumption that 𝐺 is non-Hamiltonian leads to a contradiction. Hence 𝐺 is

Hamiltonian. □

Hamiltonian Cycles 208

22.4 Erdős–Chvátal Theorem

Theorem 22.6 (Chvátal–Erdős Theorem). If 𝜅(𝐺) ≥ 𝛼(𝐺), then 𝐺 has a Hamiltonian cycle

(unless 𝐺 is 𝐾2).

Proof. Let 𝑘 = 𝜅(𝐺) ≥ 𝛼(𝐺). With 𝐺 ≠ 𝐾2, the conditions require 𝜅(𝐺) > 1, so there is a longest

cycle 𝐶 in 𝐺. Since 𝛿(𝐺) ≥ 𝜅(𝐺), and since every graph with 𝛿(𝐺) ≥ 2 has a cycle of length

at least 𝛿(𝐺) + 1, the length of 𝐶 is at least 𝑘 + 1. Let 𝐻 be a component of 𝐺 − 𝑉(𝐶). Since

𝜅(𝐺) = 𝑘,at least 𝑘 vertices of 𝐶 have neighbors in 𝐻.

Let 𝑢1 , . . . , 𝑢𝑘 be vertices of 𝐶 with neighbors in 𝐻 indexed in order along 𝐶. For each 𝑖, let 𝑎𝑖
be the vertex following 𝑢𝑖 along 𝐶. If 𝑎𝑖 and 𝑎 𝑗 are adjacent, then we construct a longer cycle by

replacing 𝑢𝑖𝑎𝑖 and 𝑢𝑗𝑎 𝑗 with 𝑎𝑖𝑎 𝑗 and a 𝑢𝑖–𝑢𝑗 path through 𝐻 (see illustration). Similarly, 𝑎𝑖 has

no neighbor in 𝐻. Hence {𝑎1 , . . . , 𝑎𝑖} plus a vertex of 𝐻 forms an independent set of size greater

than 𝑘. This contradiction implies that 𝐶 is a Hamiltonian cycle. □

Tait, Hamilton cycles, and the Four Color Theorem. In 1880, Peter Guthrie Tait proposed a

bold plan to prove the Four Color Conjecture (as it was then called) by translating map-coloring

into a statement about cycles. Given a planar map, one can pass to its planar dual graph (we

will cover this later). After some modifications, the hard cases can be phrased in terms of cubic
(3-regular), bridgeless, planar graphs. Tait observed that if every such graph had a Hamilton

cycle, then the map would be 4-colorable: a Hamilton cycle in a cubic planar graph forces

a structure that can be used to produce a 3-edge-coloring, and from that one can derive a

4-coloring of the original map. This became known as Tait’s conjecture:

Every 3-regular, 2-edge-connected planar graph is Hamiltonian.

For decades this looked plausibly true and would have implied the Four Color Theorem

in a remarkably clean way. But in 1946, W. T. Tutte destroyed the dream by constructing a

counterexample: a 3-regular, bridgeless planar graph with no Hamilton cycle (the now-famous

Tutte graph). So Tait’s conjecture was false, and the Four Color problem could not be reduced so

simply to Hamiltonicity. The Four Color Theorem was finally proved much later (Appel–Haken,

1976) by a very different approach, involving unavoidable sets and computer-assisted checking

of reducible configurations.

Hamiltonian Cycles 209

Figure 2: Tutte’s counterexample to Tait’s conjecture: a 3-regular, bridgeless planar graph with

no Hamilton cycle (the “Tutte graph”).

Definition 22.3 (Circumference). The circumference of a graph 𝐺, denoted 𝑐(𝐺), is the length

(number of vertices) of a longest cycle in 𝐺. If 𝐺 is acyclic, we set 𝑐(𝐺) = 0.

22.5 Erdős–Gallai Theorem

Theorem 22.7 (Erdős–Gallai (1959)). Fix an integer 𝑚 ≥ 2. Let 𝐺 be a graph on 𝑛 vertices. If

𝑒(𝐺) >
𝑚(𝑛 − 1)

2

,

then 𝑐(𝐺) > 𝑚 (equivalently, 𝐺 contains a cycle of length at least 𝑚 + 1).

Proof. We prove the contrapositive in extremal form: for fixed 𝑚 ≥ 2 we show by induction on 𝑛

that

𝑐(𝐺) ≤ 𝑚 =⇒ 𝑒(𝐺) ≤ 𝑚(𝑛 − 1)
2

. (†)

Rewriting gives the desired statement.

Reduction to the connected case. If 𝐺 is disconnected with components 𝐺1 , . . . , 𝐺𝑟 (𝑟 ≥ 2), then

𝑒(𝐺) =
𝑟∑
𝑖=1

𝑒(𝐺𝑖).

If (†) failed for 𝐺, i.e. 𝑒(𝐺) > 𝑚(𝑛−1)
2

, then some component would already violate the corre-

sponding bound: indeed, if for every 𝑖 we had 𝑒(𝐺𝑖) ≤ 𝑚(|𝑉(𝐺𝑖)|−1)
2

, then summing yields

𝑒(𝐺) ≤ 𝑚
2

𝑟∑
𝑖=1

(|𝑉(𝐺𝑖)| − 1) = 𝑚

2

(𝑛 − 𝑟) ≤ 𝑚(𝑛 − 2)
2

<
𝑚(𝑛 − 1)

2

,

a contradiction. Thus it suffices to prove (†) for connected graphs 𝐺.

Hamiltonian Cycles 210

Base case: 𝑛 = 𝑚 + 1. Assume 𝐺 is connected, |𝑉(𝐺)| = 𝑛 = 𝑚 + 1, and 𝑐(𝐺) ≤ 𝑚. We prove

𝑒(𝐺) ≤ 𝑚(𝑛−1)
2

=
(𝑛−1)2

2
.

Suppose for contradiction that 𝑒(𝐺) > (𝑛−1)2
2

. Then the number of missing edges is(
𝑛

2

)
− 𝑒(𝐺) <

𝑛(𝑛 − 1)
2

− (𝑛 − 1)2
2

=
𝑛 − 1

2

.

If some vertex 𝑣 had degree 𝑑(𝑣) ≤ 𝑛
2
− 1, then 𝑣 would have at least

(𝑛 − 1) −
(
𝑛

2

− 1

)
=
𝑛

2

non-neighbors, which would already force at least
𝑛
2
≥ 𝑛−1

2
missing edges, a contradiction.

Hence 𝛿(𝐺) ≥ 𝑛
2
.

By Dirac’s theorem, 𝐺 is Hamiltonian, so it contains a cycle of length 𝑛 = 𝑚 + 1, i.e. 𝑐(𝐺) ≥
𝑚 + 1 > 𝑚, contradicting 𝑐(𝐺) ≤ 𝑚. Therefore 𝑒(𝐺) ≤ (𝑛−1)2

2
, proving (†) in the base case.

Induction step. Assume 𝑛 > 𝑚 + 1 and that (†) holds for all graphs on fewer than 𝑛 vertices.

Let 𝐺 be a connected 𝑛-vertex graph with 𝑐(𝐺) ≤ 𝑚. We show 𝑒(𝐺) ≤ 𝑚(𝑛−1)
2

.

Let 𝑃 = 𝑣1𝑣2 · · · 𝑣ℓ be a longest path in 𝐺. Among all longest paths, choose 𝑃 so that the degree

of its first vertex 𝑣1 is as large as possible. Set

𝑑 := 𝑑(𝑣1).

If 𝑣1 had a neighbor 𝑥 ∉ 𝑉(𝑃), then 𝑥𝑣1𝑣2 · · · 𝑣ℓ would be a longer path, contradicting maximality

of 𝑃. So 𝑁(𝑣1) ⊆ 𝑉(𝑃).

“Rotation” set𝑊 and bounding degrees inside it: Define

𝑊 := { 𝑣𝑘 : 𝑣1𝑣𝑘+1 ∈ 𝐸(𝐺) }.

Since each neighbor of 𝑣1 is some 𝑣𝑘+1 on 𝑃, the map 𝑣𝑘+1 ↦→ 𝑣𝑘 is bĳective from 𝑁(𝑣1) to𝑊 , so

|𝑊 | = |𝑁(𝑣1)| = 𝑑.

Moreover, for each 𝑣𝑘 ∈𝑊 the path

𝑃𝑘 := 𝑣𝑘 𝑣𝑘−1 · · · 𝑣1 𝑣𝑘+1 · · · 𝑣ℓ

is also a longest path (it has the same vertex set and length). By our choice of 𝑃 (maximizing the

degree of the first vertex among longest paths), we must have

𝑑(𝑣𝑘) ≤ 𝑑(𝑣1) = 𝑑 for all 𝑣𝑘 ∈𝑊. (★)

Claim: 𝑊 must be contained among the first 𝑚 vertices of 𝑃. If 𝑣𝑘 ∈𝑊 , then 𝑣1𝑣𝑘+1 ∈ 𝐸(𝐺),
and the subgraph on

𝑣1 , 𝑣2 , . . . , 𝑣𝑘+1

contains the cycle 𝑣1𝑣2 · · · 𝑣𝑘+1𝑣1 of length 𝑘 + 1. Since 𝑐(𝐺) ≤ 𝑚, we get 𝑘 + 1 ≤ 𝑚, i.e. 𝑘 ≤ 𝑚 − 1.

Therefore every 𝑣𝑘 ∈𝑊 satisfies 𝑘 ≤ 𝑚 − 1.

Let

𝑡 := min{ℓ , 𝑚}, 𝑍 := {𝑣1 , 𝑣2 , . . . , 𝑣𝑡}.

Hamiltonian Cycles 211

Then𝑊 ⊆ 𝑍 and |𝑍| = 𝑡 ≤ 𝑚.

Claim: There are no edges from𝑊 to vertices beyond 𝑍. If ℓ < 𝑚, then 𝑍 = 𝑉(𝑃) and there is

nothing to prove. Assume ℓ ≥ 𝑚, so 𝑍 = {𝑣1 , . . . , 𝑣𝑚}. We claim that for any 𝑣𝑘 ∈𝑊 and any

index 𝑗 > 𝑚,

𝑣𝑘𝑣 𝑗 ∉ 𝐸(𝐺). (‡)
Indeed, if 𝑣𝑘𝑣 𝑗 ∈ 𝐸(𝐺)with 𝑗 > 𝑚, then using also 𝑣1𝑣𝑘+1 ∈ 𝐸(𝐺)we obtain the cycle

𝑣1 𝑣2 · · · 𝑣𝑘 𝑣 𝑗 𝑣 𝑗−1 · · · 𝑣𝑘+1 𝑣1 ,

whose length is exactly 𝑗 > 𝑚, contradicting 𝑐(𝐺) ≤ 𝑚. This proves (‡).
Thus every edge incident to a vertex of𝑊 has its other endpoint in 𝑍.

Delete𝑊 and count edges. Let 𝐺0 := 𝐺 −𝑊 . Then |𝑉(𝐺0)| = 𝑛 − 𝑑. Let 𝐸𝑊 be the set of edges

of 𝐺 with at least one endpoint in𝑊 . Then

𝑒(𝐺0) = 𝑒(𝐺) − |𝐸𝑊 |. (♣)

We now bound |𝐸𝑊 |. Because there are no edges from𝑊 to 𝑉(𝐺) \ 𝑍 (Step 4), every edge with

an endpoint in𝑊 lies either inside𝑊 or between𝑊 and 𝑍 \𝑊 . Write

𝑒(𝑊) := 𝑒(𝐺[𝑊]), 𝑒[𝑊, 𝑍 \𝑊] :=
��{𝑥𝑦 ∈ 𝐸(𝐺) : 𝑥 ∈𝑊, 𝑦 ∈ 𝑍 \𝑊}

��.
Then

|𝐸𝑊 | = 𝑒(𝑊) + 𝑒[𝑊, 𝑍 \𝑊]. (♥)

Also, ∑
𝑤∈𝑊

𝑑(𝑤) = 2𝑒(𝑊) + 𝑒[𝑊, 𝑍 \𝑊]

(each edge inside 𝑊 is counted twice, and each edge from 𝑊 to 𝑍 \𝑊 is counted once).

Combining with (♥) gives

|𝐸𝑊 | = 𝑒(𝑊) + 𝑒[𝑊, 𝑍 \𝑊] = 1

2

∑
𝑤∈𝑊

𝑑(𝑤) + 1

2

𝑒[𝑊, 𝑍 \𝑊]. (♠)

By (★), each 𝑤 ∈𝑊 has 𝑑(𝑤) ≤ 𝑑, and |𝑊 | = 𝑑, so∑
𝑤∈𝑊

𝑑(𝑤) ≤ 𝑑2.

Moreover, each vertex of𝑊 can send edges into at most |𝑍 \𝑊 | = 𝑡 − 𝑑 vertices of 𝑍 \𝑊 , so

𝑒[𝑊, 𝑍 \𝑊] ≤ 𝑑(𝑡 − 𝑑).
Plugging into (♠) yields

|𝐸𝑊 | ≤
1

2

𝑑2 + 1

2

𝑑(𝑡 − 𝑑) = 1

2

𝑑𝑡 ≤ 1

2

𝑑𝑚, (♦)
since 𝑡 ≤ 𝑚.

From (♣) and (♦), if 𝑒(𝐺) > 𝑚(𝑛−1)
2

then

𝑒(𝐺0) = 𝑒(𝐺) − |𝐸𝑊 | >
𝑚(𝑛 − 1)

2

− 𝑑𝑚
2

=
𝑚((𝑛 − 𝑑) − 1)

2

.

By the induction hypothesis applied to the graph 𝐺0 (which has fewer than 𝑛 vertices), this

would force 𝑐(𝐺0) > 𝑚. But 𝐺0 is a subgraph of 𝐺, so 𝑐(𝐺) ≥ 𝑐(𝐺0) > 𝑚, contradicting our

assumption 𝑐(𝐺) ≤ 𝑚.

Therefore the assumption 𝑒(𝐺) > 𝑚(𝑛−1)
2

is impossible when 𝑐(𝐺) ≤ 𝑚. Hence 𝑒(𝐺) ≤ 𝑚(𝑛−1)
2

,

completing the induction and proving (†). □

Vertex Coloring 212

23 Vertex Coloring

23.1 Basics of vertex coloring

Motivation: Vertex-coloring is the “no-conflicts” version of scheduling: vertices are

tasks/people/frequencies, edges mean “these two cannot share a label,” and colors are the

labels. A proper coloring is just an assignment of labels that respects the conflicts. The fewer

labels you can get away with, the more structured (or more restrictive) the graph is.

Definition 23.1 (Proper 𝑘-coloring). Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑘 ≥ 1. A (proper)
𝑘-coloring of 𝐺 is a function

𝑓 : 𝑉(𝐺) → {1, 2, . . . , 𝑘}
such that for every edge 𝑥𝑦 ∈ 𝐸(𝐺),

𝑓 (𝑥) ≠ 𝑓 (𝑦).

Remark 23.1 (Loops and multiple edges). A loop makes proper coloring impossible, so graphs

with loops have no proper coloring for any 𝑘. Multiple edges do not change anything: if 𝑥

and 𝑦 are adjacent once or 10
100

times, the constraint is still just 𝑓 (𝑥) ≠ 𝑓 (𝑦). Therefore, when

studying vertex-coloring we usually restrict attention to simple graphs.

Definition 23.2 (Color classes). Given a proper 𝑘-coloring 𝑓 , for each color 𝑖 ∈ {1, . . . , 𝑘}
the set

𝑓 −1(𝑖) = {𝑣 ∈ 𝑉(𝐺) : 𝑓 (𝑣) = 𝑖}
is called the 𝑖-th color class. Each color class is an independent set.

Proposition 23.1 (Colorings as partitions). A proper 𝑘-coloring of 𝐺 is equivalent to a

partition of 𝑉(𝐺) into 𝑘 independent sets (some parts are allowed to be empty).

Remark 23.2 (More colors = more freedom). If 𝐺 is 𝑘-colorable then it is also (𝑘 + 1)-colorable:

just reuse the same coloring and ignore the extra color. In particular, any graph on 𝑛 vertices is

𝑛-colorable (color every vertex differently).

Definition 23.3 (Chromatic number). The chromatic number of 𝐺, denoted 𝜒(𝐺), is the

smallest positive integer 𝑘 such that 𝐺 has a proper 𝑘-coloring. We say 𝐺 is 𝑘-colorable if

𝜒(𝐺) ≤ 𝑘.

Remark 23.3 (Computational complexity). For each fixed 𝑘 ≥ 3, deciding whether a graph

is 𝑘-colorable is NP-complete. So beyond 𝑘 = 2, we should not expect a clean, fast algorithm

that works for all graphs. This is why much of coloring theory focuses on structural sufficient

conditions and bounds for 𝜒(𝐺).

Definition 23.4. We use 𝛼(𝐺) for the independence number and 𝜔(𝐺) for the maximum

size of a clique in 𝐺, called the clique number.

Vertex Coloring 213

Proposition 23.2. For every graph 𝐺,

𝜒(𝐺) ≥ 𝜔(𝐺) and 𝜒(𝐺) ≥ |𝑉(𝐺)|
𝛼(𝐺) .

Proof. Clique bound. Let 𝐾 be a clique in 𝐺 of maximum size, so |𝑉(𝐾)| = 𝜔(𝐺). In any proper

coloring, adjacent vertices receive different colors, so all vertices of 𝐾 must receive pairwise

distinct colors. Hence at least 𝜔(𝐺) colors are needed:

𝜒(𝐺) ≥ 𝜔(𝐺).

Independence bound. Let 𝑓 be a proper𝜒(𝐺)-coloring of𝐺. Its color classes 𝑓 −1(1), . . . , 𝑓 −1(𝜒(𝐺))
form a partition of𝑉(𝐺) into independent sets. Each color class is an independent set, so its size

is at most 𝛼(𝐺):
| 𝑓 −1(𝑖)| ≤ 𝛼(𝐺) for all 𝑖.

Summing over all colors gives

|𝑉(𝐺)| =
𝜒(𝐺)∑
𝑖=1

| 𝑓 −1(𝑖)| ≤
𝜒(𝐺)∑
𝑖=1

𝛼(𝐺) = 𝜒(𝐺) 𝛼(𝐺).

Rearranging yields

𝜒(𝐺) ≥ |𝑉(𝐺)|
𝛼(𝐺) .

□

Example 23.1. Let 𝐺 ∼ 𝐺(𝑛, 1

2
), meaning 𝑉(𝐺) = [𝑛] and each edge appears independently

with probability 1/2.

𝛼(𝐺) ≈ 2 log
2
𝑛, 𝜔(𝐺) ≈ 2 log

2
𝑛.

𝜒(𝐺) ≈ 𝑛

𝛼(𝐺) ≈
𝑛

2 log
2
𝑛
.

Recall the join of 𝐺 and 𝐻, denoted 𝐺 ∨ 𝐻, is the graph obtained from the disjoint union 𝐺 ∪ 𝐻
by adding all edges between 𝑉(𝐺) and 𝑉(𝐻):

𝑉(𝐺 ∨ 𝐻) = 𝑉(𝐺) ⊔𝑉(𝐻), 𝐸(𝐺 ∨ 𝐻) = 𝐸(𝐺) ∪ 𝐸(𝐻) ∪ {𝑥𝑦 : 𝑥 ∈ 𝑉(𝐺), 𝑦 ∈ 𝑉(𝐻)}.

Proposition 23.3 (Clique number and chromatic number of a join). For graphs 𝐺, 𝐻 on

disjoint vertex sets,

𝜔(𝐺 ∨ 𝐻) = 𝜔(𝐺) + 𝜔(𝐻), 𝜒(𝐺 ∨ 𝐻) = 𝜒(𝐺) + 𝜒(𝐻).

Proof. Clique number. Let 𝐾 be a clique in 𝐺 ∨ 𝐻. Since all edges between 𝑉(𝐺) and 𝑉(𝐻) are

present, the intersections 𝐾 ∩𝑉(𝐺) and 𝐾 ∩𝑉(𝐻) are cliques in 𝐺 and 𝐻, respectively. Hence

|𝐾| = |𝐾 ∩𝑉(𝐺)| + |𝐾 ∩𝑉(𝐻)| ≤ 𝜔(𝐺) + 𝜔(𝐻),

Vertex Coloring 214

so 𝜔(𝐺 ∨ 𝐻) ≤ 𝜔(𝐺) + 𝜔(𝐻).
For the reverse inequality, take a maximum clique 𝐾𝐺 in 𝐺 and a maximum clique 𝐾𝐻 in 𝐻.

Then 𝐾𝐺 ∪ 𝐾𝐻 is a clique in 𝐺 ∨ 𝐻 (all cross-edges are present), and

|𝐾𝐺 ∪ 𝐾𝐻 | = 𝜔(𝐺) + 𝜔(𝐻).

Thus 𝜔(𝐺 ∨ 𝐻) ≥ 𝜔(𝐺) + 𝜔(𝐻), proving equality.

Chromatic number. First we show 𝜒(𝐺 ∨ 𝐻) ≤ 𝜒(𝐺) + 𝜒(𝐻). Color 𝐺 properly with colors

{1, . . . , 𝜒(𝐺)} and color 𝐻 properly with fresh colors {𝜒(𝐺)+1, . . . , 𝜒(𝐺)+𝜒(𝐻)}. Because every

vertex of 𝐺 is adjacent to every vertex of 𝐻, using disjoint color sets guarantees no conflict across

the join edges. Hence this is a proper coloring of 𝐺 ∨ 𝐻 with 𝜒(𝐺) + 𝜒(𝐻) colors.

Now we prove the reverse inequality 𝜒(𝐺 ∨ 𝐻) ≥ 𝜒(𝐺) + 𝜒(𝐻). Let 𝑓 be any proper coloring of

𝐺 ∨ 𝐻. No color can appear on both sides: if some color 𝑐 were used on a vertex 𝑥 ∈ 𝑉(𝐺) and

also on a vertex 𝑦 ∈ 𝑉(𝐻), then 𝑥𝑦 is an edge of 𝐺 ∨ 𝐻, contradicting properness. Therefore the

set of colors used on 𝑉(𝐺) is disjoint from the set of colors used on 𝑉(𝐻). In particular, 𝑓 uses

at least 𝜒(𝐺) colors on 𝑉(𝐺) and at least 𝜒(𝐻) colors on 𝑉(𝐻), so in total

𝜒(𝐺 ∨ 𝐻) ≥ 𝜒(𝐺) + 𝜒(𝐻).

Combining the two inequalities gives 𝜒(𝐺 ∨ 𝐻) = 𝜒(𝐺) + 𝜒(𝐻). □

Example 23.2 (Joining odd cycles creates a linear gap 𝜒 − 𝜔). Let 𝐶2𝑡+1 be an odd cycle. Then

𝜒(𝐶2𝑡+1) = 3 and 𝜔(𝐶2𝑡+1) = 2. Let 𝐺 be the join of 𝑘 disjoint odd cycles:

𝐺 = 𝐶2𝑡1+1 ∨ 𝐶2𝑡2+1 ∨ · · · ∨ 𝐶2𝑡𝑘+1.

Iterating Proposition 23.3 yields

𝜒(𝐺) = 3𝑘, 𝜔(𝐺) = 2𝑘,

so 𝜒(𝐺) − 𝜔(𝐺) = 𝑘 grows linearly.

23.2 Greedy coloring

Fix an ordering of the vertices,

𝑣1 , 𝑣2 , . . . , 𝑣𝑛 .

Color the vertices one-by-one in this order. When coloring 𝑣𝑖 , assign it the smallest positive

integer (“the first available color”) that is not used by any already-colored neighbor of 𝑣𝑖 . This

always produces a proper coloring, but the number of colors can depend heavily on the chosen

ordering.

Proposition 23.4. For every graph 𝐺,

𝜒(𝐺) ≤ Δ(𝐺) + 1,

whereΔ(𝐺) is the maximum degree of𝐺. Moreover, for any vertex ordering, greedy coloring

uses at most Δ(𝐺) + 1 colors.

Vertex Coloring 215

Proof. Run greedy coloring on an arbitrary ordering 𝑣1 , . . . , 𝑣𝑛 . Fix a step 𝑖, and consider the

vertex 𝑣𝑖 at the moment we are about to color it.

Among the vertices already colored, only the neighbors of 𝑣𝑖 impose restrictions: 𝑣𝑖 is forbidden

from using the colors appearing on those earlier neighbors. But 𝑣𝑖 has at most deg(𝑣𝑖) ≤ Δ(𝐺)
neighbors in total, hence at most Δ(𝐺) earlier neighbors. Therefore at most Δ(𝐺) colors are

forbidden when coloring 𝑣𝑖 .

If we allow ourselves the palette of colors {1, 2, . . . ,Δ(𝐺) + 1}, then by the pigeonhole principle

(at most Δ(𝐺) forbidden colors, but Δ(𝐺)+ 1 available colors), there is always at least one color in

this palette not used by any earlier neighbor of 𝑣𝑖 . Greedy chooses such a color, so the procedure

completes using at most Δ(𝐺) + 1 colors.

Hence 𝐺 is (Δ(𝐺) + 1)-colorable, and therefore 𝜒(𝐺) ≤ Δ(𝐺) + 1. □

Example 23.3 (A tree where greedy uses 𝑘 colors). Fix 𝑘 ≥ 2. We construct a tree 𝑇𝑘 and a vertex

ordering for which the greedy (first-fit) algorithm uses exactly 𝑘 colors, even though 𝜒(𝑇𝑘) = 2.

Construction of 𝑇𝑘 . Define 𝑇1 to be a single vertex. For 𝑘 ≥ 2, assume 𝑇1 , . . . , 𝑇𝑘−1 have been

constructed. Create a new vertex 𝑟𝑘 (the “root”) and for each 𝑖 ∈ {1, . . . , 𝑘 − 1} connect 𝑟𝑘 to the

root 𝑟𝑖 of 𝑇𝑖 by a subdivision edge: introduce a new vertex 𝑠𝑘,𝑖 and add edges

𝑟𝑘𝑠𝑘,𝑖 , 𝑠𝑘,𝑖𝑟𝑖 .

Equivalently, we attach each earlier tree 𝑇𝑖 to 𝑟𝑘 by a path of length 2.

The resulting graph is a tree (we attach trees by paths and create no cycles), so 𝜒(𝑇𝑘) = 2.

The ordering. Order the vertices in the following way. For 𝑖 = 1, 2, . . . , 𝑘 − 1, list all vertices

of 𝑇𝑖 first (in an order that will be specified inductively), then list the subdivision vertex 𝑠𝑘,𝑖 .

Finally, list the new root 𝑟𝑘 last.

Claim. In this ordering, greedy uses color 𝑖 on the root 𝑟𝑖 for every 𝑖 = 1, . . . , 𝑘.

Proof by induction on 𝑘. For 𝑘 = 1 it is trivial. Assume the claim holds for 𝑇1 , . . . , 𝑇𝑘−1.

Consider the greedy coloring on 𝑇𝑘 with the ordering described above. By the induction

hypothesis, when the algorithm colors the copy of 𝑇𝑖 , its root 𝑟𝑖 receives color 𝑖.

Next, the vertex 𝑠𝑘,𝑖 appears after all of 𝑇𝑖 has been colored, and 𝑠𝑘,𝑖 is adjacent to 𝑟𝑖 . So 𝑠𝑘,𝑖
cannot use color 𝑖; in particular, greedy assigns 𝑠𝑘,𝑖 some color in {1, . . . , 𝑘 − 1} \ {𝑖} (possibly

reusing a color from earlier trees).

Finally, the last vertex is 𝑟𝑘 . It is adjacent to every 𝑠𝑘,𝑖 for 𝑖 = 1, . . . , 𝑘 − 1. We claim that for

each color 𝑗 ∈ {1, . . . , 𝑘 − 1}, at least one neighbor of 𝑟𝑘 has color 𝑗. Indeed, take 𝑖 = 𝑗. The

vertex 𝑠𝑘,𝑗 is forbidden from using color 𝑗 (because it is adjacent to 𝑟 𝑗), so greedy assigns it

the smallest available color different from 𝑗. Over the collection {𝑠𝑘,1 , . . . , 𝑠𝑘,𝑘−1}, every color

1, . . . , 𝑘 − 1 appears at least once: if a color 𝑗 were missing entirely from the neighbors of 𝑟𝑘 , then

when coloring 𝑠𝑘,𝑗 the color 𝑗 would have been available and (being the smallest not forbidden

by its neighbors) greedy would have used it, contradiction.

Thus, when we color 𝑟𝑘 , all colors 1, 2, . . . , 𝑘−1 are present among its already-colored neighbors.

Therefore greedy cannot use any of these colors on 𝑟𝑘 , and it is forced to introduce a new color:

𝑓 (𝑟𝑘) = 𝑘.

This completes the induction.

Hence greedy uses exactly 𝑘 colors on the tree 𝑇𝑘 even though 𝜒(𝑇𝑘) = 2.

Vertex Coloring 216

23.3 Brooks Theorem

Theorem 23.5 (Brooks’ Theorem). Let 𝐺 be a connected graph with maximum degree Δ(𝐺).
If 𝐺 is neither a complete graph nor an odd cycle, then

𝜒(𝐺) ≤ Δ(𝐺).

Equivalently, every connected graph satisfies

𝜒(𝐺) = Δ(𝐺) + 1 if and only if 𝐺 is complete or an odd cycle.

We will prove this later.

Proposition 23.6 (Welsh–Powell). If 𝐺 has degree sequence 𝑑1 , 𝑑2 , . . . , 𝑑𝑛 , then

𝜒(𝐺) ≤ 1 +max

𝑖
min{𝑑𝑖 , 𝑖 − 1}.

Proof. Consider the greedy coloring of 𝐺 in the order 𝑣1 , 𝑣2 , . . . , 𝑣𝑛 .

Fix an index 𝑖 and look at the moment we color 𝑣𝑖 . A color is forbidden for 𝑣𝑖 only if it appears

on an earlier neighbor of 𝑣𝑖 . Thus the number of forbidden colors is at most the number of earlier

neighbors of 𝑣𝑖 .

But 𝑣𝑖 has at most 𝑑𝑖 neighbors in total, so it has at most 𝑑𝑖 earlier neighbors. Also there are only

𝑖 − 1 earlier vertices altogether, so it has at most 𝑖 − 1 earlier neighbors. Therefore the number of

earlier neighbors of 𝑣𝑖 is at most

min{𝑑𝑖 , 𝑖 − 1}.
Hence at most min{𝑑𝑖 , 𝑖 − 1} colors are forbidden when coloring 𝑣𝑖 .

Greedy always chooses the smallest available color, so it never needs more than

1 +min{𝑑𝑖 , 𝑖 − 1}

colors to color 𝑣𝑖 (one more than the number of forbidden colors). Since this holds for every 𝑖,

the total number of colors used by the greedy algorithm is at most

max

1≤𝑖≤𝑛
(1 +min{𝑑𝑖 , 𝑖 − 1}) = 1 + max

1≤𝑖≤𝑛
min{𝑑𝑖 , 𝑖 − 1}.

Because 𝜒(𝐺) is the minimum possible number of colors, it is at most the number produced by

greedy. Thus the stated bound holds. □

23.4 Degeneracy and Szekeres-Wilf Theorem

Definition 23.5. 𝐺 is 𝑘-degenerate if every subgraph of 𝐺 has a vertex of degree at most 𝑘 .

Vertex Coloring 217

Lemma 23.7 (Degeneracy ⇐⇒ existence of a 𝑘-ordering). Let 𝐺 be a graph and let 𝑘 ≥ 0.

The following are equivalent:

1. 𝐺 is 𝑘-degenerate, i.e. every (nonempty) subgraph of 𝐺 has a vertex of degree at most 𝑘.

2. There exists an ordering 𝑣1 , . . . , 𝑣𝑛 of 𝑉(𝐺) such that for every 2 ≤ 𝑖 ≤ 𝑛,��𝑁(𝑣𝑖) ∩ {𝑣1 , . . . , 𝑣𝑖−1}
�� ≤ 𝑘,

equivalently, 𝑣𝑖 has at most 𝑘 edges to earlier vertices.

Proof. (i)⇒(ii). Assume 𝐺 is 𝑘-degenerate. We construct the ordering backwards. Let 𝐺𝑛 := 𝐺.

Since 𝐺𝑛 is a subgraph of 𝐺, it has a vertex of degree at most 𝑘; choose one and call it 𝑣𝑛 . Delete

𝑣𝑛 to obtain 𝐺𝑛−1 := 𝐺𝑛 − 𝑣𝑛 . Again 𝐺𝑛−1 is a subgraph of 𝐺, so it has a vertex of degree at

most 𝑘; choose one and call it 𝑣𝑛−1. Continue until all vertices are chosen, giving an ordering

𝑣1 , . . . , 𝑣𝑛 .

Fix 𝑖 ≥ 2. When 𝑣𝑖 was chosen, it belonged to the current graph 𝐺𝑖 , whose vertex set is exactly

{𝑣1 , . . . , 𝑣𝑖}. By construction, deg𝐺𝑖
(𝑣𝑖) ≤ 𝑘. But deg𝐺𝑖

(𝑣𝑖) counts precisely the neighbors of 𝑣𝑖
among {𝑣1 , . . . , 𝑣𝑖−1}, hence

|𝑁(𝑣𝑖) ∩ {𝑣1 , . . . , 𝑣𝑖−1}| = deg𝐺𝑖
(𝑣𝑖) ≤ 𝑘,

proving (ii).

(ii)⇒(i). Assume there is an ordering 𝑣1 , . . . , 𝑣𝑛 such that each 𝑣𝑖 has at most 𝑘 neighbors

among earlier vertices.

Let 𝐻 be any nonempty subgraph of 𝐺 (you may take 𝐻 induced if you like; the argument still

works). Choose 𝑣 𝑗 to be the vertex of 𝐻 with largest index in the ordering among vertices of 𝐻.

Then every neighbor of 𝑣 𝑗 inside 𝐻 must appear earlier in the ordering (since no vertex of 𝐻 has

index larger than 𝑗). Therefore

deg𝐻(𝑣 𝑗) ≤ |𝑁𝐺(𝑣 𝑗) ∩ {𝑣1 , . . . , 𝑣 𝑗−1}| ≤ 𝑘.

So 𝐻 contains a vertex of degree at most 𝑘. Since 𝐻 was arbitrary, every subgraph of 𝐺 has

minimum degree at most 𝑘, i.e. 𝐺 is 𝑘-degenerate.

Thus (i) and (ii) are equivalent. □

Theorem 23.8 (Szekeres–Wilf). If 𝐺 is 𝑑-degenerate, then 𝐺 is (𝑑 + 1)-colorable.

Proof. Let

𝑑 := max

𝐻⊆𝐺
𝛿(𝐻).

We claim that 𝐺 is 𝑑-degenerate, i.e. every subgraph of 𝐺 contains a vertex of degree at most 𝑑.

Indeed, let 𝐻 be any nonempty subgraph of 𝐺. By definition of minimum degree, 𝐻 has a vertex

of degree exactly 𝛿(𝐻), hence certainly a vertex of degree at most 𝛿(𝐻). But by the choice of

𝑑 we have 𝛿(𝐻) ≤ 𝑑, so 𝐻 contains a vertex of degree at most 𝑑. Since 𝐻 was arbitrary, 𝐺 is

𝑑-degenerate.

By the degeneracy-ordering lemma, there exists an ordering of the vertices

𝑣1 , 𝑣2 , . . . , 𝑣𝑛

Vertex Coloring 218

such that for each 𝑖 ≥ 2, ��𝑁(𝑣𝑖) ∩ {𝑣1 , . . . , 𝑣𝑖−1}
�� ≤ 𝑑.

Now run the greedy (first-fit) coloring in this order. When coloring 𝑣𝑖 , only earlier neighbors

forbid colors, so at most 𝑑 colors are forbidden. Therefore among the palette {1, 2, . . . , 𝑑+1} there

is always at least one available color, and the greedy algorithm produces a proper (𝑑+1)-coloring

of 𝐺.

Hence 𝜒(𝐺) ≤ 𝑑 + 1 = 1 +max𝐻⊆𝐺 𝛿(𝐻), as claimed. □

23.5 Gallai-Roy Theorem

Theorem 23.9 (Gallai–Roy). For every orientation 𝐷 of 𝐺, if ℓ (𝐷) denotes the length of the

longest path in 𝐷, then

𝜒(𝐺) ≤ 1 + ℓ (𝐷).

23.6 Mycielski’s Construction

The point of Mycielski’s construction is to take a triangle-free graph with large chromatic

number and increase the chromatic number up by 1 while staying triangle-free. This is how you

manufacture graphs with 𝜒 as large as you want but still no triangles, showing that 𝜒 can be

arbitrarily large even if 𝜔 is not.

Example 23.4 (Mycielski graph). Let 𝐺 be a graph with vertex set

𝑉(𝐺) = {𝑣1 , . . . , 𝑣𝑛}.

Define a disjoint copy of the vertex set

𝑉 ′(𝐺) = {𝑢1 , . . . , 𝑢𝑛},

and add one new vertex 𝑤. The Mycielski graph of 𝐺, denoted 𝜇(𝐺), is the graph with vertex set

𝑉(𝜇(𝐺)) = 𝑉(𝐺) ∪ 𝑉 ′(𝐺) ∪ {𝑤},

and edges determined as follows:

1. (Keep the old graph.) The induced subgraph on 𝑉(𝐺) is 𝐺:

𝜇(𝐺)[𝑉(𝐺)] = 𝐺.

2. (Connect 𝑤 to all copies.) The neighborhood of 𝑤 is exactly the copy set:

𝑁𝜇(𝐺)(𝑤) = 𝑉 ′(𝐺).

3. (Copy each old neighborhood.) For each 𝑗 ∈ {1, . . . , 𝑛}, connect 𝑢𝑗 to exactly the copies of

the neighbors of 𝑣 𝑗 :

𝑁𝜇(𝐺)(𝑢𝑗) = { 𝑢𝑖 : 𝑣𝑖 ∈ 𝑁𝐺(𝑣 𝑗) }.
Equivalently, in edge language:

𝑢𝑗𝑢𝑖 ∈ 𝐸(𝜇(𝐺)) ⇐⇒ 𝑣 𝑗𝑣𝑖 ∈ 𝐸(𝐺).

There are no edges between 𝑉(𝐺) and 𝑉 ′(𝐺), and no edges from 𝑤 to 𝑉(𝐺). Define 𝑀3 := 𝐶5,

and then recursively

𝑀𝑘+1 := 𝜇(𝑀𝑘).

Vertex Coloring 219

Theorem 23.10 (Mycielski). Given a graph 𝐺, let 𝐺′ = 𝜇(𝐺) be the graph obtained from 𝐺

by Mycielski’s construction. If 𝜒(𝐺) = 𝑘 and 𝐺 is 𝐶3-free, then

𝜒(𝐺′) = 𝑘 + 1 and 𝐺′ is 𝐶3-free.

Proof. Write 𝑉(𝐺) = {𝑣1 , . . . , 𝑣𝑛} and let 𝑈 = {𝑢1 , . . . , 𝑢𝑛} be a disjoint copy. The vertex set of

𝐺′ is 𝑉(𝐺′) = 𝑉(𝐺) ∪𝑈 ∪ {𝑤}, and the edges are:

• 𝐺′[𝑉(𝐺)] = 𝐺;

• 𝑤 is adjacent to every vertex in𝑈 and to no vertex in 𝑉(𝐺);
• for all 𝑖 , 𝑗, we have 𝑢𝑖𝑣 𝑗 ∈ 𝐸(𝐺′) iff 𝑣𝑖𝑣 𝑗 ∈ 𝐸(𝐺).

In particular,𝑈 is independent in 𝐺′.

(1) Triangle-freeness. Assume 𝐺 is 𝐶3-free. Suppose for contradiction that 𝐺′ contains a triangle

𝑇.

If 𝑇 contains 𝑤, then the other two vertices must lie in 𝑈 (since 𝑁𝐺′(𝑤) = 𝑈). But 𝑈 is

independent, so this is impossible.

Hence 𝑇 does not contain 𝑤. If 𝑇 lies entirely in 𝑉(𝐺), then it is a triangle in 𝐺, contradiction.

Therefore 𝑇 contains at least one vertex of 𝑈 ; say 𝑢𝑖 ∈ 𝑉(𝑇). Since 𝑈 is independent and

𝑤 ∉ 𝑉(𝑇), the other two vertices of 𝑇 must lie in 𝑉(𝐺), say 𝑣 𝑗 and 𝑣ℓ . Then 𝑢𝑖𝑣 𝑗 , 𝑢𝑖𝑣ℓ ∈ 𝐸(𝐺′),
which by construction implies 𝑣𝑖𝑣 𝑗 , 𝑣𝑖𝑣ℓ ∈ 𝐸(𝐺). Also 𝑣 𝑗𝑣ℓ ∈ 𝐸(𝐺′) forces 𝑣 𝑗𝑣ℓ ∈ 𝐸(𝐺) because

𝐺′[𝑉(𝐺)] = 𝐺. Thus 𝑣𝑖𝑣 𝑗𝑣ℓ is a triangle in 𝐺, contradiction. Hence 𝐺′ is 𝐶3-free.

(2) Upper bound 𝜒(𝐺′) ≤ 𝑘 + 1. Let 𝜑 be a proper 𝑘-coloring of 𝐺 with color set {1, . . . , 𝑘}.
Extend 𝜑 to 𝐺′ by

𝜑(𝑢𝑖) := 𝜑(𝑣𝑖) (1 ≤ 𝑖 ≤ 𝑛), 𝜑(𝑤) := 𝑘 + 1.

This is proper: 𝑤 sees only vertices in𝑈 , all colored in {1, . . . , 𝑘}; there are no edges inside𝑈 ;

and for an edge 𝑢𝑖𝑣 𝑗 we have 𝑣𝑖𝑣 𝑗 ∈ 𝐸(𝐺), so 𝜑(𝑢𝑖) = 𝜑(𝑣𝑖) ≠ 𝜑(𝑣 𝑗). Therefore 𝜒(𝐺′) ≤ 𝑘 + 1.

(3) Lower bound 𝜒(𝐺′) ≥ 𝑘 + 1. Assume for contradiction that 𝐺′ has a proper 𝑘-coloring 𝜓
with color set {1, . . . , 𝑘}. By permuting color names if needed, we may assume

𝜓(𝑤) = 𝑘.

Then every neighbor of 𝑤 must avoid color 𝑘, so

𝜓(𝑢𝑖) ∈ {1, . . . , 𝑘 − 1} for all 𝑖.

Let

𝐴 := { 𝑣𝑖 ∈ 𝑉(𝐺) : 𝜓(𝑣𝑖) = 𝑘 }.
Note 𝐴 is independent in 𝐺 because it is a single color class of 𝜓 and 𝐺 is an induced subgraph

of 𝐺′ on 𝑉(𝐺).
Define a new coloring 𝜃 of 𝐺 with colors in {1, . . . , 𝑘 − 1} by

𝜃(𝑣𝑖) :=

{
𝜓(𝑢𝑖), 𝑣𝑖 ∈ 𝐴,
𝜓(𝑣𝑖), 𝑣𝑖 ∉ 𝐴.

This is well-defined and uses only {1, . . . , 𝑘 − 1} since 𝜓(𝑢𝑖) ∈ {1, . . . , 𝑘 − 1} and 𝜓(𝑣𝑖) ≠ 𝑘 when

𝑣𝑖 ∉ 𝐴.

Vertex Coloring 220

Figure 3: Mycielski graph 𝑀4

We claim 𝜃 is proper on 𝐺. Consider any edge 𝑣𝑖𝑣 𝑗 ∈ 𝐸(𝐺).
If neither endpoint lies in 𝐴, then 𝜃(𝑣𝑖) = 𝜓(𝑣𝑖) and 𝜃(𝑣 𝑗) = 𝜓(𝑣 𝑗), and these are different

because 𝜓 is proper on 𝐺′[𝑉(𝐺)] = 𝐺.

If both endpoints lie in 𝐴, this cannot happen since 𝐴 is independent.

So suppose 𝑣𝑖 ∈ 𝐴 and 𝑣 𝑗 ∉ 𝐴. Then

𝜃(𝑣𝑖) = 𝜓(𝑢𝑖), 𝜃(𝑣 𝑗) = 𝜓(𝑣 𝑗).

Because 𝑣𝑖𝑣 𝑗 ∈ 𝐸(𝐺), the construction of 𝐺′ gives 𝑢𝑖𝑣 𝑗 ∈ 𝐸(𝐺′). Since 𝜓 is proper on 𝐺′, we have

𝜓(𝑢𝑖) ≠ 𝜓(𝑣 𝑗), hence 𝜃(𝑣𝑖) ≠ 𝜃(𝑣 𝑗). Thus 𝜃 is a proper (𝑘 − 1)-coloring of 𝐺.

This contradicts 𝜒(𝐺) = 𝑘. Therefore 𝐺′ is not 𝑘-colorable, so 𝜒(𝐺′) ≥ 𝑘 + 1.

Combining (2) and (3) yields 𝜒(𝐺′) = 𝑘 + 1. □

Theorem 23.11. If 𝐺 is triangle-free on 𝑛 vertices, then

𝜒(𝐺) ≤ 2⌈
√
𝑛⌉.

(In particular, if 𝑛 is a perfect square then 𝜒(𝐺) ≤ 2

√
𝑛.)

Proof. Set 𝑡 := ⌈
√
𝑛⌉. We color 𝐺 in two phases.

Phase I (peel off large neighborhoods). Initialize𝐻 := 𝐺. While𝐻 has a vertex 𝑣 with 𝑑𝐻(𝑣) ≥ 𝑡,
do:

• introduce a new color (a brand new color never used before);

• color every vertex in the open neighborhood 𝑁𝐻(𝑣)with this new color;

• delete the vertices of 𝑁𝐻(𝑣) from 𝐻 (leave 𝑣 uncolored for now).

This is a proper coloring step because 𝐺 is triangle-free: if two vertices 𝑥, 𝑦 ∈ 𝑁𝐻(𝑣) were

adjacent, then 𝑣𝑥𝑦 would form a triangle. Hence 𝑁𝐻(𝑣) is an independent set, so it can safely

receive one color.

Each iteration colors (and deletes) at least 𝑡 vertices, so Phase I uses at most

𝑛

𝑡
≤ 𝑛√

𝑛
=
√
𝑛 ≤ 𝑡

Vertex Coloring 221

colors.

Phase II (finish the low-degree remainder). When Phase I stops, the remaining uncolored

graph 𝐻 satisfies Δ(𝐻) ≤ 𝑡 − 1 (since there is no vertex of degree ≥ 𝑡). By the greedy bound

𝜒(𝐻) ≤ Δ(𝐻) + 1, we can color 𝐻 using at most

Δ(𝐻) + 1 ≤ (𝑡 − 1) + 1 = 𝑡

additional colors.

Total. Phase I uses ≤ 𝑡 colors and Phase II uses ≤ 𝑡 colors, so 𝜒(𝐺) ≤ 2𝑡 = 2⌈
√
𝑛⌉. □

Color-critical graphs 222

24 Color-critical graphs

Definition 24.1 (Color-critical and 𝑘-critical). A graph 𝐺 is color-critical if every proper

subgraph 𝐻 ⊊ 𝐺 satisfies

𝜒(𝐻) < 𝜒(𝐺).
If 𝜒(𝐺) = 𝑘, we also say that 𝐺 is 𝑘-critical.

Remark 24.1 (Immediate consequences). If 𝐺 is color-critical, then:

∀𝑣 ∈ 𝑉(𝐺) : 𝜒(𝐺 − 𝑣) < 𝜒(𝐺), ∀𝑒 ∈ 𝐸(𝐺) : 𝜒(𝐺 − 𝑒) < 𝜒(𝐺).

In particular, 𝐺 has no isolated vertex (deleting an isolated vertex does not change 𝜒).

Example 24.1. 1. The unique 1-critical graph is 𝐾1.

2. The unique 2-critical graph is 𝐾2.

3. The 3-critical graphs are exactly the odd cycles 𝐶2𝑡+1.

Lemma 24.1 (Minimum degree bound). If 𝐺 is 𝑘-critical, then

𝛿(𝐺) ≥ 𝑘 − 1.

Proof. Let 𝑣 ∈ 𝑉(𝐺). Since 𝐺 is 𝑘-critical, we have 𝜒(𝐺 − 𝑣) ≤ 𝑘 − 1. Fix a proper (𝑘 − 1)-coloring

𝑐 of 𝐺 − 𝑣.

If some color in {1, . . . , 𝑘 − 1} does not appear on 𝑁𝐺(𝑣), then we could assign 𝑣 that missing

color and obtain a proper (𝑘 − 1)-coloring of 𝐺, contradicting 𝜒(𝐺) = 𝑘. Hence every one of the

𝑘 − 1 colors appears on 𝑁𝐺(𝑣), so |𝑁𝐺(𝑣)| ≥ 𝑘 − 1, i.e. deg(𝑣) ≥ 𝑘 − 1.

Since 𝑣 was arbitrary, 𝛿(𝐺) ≥ 𝑘 − 1. □

Proposition 24.2. Let 𝜒(𝐺) = 𝑘.

1. If 𝜒(𝐺 − 𝑣) < 𝜒(𝐺) for some 𝑣 ∈ 𝑉(𝐺), then there exists a proper 𝑘-coloring 𝑓 of 𝐺 such

that:

𝑓 (𝑣) = 𝑘 is used only on 𝑣, and {1, 2, . . . , 𝑘 − 1} ⊆ 𝑓
(
𝑁𝐺(𝑣)

)
.

2. If 𝜒(𝐺 − 𝑒) < 𝜒(𝐺) for some edge 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺), then in every proper (𝑘 − 1)-coloring 𝑔

of 𝐺 − 𝑒 we have

𝑔(𝑢) = 𝑔(𝑣).

Proof. 1. Since 𝜒(𝐺 − 𝑣) ≤ 𝑘 − 1, pick a proper (𝑘 − 1)-coloring of 𝐺 − 𝑣 and call it 𝑓 . Extend it to

𝐺 by assigning 𝑓 (𝑣) := 𝑘. Now 𝑣 is the unique vertex of color 𝑘. If some color 𝑐 ∈ {1, . . . , 𝑘 − 1}
did not appear on 𝑁𝐺(𝑣), then we could recolor 𝑣 with 𝑐 and obtain a proper (𝑘 − 1)-coloring of

𝐺, contradicting 𝜒(𝐺) = 𝑘. Hence every color 1, . . . , 𝑘 − 1 appears on 𝑁𝐺(𝑣).

2. Let 𝑒 = 𝑢𝑣. Take any proper (𝑘 − 1)-coloring 𝑔 of 𝐺 − 𝑒. If 𝑔(𝑢) ≠ 𝑔(𝑣), then 𝑔 is also a

proper (𝑘 − 1)-coloring of 𝐺 (because adding the edge 𝑢𝑣 would still connect different colors),

contradicting 𝜒(𝐺) = 𝑘. Therefore 𝑔(𝑢) = 𝑔(𝑣) in every (𝑘 − 1)-coloring of 𝐺 − 𝑒. □

Color-critical graphs 223

24.1 Connectivity properties of color-critical graphs

Proposition 24.3. If 𝐺 is 𝑘-critical with 𝑘 ≥ 2, then 𝐺 is 2-connected. Equivalently, 𝐺 has

no cut-vertex.

Proof. First, 𝐺 is connected: otherwise 𝜒(𝐺) = max𝑖 𝜒(𝐺𝑖) over components, so deleting a vertex

from a component not attaining the maximum would not decrease 𝜒, contradicting criticality.

Now suppose for contradiction that 𝐺 has a cut-vertex 𝑣. Then 𝐺 − 𝑣 is disconnected; write its

components as 𝐻1 , . . . , 𝐻𝑡 with 𝑡 ≥ 2, and let 𝐺𝑖 := 𝐺[𝑉(𝐻𝑖) ∪ {𝑣}].
For each 𝑖, 𝐺𝑖 is a proper subgraph of 𝐺, so by 𝑘-criticality

𝜒(𝐺𝑖) ≤ 𝑘 − 1.

Fix proper (𝑘 − 1)-colorings 𝑐𝑖 of each 𝐺𝑖 . By permuting the color names inside each 𝑐𝑖 (allowed

since colors are just labels), we may assume that all 𝑐𝑖 assign the same color to 𝑣.

Now define a coloring 𝑐 of 𝐺 by setting 𝑐|𝑉(𝐺𝑖) := 𝑐𝑖 for each 𝑖. This is well-defined because the

only overlap between the vertex sets of the 𝐺𝑖 is the single vertex 𝑣, and we forced agreement

there. No edge joins𝐻𝑖 to𝐻𝑗 for 𝑖 ≠ 𝑗, so 𝑐 is a proper (𝑘−1)-coloring of all of 𝐺. This contradicts

𝜒(𝐺) = 𝑘.

Therefore 𝐺 has no cut-vertex. Since 𝐺 is connected, it is 2-connected. □

Theorem 24.4 (Dirac). Every 𝑘-critical graph 𝐺 is (𝑘 − 1)-edge-connected

Proof. Let 𝐺 be 𝑘-critical. Let 𝐹 be a minimum edge-cut, so 𝐺 − 𝐹 is disconnected. Choose one

component of 𝐺 − 𝐹 with vertex set 𝑋, and put 𝑌 := 𝑉(𝐺) \ 𝑋. Then 𝐹 = 𝐸𝐺(𝑋,𝑌).
Since 𝑋 and 𝑌 are proper nonempty vertex subsets, the induced subgraphs 𝐺[𝑋] and 𝐺[𝑌] are

proper subgraphs of 𝐺, hence

𝜒(𝐺[𝑋]) ≤ 𝑘 − 1 and 𝜒(𝐺[𝑌]) ≤ 𝑘 − 1

by 𝑘-criticality. Fix proper (𝑘 − 1)-colorings of 𝐺[𝑋] and 𝐺[𝑌]. Let

𝑋 = 𝑋1 ∪ · · · ∪ 𝑋𝑘−1 , 𝑌 = 𝑌1 ∪ · · · ∪ 𝑌𝑘−1

be the corresponding color classes (so each 𝑋𝑖 and 𝑌𝑗 is independent).

Now build a bipartite graph 𝐵 with left part {1, . . . , 𝑘 − 1} (the colors on 𝑋) and right part

{1, . . . , 𝑘 − 1} (the colors on 𝑌), where we join 𝑖 to 𝑗 in 𝐵 iff there is no edge of 𝐺 between 𝑋𝑖 and

𝑌𝑗 . (Think: pairing color 𝑖 on 𝑋 with color 𝑗 on 𝑌 would be “safe across the cut”.)

Claim: 𝐵 has no perfect matching. Indeed, if 𝑀 were a perfect matching, then each 𝑗 on the right

is matched to a unique 𝑖 on the left. Recolor every vertex of 𝑌𝑗 with color 𝑖. This is just a

permutation of colors inside 𝑌, so it remains a proper (𝑘 − 1)-coloring of 𝐺[𝑌]. And because

(𝑖 , 𝑗) ∈ 𝑀 implies there are no edges between 𝑋𝑖 and 𝑌𝑗 , there are no monochromatic edges

across the cut. Thus we obtain a proper (𝑘 − 1)-coloring of all of 𝐺, contradicting 𝜒(𝐺) = 𝑘. So 𝐵

has no perfect matching.

By Hall’s theorem, there exists a nonempty set 𝑆 ⊆ {1, . . . , 𝑘 − 1} such that

|𝑁𝐵(𝑆)| < |𝑆|.

Color-critical graphs 224

Let 𝑇 := {1, . . . , 𝑘 − 1} \ 𝑁𝐵(𝑆). Then

|𝑇 | = (𝑘 − 1) − |𝑁𝐵(𝑆)| ≥ (𝑘 − 1) − (|𝑆| − 1) = 𝑘 − |𝑆|.

Moreover, if 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑇, then 𝑗 ∉ 𝑁𝐵(𝑆), so (𝑖 , 𝑗) is not an edge of 𝐵. By definition of 𝐵, this

means there is at least one edge of 𝐺 between 𝑋𝑖 and 𝑌𝑗 .

Each cut-edge in 𝐸𝐺(𝑋,𝑌) lies between a unique pair (𝑋𝑖 , 𝑌𝑗), so the previous paragraph implies

|𝐸𝐺(𝑋,𝑌)| ≥ |𝑆| · |𝑇 | ≥ |𝑆| (𝑘 − |𝑆|).

For integers 1 ≤ |𝑆| ≤ 𝑘 − 1, the minimum of |𝑆|(𝑘 − |𝑆|) occurs at the endpoints |𝑆| = 1 or

|𝑆| = 𝑘 − 1, and equals 𝑘 − 1. Hence

|𝐹| = |𝐸𝐺(𝑋,𝑌)| ≥ 𝑘 − 1.

Since 𝐹 was a minimum edge-cut, every edge-cut has size at least 𝑘 − 1, so 𝐺 is (𝑘 − 1)-edge-

connected. □

24.2 Hajós construction (building 𝑘-critical graphs of connectivity 2)

The Hajós construction is a standard way to manufacture new 𝑘-critical graphs from old ones,

while keeping the vertex-connectivity as small as possible (namely 2).

Example 24.2 (Hajós). Let 𝐺1 and 𝐺2 be vertex-disjoint graphs, and fix edges 𝑥1𝑦1 ∈ 𝐸(𝐺1) and

𝑥2𝑦2 ∈ 𝐸(𝐺2). Form a new graph 𝐺∗ by:

1. deleting the edges 𝑥1𝑦1 and 𝑥2𝑦2;

2. identifying (gluing) the vertices 𝑥1 and 𝑥2 into a single new vertex 𝑥∗;

3. adding the edge 𝑦1𝑦2.

Remark 24.2 (Why 𝜅(𝐺∗) = 2). By construction, 𝐺∗ − {𝑥∗ , 𝑦1} is disconnected: removing 𝑥∗

separates the two “halves”, and removing 𝑦1 in addition kills the only remaining link 𝑦1𝑦2

from the 𝐺1-side to the 𝐺2-side. Thus {𝑥∗ , 𝑦1} is a separating set, so 𝜅(𝐺∗) ≤ 2 (and in the usual

applications one checks 𝐺∗ is 2-connected, hence 𝜅(𝐺∗) = 2).

Theorem 24.5 (Hajós preserves 𝑘-criticality). If 𝐺1 and 𝐺2 are 𝑘-critical, then the Hajós

graph 𝐺∗ is also 𝑘-critical.

Proof. Write 𝑥∗ for the identified vertex, and note that

𝑉(𝐺∗) =
(
𝑉(𝐺1) ∪𝑉(𝐺2)

)
\ {𝑥1 , 𝑥2} ∪ {𝑥∗}.

Step 1: 𝜒(𝐺∗) ≥ 𝑘. Suppose for contradiction that 𝐺∗ has a proper (𝑘 − 1)-coloring 𝑓 .

Restrict 𝑓 to 𝑉(𝐺1) \ {𝑥1} and give 𝑥1 the color 𝑓 (𝑥∗). Since the only edge of 𝐺1 that we deleted

was 𝑥1𝑦1, this assignment fails to be a proper (𝑘 − 1)-coloring of 𝐺1 only if 𝑥1 and 𝑦1 receive the

same color. Hence

𝑓 (𝑥∗) = 𝑓 (𝑦1).
Applying the same argument on the 𝐺2 side yields

𝑓 (𝑥∗) = 𝑓 (𝑦2).

Color-critical graphs 225

Therefore 𝑓 (𝑦1) = 𝑓 (𝑦2), contradicting that 𝑦1𝑦2 is an edge of 𝐺∗ and 𝑓 is proper. Thus 𝐺∗ is not

(𝑘 − 1)-colorable, so 𝜒(𝐺∗) ≥ 𝑘.
Step 2: every edge deletion lowers the chromatic number. Let 𝑒 ∈ 𝐸(𝐺∗). We show

𝜒(𝐺∗ − 𝑒) ≤ 𝑘 − 1.

Case 2a: 𝑒 = 𝑦1𝑦2. Since 𝐺𝑖 is 𝑘-critical, the graph 𝐺𝑖 − 𝑥𝑖𝑦𝑖 is (𝑘 − 1)-colorable. Let 𝑓𝑖 be a proper

(𝑘 − 1)-coloring of 𝐺𝑖 − 𝑥𝑖𝑦𝑖 . Because 𝑥𝑖 and 𝑦𝑖 are nonadjacent in 𝐺𝑖 − 𝑥𝑖𝑦𝑖 , we may (if necessary)

permute the colors within 𝑓𝑖 so that

𝑓𝑖(𝑥𝑖) = 𝑓𝑖(𝑦𝑖).

Now permute the colors of 𝑓2 so that 𝑓2(𝑥2) = 𝑓1(𝑥1). After identifying 𝑥1 and 𝑥2 into 𝑥∗, define

a coloring 𝑓 of 𝐺∗ − 𝑦1𝑦2 by

𝑓 (𝑣) =

𝑓1(𝑣) 𝑣 ∈ 𝑉(𝐺1) \ {𝑥1},
𝑓2(𝑣) 𝑣 ∈ 𝑉(𝐺2) \ {𝑥2},
𝑓1(𝑥1) = 𝑓2(𝑥2) 𝑣 = 𝑥∗.

This is well-defined and proper: inside each side it agrees with a proper coloring; across the cut

there is no edge except 𝑦1𝑦2, which we removed. Hence 𝜒(𝐺∗ − 𝑦1𝑦2) ≤ 𝑘 − 1.

Case 2b: 𝑒 is any other edge. By symmetry, assume 𝑒 ∈ 𝐸(𝐺1) after the construction (this includes

edges incident to 𝑥∗ that came from 𝐺1).

Again, 𝑘-criticality of 𝐺1 gives a proper (𝑘 − 1)-coloring 𝑓1 of 𝐺1− 𝑒. Also 𝑘-criticality of 𝐺2 gives

a proper (𝑘 − 1)-coloring 𝑓2 of 𝐺2 − 𝑥2𝑦2, and as above we may choose 𝑓2 so that 𝑓2(𝑥2) = 𝑓2(𝑦2).
Permute colors in 𝑓2 so that 𝑓2(𝑥2) = 𝑓1(𝑥1), and then glue the colorings into a coloring of 𝐺∗ − 𝑒
exactly as in Case 2a. The only potential conflict across the two sides is the edge 𝑦1𝑦2, but 𝑦1

and 𝑦2 may have different colors (and if 𝑒 ≠ 𝑦1𝑦2 we did not delete that edge), so the resulting

coloring is still proper.

Thus in all cases 𝜒(𝐺∗ − 𝑒) ≤ 𝑘 − 1.

Conclusion. We have shown 𝜒(𝐺∗) ≥ 𝑘 and 𝜒(𝐺∗ − 𝑒) ≤ 𝑘 − 1 for every 𝑒 ∈ 𝐸(𝐺∗), which is

exactly that 𝐺∗ is 𝑘-critical. □

24.3 Proof of Brooks Theorem

We now return to the proof of Brooks Theorem.

Theorem 24.6 (Brooks’ Theorem). Let 𝐺 be a graph with maximum degree Δ. If Δ ≥ 3 and

𝐺 contains no clique 𝐾Δ+1, then 𝐺 is Δ-colorable (i.e. 𝜒(𝐺) ≤ Δ).

Proof. We may assume 𝐺 is connected, since different components can be colored independently

using the same palette of Δ colors.

Assume for contradiction that 𝐺 is a counterexample with the fewest vertices. Thus 𝐺 is not

complete and not an odd cycle, Δ(𝐺) = Δ, and 𝜒(𝐺) > Δ. Since 𝜒(𝐺) ≤ Δ + 1 always, we have

𝜒(𝐺) = Δ + 1.

By minimality, for every vertex 𝑢 the graph 𝐺− 𝑢 is Δ-colorable, so 𝜒(𝐺− 𝑢) ≤ Δ < Δ+ 1 = 𝜒(𝐺).
Hence 𝐺 is (Δ + 1)-critical.

Color-critical graphs 226

By previously proved results about 𝑘-critical graphs (applied with 𝑘 = Δ + 1), we have:

𝛿(𝐺) ≥ (Δ + 1) − 1 = Δ and 𝐺 is 2-connected.

Step 2: Find 𝑎, 𝑏 at distance 2 with 𝐺 − 𝑎 − 𝑏 connected.
Since also Δ(𝐺) = Δ, the minimum-degree bound forces 𝐺 to be Δ-regular. Moreover, 2-

connectedness implies that for every vertex 𝑢, the graph 𝐺 − 𝑢 is connected.

If Δ = |𝑉(𝐺)|−1, then every vertex has degree |𝑉(𝐺)|−1, so 𝐺 is complete, contrary to hypothesis.

Hence

Δ ≤ |𝑉(𝐺)| − 2.

Fix any vertex 𝑣 ∈ 𝑉(𝐺). Since 𝑣 is not adjacent to every other vertex, pick a vertex 𝑡 ∉ 𝑁(𝑣)∪{𝑣},
and let

𝑣 = 𝑝0 , 𝑝1 , 𝑝2 , . . . , 𝑝ℓ = 𝑡

be a shortest 𝑣–𝑡 path. Then ℓ ≥ 2, so 𝑝2 ≠ 𝑣 exists and 𝑝2 ∉ 𝑁(𝑣) (otherwise 𝑣𝑝2 would shorten

the path). Set

𝑎 := 𝑣, 𝑏 := 𝑝2.

Then dist(𝑎, 𝑏) = 2, and 𝑎 and 𝑏 have a common neighbor 𝑝1.

It remains to ensure 𝐺 − 𝑎 − 𝑏 is connected. Consider 𝐺 − 𝑎 = 𝐺 − 𝑣, which is connected because

𝐺 is 2-connected. If (𝐺 − 𝑣) − 𝑏 is connected, we are done. Otherwise, 𝑏 is a cut-vertex of 𝐺 − 𝑣.

Let 𝐵 be an endblock of 𝐺 − 𝑣 not containing 𝑝1 (equivalently, not containing the neighbor of 𝑣

on the chosen shortest path), and let 𝑧 be the unique cut-vertex of 𝐺 − 𝑣 in 𝐵.

Because 𝐺 is 2-connected, the vertex 𝑣 must have a neighbor in 𝐵 − {𝑧}; otherwise 𝑧 would

separate 𝐵 − {𝑧} from the rest of 𝐺. Choose such a neighbor 𝑎′ ∈ 𝐵 − {𝑧} of 𝑣, and set 𝑎 := 𝑎′

while keeping 𝑏 := 𝑝2 as above. Then 𝑎 and 𝑏 are nonadjacent (they lie in distinct blocks of 𝐺− 𝑣)

and still have distance 2 through 𝑣. Moreover, removing 𝑎 deletes a vertex from an endblock 𝐵

but leaves the block attached through 𝑧, so (𝐺 − 𝑣) − 𝑎 remains connected; hence 𝐺 − 𝑎 − 𝑏 is

connected as well.

Thus we have vertices 𝑎, 𝑏 with dist(𝑎, 𝑏) = 2 such that 𝐻 := 𝐺 − 𝑎 − 𝑏 is connected. Let 𝑣 be a

common neighbor of 𝑎 and 𝑏 (so 𝑎 − 𝑣 − 𝑏 is a path).

Step 3: Greedy coloring in reverse order. Let 𝐻 := 𝐺 − 𝑎 − 𝑏, which is connected. Choose an

ordering

𝑥1 = 𝑣, 𝑥2 , . . . , 𝑥𝑚

of 𝑉(𝐻) such that each 𝑥𝑖 (𝑖 ≥ 2) has a neighbor among {𝑥1 , . . . , 𝑥𝑖−1} (e.g. a rooted spanning

tree order).

We now Δ-color 𝐺.

(i) Precolor 𝑎 and 𝑏. Assign both 𝑎 and 𝑏 color 1. This is legal because 𝑎 and 𝑏 are nonadjacent.

(ii) Color 𝑥𝑚 , 𝑥𝑚−1 , . . . , 𝑥2 greedily. When coloring 𝑥𝑖 (𝑖 ≥ 2), it has a neighbor among {𝑥1 , . . . , 𝑥𝑖−1}
that is still uncolored (since we color in reverse). Hence at most deg𝐺(𝑥𝑖) − 1 ≤ Δ − 1 of its

neighbors are already colored, so some color in {1, . . . ,Δ} is available.

(iii) Color 𝑥1 = 𝑣 last. All neighbors of 𝑣 are now colored, including 𝑎 and 𝑏, and both 𝑎, 𝑏 have

color 1. Since 𝑣 has degree Δ, the colors appearing on 𝑁(𝑣) use at most Δ − 1 distinct colors, so

some color in {1, . . . ,Δ} is missing from 𝑁(𝑣). Color 𝑣 with that missing color.

This yields a proper Δ-coloring of 𝐺, contradicting 𝜒(𝐺) = Δ + 1. Therefore 𝐺 is Δ-colorable.

□

Color-critical graphs 227

24.4 List coloring

Definition 24.2. For a graph 𝐺, a list assignment 𝐿 assigns to each vertex 𝑣 ∈ 𝑉(𝐺) a set

𝐿(𝑣) of colors allowed at 𝑣. An 𝐿-coloring of 𝐺 is a propositioner coloring 𝑓 such that

𝑓 (𝑣) ∈ 𝐿(𝑣) for every vertex 𝑣.

Definition 24.3. A graph 𝐺 is 𝑘-choosable (or list 𝑘-colorable) if for every list assignment

𝐿 satisfying |𝐿(𝑣)| ≥ 𝑘 for all 𝑣 ∈ 𝑉(𝐺), the graph 𝐺 has an 𝐿-coloring. The list chromatic

number 𝜒ℓ (𝐺) is the minimum 𝑘 such that 𝐺 is 𝑘-choosable.

Theorem 24.7. Let 𝑚 =
(
2𝑘−1

𝑘

)
. Then 𝐾𝑚,𝑚 is not 𝑘-choosable. Hence

𝜒ℓ (𝐾𝑚,𝑚) > 𝑘, 𝜒(𝐾𝑚,𝑚) = 2.

Proof. Let the color set be {1, 2, . . . , 2𝑘 − 1}, and let 𝐿 assign to each vertex every 𝑘-subset of this

set. Since there are

(
2𝑘−1

𝑘

)
= 𝑚 such subsets, this defines distinct lists for the 𝑚 vertices in each

part of 𝐾𝑚,𝑚 .

Suppose toward a contradiction that 𝐾𝑚,𝑚 has an 𝐿-coloring using the colors {1, . . . , 2𝑘 − 1}. Let

the two partite sets be 𝑋 and 𝑌. Since each list has size 𝑘, every vertex must receive one of the 𝑘

colors in its list. In particular, each part must use at least 𝑘 colors; otherwise some vertex in that

part would have no available color from its list.

Without loss of generality, assume the left part 𝑋 uses at most 𝑘 − 1 distinct colors. Let 𝐵 be the

set of colors used on 𝑋; then |𝐵| ≤ 𝑘 − 1. Therefore the remaining colors

{1, 2, . . . , 2𝑘 − 1} \ 𝐵

form a set of size at least 𝑘.

Hence 𝑌 must use at least one color from this remaining set. But any such color appears in at

least one list on 𝑋 as well, because every 𝑘-subset occurs as a list on both sides. Since 𝐾𝑚,𝑚 is

complete bipartite, this forces some edge between 𝑋 and 𝑌 to have both endpoints receiving the

same color, contradicting propositioner coloring. Thus no 𝐿-coloring exists. Since 𝐿 assigns lists

of size 𝑘, the graph 𝐾𝑚,𝑚 is not 𝑘-choosable, and therefore 𝜒ℓ (𝐾𝑚,𝑚) > 𝑘. □

Theorem 24.8 (List-coloring version of Brooks’ theorem). If 𝐺 is connected, not complete,

and not an odd cycle, then

𝜒ℓ (𝐺) ≤ Δ(𝐺).

Edge Coloring 228

25 Edge Coloring

25.1 Basics of edge-coloring

Definition 25.1 (𝑘-edge-coloring). A (proper) 𝑘-edge-coloring of a graph 𝐺 is a function

𝑓 : 𝐸(𝐺) → {1, 2, . . . , 𝑘}

such that for every color 𝑖 ∈ {1, . . . , 𝑘}, the set

𝑓 −1(𝑖) := { 𝑒 ∈ 𝐸(𝐺) : 𝑓 (𝑒) = 𝑖 }

is a matching (that is, no two edges in 𝑓 −1(𝑖) share an endpoint). The sets 𝑓 −1(𝑖) are called

the color classes of 𝑓 .

Remark 25.1 (Immediate observations). 1. If 𝐺 has a loop, then 𝐺 has no proper 𝑘-edge-

coloring for any 𝑘. Indeed, a loop is incident to its own endpoint twice, so it cannot share a

color class with anything, and in particular it violates the matching condition.

2. Multiple edges do affect edge-coloring: if two parallel edges join the same pair of vertices,

they are incident at both ends and hence must receive different colors.

3. Equivalently, 𝑓 is a proper edge-coloring iff for every vertex 𝑣 ∈ 𝑉(𝐺), the edges incident to 𝑣

all receive distinct colors.

Remark 25.2 (Partition viewpoint). Giving a 𝑘-edge-coloring is the same thing as partitioning

the edge set into 𝑘 matchings:

𝐸(𝐺) = 𝑀1 ⊔𝑀2 ⊔ · · · ⊔𝑀𝑘 ,

where 𝑀𝑖 = 𝑓 −1(𝑖) is the 𝑖th color class.

Definition 25.2 (Edge chromatic number). The edge chromatic number (also called the

chromatic index) of 𝐺 is

𝜒′(𝐺) := min{ 𝑘 ∈ Z>0 : 𝐺 has a proper 𝑘-edge-coloring }.

We say 𝐺 is 𝑘-edge-colorable if 𝜒′(𝐺) ≤ 𝑘.

Lemma 25.1 (Trivial lower bound). For every graph 𝐺,

𝜒′(𝐺) ≥ Δ(𝐺).

Proof. Let 𝑣 be a vertex of maximum degree Δ(𝐺). In any proper edge-coloring, all Δ(𝐺) edges

incident to 𝑣 must receive pairwise distinct colors, so at least Δ(𝐺) colors are needed. □

Edge Coloring 229

Example 25.1 (Cycles). For the cycle 𝐶𝑛 ,

𝜒′(𝐶𝑛) =
{

2, 𝑛 even,

3, 𝑛 odd.

Example 25.2 (Complete graphs). For the complete graph 𝐾𝑛 ,

𝜒′(𝐾𝑛) =
{
𝑛 − 1, 𝑛 even,

𝑛, 𝑛 odd.

Example 25.3 (Bipartite graphs (Kőnig’s line coloring theorem)). If 𝐺 is bipartite, then

𝜒′(𝐺) = Δ(𝐺).

Example 25.4 (Petersen graph). The Petersen graph is 3-regular, but it is not 3-edge-colorable:

𝜒′(Petersen) = 4.

(Equivalently: Petersen has no decomposition of its 15 edges into 3 perfect matchings.)

Example 25.5 (3-regular graphs with a bridge). If 𝐺 is 3-regular and has a cut-edge (bridge),

then 𝐺 is not 3-edge-colorable, so

𝜒′(𝐺) = 4.

Proposition 25.2. 𝜒′(𝐺) ≤ 2Δ(𝐺) − 1

Proof. An edge-coloring of 𝐺 is exactly a vertex-coloring of its line graph 𝐿(𝐺): each edge of 𝐺

becomes a vertex of 𝐿(𝐺), and two vertices of 𝐿(𝐺) are adjacent iff the corresponding edges in 𝐺

share an endpoint. Therefore

𝜒′(𝐺) = 𝜒(𝐿(𝐺)).

Now apply greedy coloring to 𝐿(𝐺). When a vertex is colored, the only colors forbidden are

those already used on its previously colored neighbors. Hence if every vertex has at most 𝐷

previously colored neighbors, then 𝐷 + 1 colors always suffice.

So it remains to bound the degree in 𝐿(𝐺). Let 𝑒 = 𝑢𝑣 be an edge of 𝐺. In 𝐿(𝐺), the vertex 𝑒 is

adjacent to all edges incident to 𝑢 except 𝑒 itself (there are deg(𝑢) − 1 of them) and all edges

incident to 𝑣 except 𝑒 (itself) (there are deg(𝑣) − 1 of them). Thus

deg𝐿(𝐺)(𝑒) = (deg(𝑢) − 1) + (deg(𝑣) − 1) ≤ 2Δ(𝐺) − 2.

Therefore, in a greedy coloring of 𝐿(𝐺), when we color 𝑒 there are at most 2Δ(𝐺) − 2 forbidden

colors, so one more color always exists. Hence

𝜒(𝐿(𝐺)) ≤ (2Δ(𝐺) − 2) + 1 = 2Δ(𝐺) − 1,

and using 𝜒′(𝐺) = 𝜒(𝐿(𝐺))we conclude

𝜒′(𝐺) ≤ 2Δ(𝐺) − 1.

□

Edge Coloring 230

25.2 Shannon’s Theorem

Theorem 25.3 (Shannon, 1949). Let 𝐺 be a loopless multigraph with maximum degree

Δ := Δ(𝐺). Then

𝜒′(𝐺) ≤
⌊
3Δ

2

⌋
.

Proof. If Δ ≤ 1 the statement is immediate. Assume Δ ≥ 2 and set

𝑠 :=

⌊
3Δ

2

⌋
, 𝑀 := {1, 2, . . . , 𝑠}.

We prove the theorem by induction on |𝐸(𝐺)| over all loopless multigraphs with maximum

degree at most Δ.

Base case. If |𝐸(𝐺)| ≤ 𝑠, color every edge with a distinct color from 𝑀.

Induction step. Let 𝐺 have 𝑚 edges, and assume every loopless multigraph with maximum

degree ≤ Δ and at most 𝑚 − 1 edges is 𝑠-edge-colorable. Pick an edge 𝑒 = 𝑢𝑣 and let 𝐺1 := 𝐺 − 𝑒.
By induction, 𝐺1 has a proper edge-coloring

𝑓 : 𝐸(𝐺1) → 𝑀.

For a vertex 𝑥 ∈ 𝑉(𝐺) define the set of free colors at 𝑥 by

𝐶(𝑥) := { 𝑐 ∈ 𝑀 : no edge incident to 𝑥 has color 𝑐 under 𝑓 }.

Because incident edges receive distinct colors,

|𝐶(𝑥)| = 𝑠 − 𝑑𝐺1
(𝑥) ≥ 𝑠 − Δ ≥

⌊
Δ

2

⌋
for all 𝑥,

and moreover

|𝐶(𝑢)|, |𝐶(𝑣)| ≥ 𝑠 − (Δ − 1) =
⌊
Δ

2

⌋
+ 1, (9)

since 𝑑𝐺1
(𝑢), 𝑑𝐺1

(𝑣) ≤ Δ − 1.

If 𝐶(𝑢) ∩ 𝐶(𝑣) ≠ ∅, we are done. Indeed, choose 𝑐 ∈ 𝐶(𝑢) ∩ 𝐶(𝑣) and color 𝑒 with 𝑐.

So assume from now on that

𝐶(𝑢) ∩ 𝐶(𝑣) = ∅. (10)

For colors 𝑎, 𝑏 ∈ 𝑀, let 𝐻𝑎,𝑏 be the subgraph of 𝐺1 consisting of all edges colored 𝑎 or 𝑏. Every

component of 𝐻𝑎,𝑏 is a path or an even cycle with colors alternating along it.

Claim 1: For any 𝑎 ∈ 𝐶(𝑢) and 𝑏 ∈ 𝐶(𝑣), the vertices 𝑢 and 𝑣 lie in the same component of 𝐻𝑎,𝑏 ;

equivalently, there is an 𝑎–𝑏 alternating 𝑢–𝑣 path.

Proof. Suppose not. Then 𝑢 lies in some component 𝐾 of 𝐻𝑎,𝑏 that does not contain 𝑣. Swap the

colors 𝑎 and 𝑏 on every edge of 𝐾 (this preserves a proper edge-coloring). Since 𝑎 ∈ 𝐶(𝑢), the

vertex 𝑢 had no incident 𝑎-edge in 𝐾, so after swapping, 𝑢 has no incident 𝑏-edge either; i.e.

𝑏 ∈ 𝐶(𝑢) in the new coloring. But 𝑏 ∈ 𝐶(𝑣) always (we did not touch the component of 𝑣), so

now 𝑏 ∈ 𝐶(𝑢) ∩ 𝐶(𝑣), contradicting (12). □

Edge Coloring 231

Pick any colors 𝑎 ∈ 𝐶(𝑢) and 𝑏 ∈ 𝐶(𝑣). By Claim 1, there is an alternating 𝑎–𝑏 path from 𝑢 to 𝑣.

In particular, since 𝑏 is free at 𝑣, the last edge on this path entering 𝑣 must have color 𝑎. Let that

edge be 𝑣𝑤, so

𝑓 (𝑣𝑤) = 𝑎. (11)

Claim 2: 𝐶(𝑣) ∩ 𝐶(𝑤) = ∅.

Proof. If some color 𝑡 were free at both 𝑣 and 𝑤, we could recolor the edge 𝑣𝑤 with 𝑡, making 𝑎

free at 𝑣 (because (11) was the only 𝑎-edge incident to 𝑣 along that 𝑎–𝑏 chain). Since 𝑎 ∈ 𝐶(𝑢),
this would create 𝑎 ∈ 𝐶(𝑢) ∩ 𝐶(𝑣), contradicting (12). □

Claim 3: 𝐶(𝑢) ∩ 𝐶(𝑤) ≠ ∅.

Proof. Using (9) and |𝐶(𝑤)| ≥ ⌊Δ/2⌋,

|𝐶(𝑢)| + |𝐶(𝑣)| + |𝐶(𝑤)| ≥ 3

⌊
Δ

2

⌋
+ 2 >

⌊
3Δ

2

⌋
= |𝑀|.

But by (12) and Claim 2, the set 𝐶(𝑣) is disjoint from 𝐶(𝑢) ∪ 𝐶(𝑤), so if 𝐶(𝑢) and 𝐶(𝑤)were also

disjoint then

|𝐶(𝑢)| + |𝐶(𝑣)| + |𝐶(𝑤)| = |𝐶(𝑣)| + |𝐶(𝑢) ∪ 𝐶(𝑤)| ≤ |𝐶(𝑣)| + |𝑀 \ 𝐶(𝑣)| = |𝑀|,

contradiction. Hence 𝐶(𝑢) ∩ 𝐶(𝑤) ≠ ∅. □

Let 𝑐 ∈ 𝐶(𝑢) ∩ 𝐶(𝑤). Apply Claim 1 again, now to the pair (𝑐, 𝑏): there is a 𝑐–𝑏 alternating 𝑢–𝑣

path 𝑃. Since 𝑐 is free at 𝑤, the path 𝑃 cannot pass through 𝑤 (because an internal vertex on a

𝑐–𝑏 alternating path must be incident to both colors, and 𝑤 is incident to no 𝑐-edge). Therefore

the edge of 𝑃 incident to 𝑣 is not 𝑣𝑤.

Perform a Kempe swap on 𝑃 (swap colors 𝑐 and 𝑏 along 𝑃). After this swap:

• 𝑐 becomes free at 𝑣 (because 𝑏 was free at 𝑣 and 𝑃 ends at 𝑣), and

• 𝑐 remains free at 𝑤 (since 𝑃 avoids 𝑤).

So now 𝑐 ∈ 𝐶(𝑣) ∩ 𝐶(𝑤), contradicting Claim 2.

This contradiction shows our earlier assumption (12) was impossible. Hence 𝐶(𝑢) ∩ 𝐶(𝑣) ≠ ∅,
and we can color the missing edge 𝑒 = 𝑢𝑣 with a common free color. Thus 𝐺 is 𝑠-edge-colorable.

By induction, every loopless multigraph 𝐺 satisfies 𝜒′(𝐺) ≤ 𝑠 = ⌊3Δ(𝐺)/2⌋. □

Example 25.6 (Shannon’s Triangle). In the multigraph obtained by replacing each edge of 𝐾3

with 𝑘 parallel edges, every edge is adjacent to all others. Therefore all edges must receive

distinct colors. Each vertex has degree 2𝑘, and

𝜒′(𝐺) = 3𝑘 =
3

2

Δ(𝐺).

Edge Coloring 232

Figure 4: Shannon’s Triangle demonstrates the bound is sharp

25.3 Vizing’s Theorem

Theorem 25.4 (Vizing (multigraph form)). Let 𝐺 be a loopless multigraph. Write

Δ := Δ(𝐺) and 𝜇 := 𝜇(𝐺) := max

𝑢𝑣
𝑚𝐺(𝑢𝑣)

(where 𝑚𝐺(𝑢𝑣) is the number of parallel edges between 𝑢 and 𝑣). Then

𝜒′(𝐺) ≤ Δ + 𝜇.

(If 𝐺 has a loop, then 𝜒′(𝐺) is undefined/infinite since a loop is adjacent to itself.)

Proof. Set 𝑘 := Δ + 𝜇 and prove by induction on |𝐸(𝐺)|.

Induction setup. The case |𝐸(𝐺)| = 0 is trivial. Assume |𝐸(𝐺)| ≥ 1 and pick an edge 𝑒 = 𝑥𝑦. By

induction, 𝐺 − 𝑒 has a proper 𝑘-edge-coloring

𝑐 : 𝐸(𝐺 − 𝑒) → [𝑘] := {1, 2, . . . , 𝑘}.

For a vertex 𝑣, define the set of missing colors at 𝑣 (w.r.t. 𝑐) by

𝐶(𝑣) := { 𝑡 ∈ [𝑘] : no edge incident to 𝑣 has color 𝑡 }.

Since at most 𝑑𝐺−𝑒(𝑣) ≤ Δ colors appear at 𝑣 and 𝑘 ≥ Δ + 1, we always have 𝐶(𝑣) ≠ ∅. In

particular,

|𝐶(𝑥)| ≥ 𝑘 − 𝑑𝐺−𝑒(𝑥) ≥ 𝑘 − (Δ − 1) = 𝜇 + 1.

If 𝐶(𝑥) ∩ 𝐶(𝑦) ≠ ∅, choose 𝑡 ∈ 𝐶(𝑥) ∩ 𝐶(𝑦) and color 𝑒 with 𝑡. So assume for contradiction that

𝐶(𝑥) ∩ 𝐶(𝑦) = ∅. (12)

Alternating paths and the “if it doesn’t hit 𝑥, we win” lemma. Fix colors 𝑎, 𝑏 ∈ [𝑘]. Because

the coloring is proper, from any vertex there is at most one incident edge of color 𝑎 and at most

one of color 𝑏. Hence there is a unique maximal path starting at a vertex 𝑣 that begins with an

𝑎-colored edge and then alternates 𝑎, 𝑏, 𝑎, 𝑏, . . . ; call it the 𝑎/𝑏-path from 𝑣.

Edge Coloring 233

Lemma 25.5. Let 𝑢𝑣 be an uncolored edge and let 𝑐 be a proper 𝑘-edge-coloring of 𝐺 − 𝑢𝑣.

If 𝑎 ∈ 𝐶(𝑢) and 𝑏 ∈ 𝐶(𝑣) and the 𝑎/𝑏-path from 𝑣 does not end at 𝑢, then one can modify 𝑐

(by swapping 𝑎 and 𝑏 along that path) so that 𝑎 becomes missing at both 𝑢 and 𝑣, and then

color 𝑢𝑣 with 𝑎.

So, because we are assuming 𝐺 is not 𝑘-edge-colorable, we may use the contrapositive of

Lemma 25.5 in the following form:

() Whenever we have a proper 𝑘-edge-coloring of 𝐺 − 𝑢𝑣 and choose 𝑎 ∈ 𝐶(𝑢) and

𝑏 ∈ 𝐶(𝑣), the 𝑎/𝑏-path from 𝑣 must end at 𝑢.

Build a Vizing fan at 𝑥. Choose any color 𝑎 ∈ 𝐶(𝑥). Let 𝑦0 := 𝑦. Build a maximal sequence of

distinct neighbors 𝑦0 , 𝑦1 , . . . , 𝑦𝑠 of 𝑥 such that for each 𝑖 ≥ 1,

𝑐(𝑥𝑦𝑖) ∈ 𝐶(𝑦𝑖−1).

(Maximal means: you cannot extend the sequence by adding a new neighbor 𝑦𝑠+1 with

𝑐(𝑥𝑦𝑠+1) ∈ 𝐶(𝑦𝑠).)
Now define colorings 𝑐0 , 𝑐1 , . . . , 𝑐𝑠 as follows: 𝑐0 := 𝑐, and for 1 ≤ 𝑖 ≤ 𝑠 define 𝑐𝑖 by rotating
colors along the fan:

𝑐𝑖(𝑥𝑦 𝑗) := 𝑐0(𝑥𝑦 𝑗+1) (0 ≤ 𝑗 < 𝑖), 𝑐𝑖(𝑥𝑦𝑖) is undefined (i.e. 𝑥𝑦𝑖 is uncolored),

and 𝑐𝑖(𝑒′) := 𝑐0(𝑒′) for every other edge 𝑒′. By construction, 𝑐𝑖 is a proper 𝑘-edge-coloring of

𝐺 − 𝑥𝑦𝑖 : when we recolor 𝑥𝑦 𝑗 with 𝑐0(𝑥𝑦 𝑗+1), that color was missing at 𝑦 𝑗 . Also, the set 𝐶(𝑥) is
the same for all 𝑐𝑖 (we only permute colors on edges incident to 𝑥).

Pick a missing color at the last fan vertex. Choose any color 𝑏 ∈ 𝐶𝑐0
(𝑦𝑠) (missing at 𝑦𝑠 under

𝑐0). Then 𝑏 is still missing at 𝑦𝑠 under every 𝑐𝑖 (we never recolor edges incident to 𝑦𝑠 except

possibly 𝑥𝑦𝑠 , and deleting an edge cannot remove a missing color).

If 𝑏 ∈ 𝐶(𝑥), then in 𝑐𝑠 the edge 𝑥𝑦𝑠 is uncolored and both endpoints miss 𝑏, so we color 𝑥𝑦𝑠 with

𝑏 and obtain a 𝑘-edge-coloring of 𝐺, contradiction. Hence

𝑏 ∉ 𝐶(𝑥). (13)

So some edge incident to 𝑥 has color 𝑏 under 𝑐0; write that edge as 𝑥𝑦𝑖 for some 1 ≤ 𝑖 ≤ 𝑠.
Moreover, by maximality of the fan: since 𝑏 is missing at 𝑦𝑠 , the neighbor at the other end of the

𝑏-colored edge from 𝑥 must already be in the fan, so such an 𝑖 exists with 1 ≤ 𝑖 ≤ 𝑠.
Under the rotation to 𝑐𝑠 , the color 𝑏 = 𝑐0(𝑥𝑦𝑖) is shifted one step left, so

𝑐𝑠(𝑥𝑦𝑖−1) = 𝑏.

The alternating-path contradiction. Consider the 𝑎/𝑏-path 𝑃 from 𝑦𝑠 in the coloring 𝑐𝑠 . Here

𝑎 ∈ 𝐶(𝑥) (still) and 𝑏 ∈ 𝐶(𝑦𝑠), so property () applied to the uncolored edge 𝑥𝑦𝑠 (in 𝑐𝑠) implies: 𝑃

must end at 𝑥.

Because 𝑎 is missing at 𝑥, the final edge of 𝑃 entering 𝑥 must have color 𝑏. But the only 𝑏-colored

edge incident to 𝑥 in 𝑐𝑠 is 𝑥𝑦𝑖−1, so 𝑃 ends with the edge 𝑦𝑖−1𝑥.

Now look at the coloring 𝑐𝑖−1. In 𝑐𝑖−1 the edge 𝑥𝑦𝑖−1 is uncolored. Also, by the fan property, the

color 𝑐0(𝑥𝑦𝑖) = 𝑏 was chosen so that it is missing at 𝑦𝑖−1 under 𝑐0, and we did not recolor any

edge incident to 𝑦𝑖−1 except possibly 𝑥𝑦𝑖−1. Therefore 𝑏 is missing at 𝑦𝑖−1 under 𝑐𝑖−1.

Edge Coloring 234

Let 𝑃′ be the 𝑎/𝑏-path from 𝑦𝑖−1 under 𝑐𝑖−1. The internal edges of 𝑃 avoid 𝑥 (since 𝑥 is the

endpoint), and we only changed colors on edges incident to 𝑥 when going from 𝑐𝑖−1 to 𝑐𝑠 . Hence

the 𝑎/𝑏-alternating walk from 𝑦𝑖−1 in 𝑐𝑖−1 follows exactly the edges of 𝑃 in reverse order until it

reaches 𝑦𝑠 .

But 𝑏 is missing at 𝑦𝑠 , so 𝑃′ stops at 𝑦𝑠 and does not reach 𝑥. This contradicts property () applied

to the uncolored edge 𝑥𝑦𝑖−1 in 𝑐𝑖−1 (with 𝑎 ∈ 𝐶(𝑥) and 𝑏 ∈ 𝐶(𝑦𝑖−1)).

This contradiction shows that (12) is impossible. Hence 𝐶(𝑥) ∩ 𝐶(𝑦) ≠ ∅, and we can color

𝑒 = 𝑥𝑦 with a common missing color. Therefore 𝐺 has a proper 𝑘-edge-coloring, i.e. 𝜒′(𝐺) ≤
𝑘 = Δ + 𝜇. □

Definition 25.3 (Vizing class). A simple graph 𝐺 is

Class 1 ⇐⇒ 𝜒′(𝐺) = Δ(𝐺), Class 2 ⇐⇒ 𝜒′(𝐺) = Δ(𝐺) + 1.

Example 25.7 (Standard examples). • Bipartite graphs are Class 1 (Kőnig’s line coloring theo-

rem below).

• Odd cycles 𝐶2𝑡+1 are Class 2: Δ = 2 but 𝜒′ = 3.

• Complete graphs satisfy

𝜒′(𝐾𝑛) =
{
𝑛 − 1, 𝑛 even (Class 1),

𝑛, 𝑛 odd (Class 2).

25.4 Konig’s Line Coloring Theorem

Theorem 25.6 (Kőnig (line coloring)). If 𝐺 is bipartite, then

𝜒′(𝐺) = Δ(𝐺).

Proof. Let Δ = Δ(𝐺). The lower bound 𝜒′(𝐺) ≥ Δ is immediate.

For the upper bound, it suffices to show that every bipartite graph with maximum degree Δ has

a proper Δ-edge-coloring.

We may assume 𝐺 is Δ-regular: if not, add dummy vertices and dummy edges (still bipartite) to

obtain a Δ-regular bipartite supergraph 𝐺. Any Δ-edge-coloring of 𝐺 restricts to one of 𝐺 by

deleting dummy edges.

Now let 𝐺 be Δ-regular with bipartition (𝑋,𝑌). By Hall’s Marriage Theorem, 𝐺 has a perfect

matching: indeed for any 𝑆 ⊆ 𝑋,

Δ|𝑆| = 𝑒(𝑆, 𝑁(𝑆)) ≤ Δ|𝑁(𝑆)| =⇒ |𝑁(𝑆)| ≥ |𝑆|.
So there exists a matching 𝑀1 saturating 𝑋, hence perfect.

Remove 𝑀1. The remaining graph is (Δ − 1)-regular and bipartite, so by the same argument it

has a perfect matching 𝑀2. Iterating, we obtain pairwise edge-disjoint perfect matchings

𝐸(𝐺) = 𝑀1
¤∪𝑀2
¤∪ · · · ¤∪𝑀Δ.

Color edges in 𝑀𝑖 with color 𝑖. Each 𝑀𝑖 is a matching, so this is a proper Δ-edge-coloring of 𝐺,

and hence of 𝐺.

Therefore 𝜒′(𝐺) ≤ Δ, and combined with 𝜒′(𝐺) ≥ Δ we get 𝜒′(𝐺) = Δ. □

Planar graphs 235

26 Planar graphs

26.1 Basics of planar graphs

Definition 26.1 (Polygonal curve). A polygonal curve in R2
is a curve obtained by concate-

nating finitely many straight line segments.

Definition 26.2 (Drawing of a (multi)graph). Let 𝐺 be a (multi)graph. A drawing of 𝐺 is a

function

𝜑 : 𝑉(𝐺) ∪ 𝐸(𝐺) −→ R2

such that

1. for each vertex 𝑣 ∈ 𝑉(𝐺), 𝜑(𝑣) ∈ R2
is a point;

2. if 𝑣 ≠ 𝑣′, then 𝜑(𝑣) ≠ 𝜑(𝑣′) (distinct vertices map to distinct points);

3. for each edge 𝑒 = 𝑥𝑦 ∈ 𝐸(𝐺), 𝜑(𝑒) is a polygonal curve whose endpoints are 𝜑(𝑥) and

𝜑(𝑦).

(For a loop 𝑥𝑥, the curve 𝜑(𝑥𝑥) starts and ends at 𝜑(𝑥).)

Definition 26.3 (Crossing). A crossing in a drawing 𝜑 is a point 𝑝 ∈ 𝜑(𝑒) ∩ 𝜑(𝑓) for two

distinct edges 𝑒 ≠ 𝑓 such that 𝑝 is not the image of a common endpoint of 𝑒 and 𝑓 .

Equivalently, 𝑝 is a common internal point of the two edge-curves.

Definition 26.4 (Planar graph and plane graph). A (multi)graph 𝐺 is planar if it has a

drawing with no crossings. A plane graph is a pair (𝐺, 𝜑)where 𝜑 is a crossing-free drawing

of 𝐺 (i.e. a specific planar embedding has been chosen).

Example 26.1. 𝐾4 is planar (it has a crossing-free drawing).

𝐾5 and 𝐾3,3 are not planar: no matter how you draw them in the plane, some pair of edges must

cross.

Definition 26.5 (Faces). Let (𝐺, 𝜑) be a plane graph. A face of (𝐺, 𝜑) is a connected

component of

R2 \ 𝜑
(
𝑉(𝐺) ∪ 𝐸(𝐺)

)
.

There is always one unbounded face, called the outer face.

Definition 26.6 (Length of a face). Let 𝐹 be a face of a plane graph (𝐺, 𝜑). The length ℓ (𝐹) is
the total length of the closed walk(s) in 𝐺 that trace the boundary of 𝐹. Equivalently, ℓ (𝐹) is
the number of edge-sides incident with 𝐹, counting multiplicity (a bridge contributes twice,

once for each side).

Planar graphs 236

Definition 26.7 (Dual graph). Let (𝐺, 𝜑) be a plane graph with face set ℱ . The dual 𝐺∗ is

the graph defined by

𝑉(𝐺∗) = ℱ , 𝐸(𝐺∗) ↔ 𝐸(𝐺),
where each edge 𝑒 ∈ 𝐸(𝐺) corresponds to an edge 𝑒∗ ∈ 𝐸(𝐺∗) joining the two faces on the

two sides of 𝑒 (if 𝑒 borders the same face on both sides, then 𝑒∗ is a loop).

Remark 26.1. The dual depends on the chosen embedding: different plane drawings of the

same planar graph can yield non-isomorphic dual graphs.

Proposition 26.1 (Handshake for faces). Let (𝐺, 𝜑) be a plane multigraph with edge set

𝐸(𝐺) and faces ℱ = {𝐹1 , . . . , 𝐹 𝑓 }. Then

𝑓∑
𝑖=1

ℓ (𝐹𝑖) = 2|𝐸(𝐺)|.

Proof. Traverse the boundary of each face as a closed walk in 𝐺. Each step of such a walk uses

an edge-side (an incidence of an edge with a face). By definition, ℓ (𝐹𝑖) counts the number of

edge-sides on the boundary of 𝐹𝑖 , with multiplicity.

Every edge 𝑒 in a plane drawing has exactly two sides. If 𝑒 is not a bridge, it is incident with

two (not necessarily distinct) faces, contributing 1 to each. If 𝑒 is a bridge, then both sides of

𝑒 are incident with the same face, so 𝑒 contributes 2 to that one face. In all cases, each edge

contributes exactly 2 to the total sum of face-lengths. Hence

∑
𝐹∈ℱ ℓ (𝐹) = 2|𝐸(𝐺)|. □

26.2 Euler’s Formula

Theorem 26.2 (Euler’s Formula). If (𝐺, 𝜑) is a connected plane multigraph with 𝑛 = |𝑉(𝐺)|
vertices, 𝑚 = |𝐸(𝐺)| edges, and 𝑓 faces, then

𝑛 − 𝑚 + 𝑓 = 2.

Proof. We induct on 𝑚 (the number of edges). The claim is immediate for 𝑚 = 0: connectedness

forces 𝑛 = 1 and 𝑓 = 1, so 𝑛 − 𝑚 + 𝑓 = 1 − 0 + 1 = 2.

Assume 𝑚 ≥ 1 and that the statement holds for all connected plane multigraphs with fewer

than 𝑚 edges.

Case 1: 𝐺 has a non-loop edge that is not a bridge. Pick such an edge 𝑒. Deleting 𝑒 keeps the graph

connected (since 𝑒 is not a bridge), and in a plane embedding the deletion of 𝑒 merges exactly

two faces into one. Thus, for 𝐺′ := 𝐺 − 𝑒 we have

𝑛′ = 𝑛, 𝑚′ = 𝑚 − 1, 𝑓 ′ = 𝑓 − 1.

By the induction hypothesis, 𝑛′ − 𝑚′ + 𝑓 ′ = 2, and substituting gives

𝑛 − 𝑚 + 𝑓 = 𝑛′ − (𝑚′ + 1) + (𝑓 ′ + 1) = 𝑛′ − 𝑚′ + 𝑓 ′ = 2.

Case 2: every non-loop edge of 𝐺 is a bridge. Then the underlying simple graph is a tree (with

possibly some loops attached). Contract (or delete) a bridge edge 𝑒 connecting two distinct

Planar graphs 237

vertices. Contracting a bridge preserves the number of faces (bridges do not lie on a cycle, so

they do not separate two distinct faces), and it reduces both 𝑛 and 𝑚 by 1. For 𝐺′ := 𝐺/𝑒,

𝑛′ = 𝑛 − 1, 𝑚′ = 𝑚 − 1, 𝑓 ′ = 𝑓 .

Again, by induction 𝑛′ − 𝑚′ + 𝑓 ′ = 2, hence

𝑛 − 𝑚 + 𝑓 = (𝑛′ + 1) − (𝑚′ + 1) + 𝑓 ′ = 𝑛′ − 𝑚′ + 𝑓 ′ = 2.

In either case, Euler’s formula holds for 𝐺, completing the induction. □

Corollary 26.3 (Euler for 𝑘 components). If a plane multigraph 𝐺 has 𝑘 connected compo-

nents and 𝑛, 𝑚, 𝑓 denote its numbers of vertices, edges, and faces (in a fixed plane drawing),

then

𝑛 − 𝑚 + 𝑓 = 𝑘 + 1.

Proof. Let the components be 𝐺1 , . . . , 𝐺𝑘 , with parameters (𝑛𝑖 , 𝑚𝑖 , 𝑓𝑖). Applying Theorem 26.2

to each component,

𝑛𝑖 − 𝑚𝑖 + 𝑓𝑖 = 2 (1 ≤ 𝑖 ≤ 𝑘).
Summing gives

∑
𝑖 𝑛𝑖 −

∑
𝑖 𝑚𝑖 +

∑
𝑖 𝑓𝑖 = 2𝑘.

Now

∑
𝑖 𝑛𝑖 = 𝑛 and

∑
𝑖 𝑚𝑖 = 𝑚. For faces, each component has its own outer face, but in the

union of all components these 𝑘 outer faces merge into a single global outer face. Hence

𝑘∑
𝑖=1

𝑓𝑖 = 𝑓 + (𝑘 − 1).

Substituting into the summed Euler equalities yields

𝑛 − 𝑚 +
(
𝑓 + (𝑘 − 1)

)
= 2𝑘,

so 𝑛 − 𝑚 + 𝑓 = 𝑘 + 1. □

Theorem 26.4 (Edge bounds for planar graphs). Let 𝐺 be a simple planar graph with 𝑛 ≥ 3

vertices and 𝑚 edges.

(i) 𝑚 ≤ 3𝑛 − 6.

(ii) If 𝐺 is triangle-free, then 𝑚 ≤ 2𝑛 − 4.

Proof. Fix a plane embedding of 𝐺 with 𝑓 faces. Since 𝐺 is simple, the boundary walk of any

face has length at least 3 (no loops, no parallel edges), so

ℓ (𝐹) ≥ 3 for all faces 𝐹.

Summing over faces and using Proposition 26.1 gives

3 𝑓 ≤
∑
𝐹

ℓ (𝐹) = 2𝑚.

Euler’s formula (Theorem 26.2) gives 𝑓 = 2 − 𝑛 + 𝑚, hence

3(2 − 𝑛 + 𝑚) ≤ 2𝑚 =⇒ 6 − 3𝑛 + 3𝑚 ≤ 2𝑚 =⇒ 𝑚 ≤ 3𝑛 − 6,

Planar graphs 238

proving (i).

For (ii), if 𝐺 is triangle-free then every face has length at least 4, so 4 𝑓 ≤ ∑
𝐹 ℓ (𝐹) = 2𝑚. Again

substitute 𝑓 = 2 − 𝑛 + 𝑚:

4(2 − 𝑛 + 𝑚) ≤ 2𝑚 =⇒ 8 − 4𝑛 + 4𝑚 ≤ 2𝑚 =⇒ 𝑚 ≤ 2𝑛 − 4.

□

Corollary 26.5. The graphs 𝐾5 and 𝐾3,3 are nonplanar.

Proof. We use the planar edge bounds from Theorem 26.4.

1) 𝐾5 is nonplanar. The complete graph 𝐾5 is simple with

𝑛 = 5, 𝑚 =

(
5

2

)
= 10.

If 𝐾5 were planar, then by Theorem 26.4(i) we would have

𝑚 ≤ 3𝑛 − 6 = 3 · 5 − 6 = 9,

but 𝑚 = 10 > 9, a contradiction. Hence 𝐾5 is not planar.

2) 𝐾3,3 is nonplanar. The complete bipartite graph 𝐾3,3 is simple with

𝑛 = 6, 𝑚 = 3 · 3 = 9.

Moreover 𝐾3,3 is bipartite, so it contains no odd cycle, in particular no triangle. Thus 𝐾3,3 is

triangle-free.

If 𝐾3,3 were planar, then by Theorem 26.4(ii) we would have

𝑚 ≤ 2𝑛 − 4 = 2 · 6 − 4 = 8,

but 𝑚 = 9 > 8, a contradiction. Hence 𝐾3,3 is not planar. □

Theorem 26.6 (Cycles↔ bonds in the dual). Let 𝐺 be a connected plane multigraph (i.e. a

planar multigraph with a fixed crossing-free drawing), and let 𝐺∗ be its dual. For an edge

set 𝑋 ⊆ 𝐸(𝐺)write 𝑋∗ := {𝑒∗ : 𝑒 ∈ 𝑋} ⊆ 𝐸(𝐺∗).
Then an edge set 𝐶 ⊆ 𝐸(𝐺) is the edge set of a cycle in 𝐺 (equivalently: 𝐺[𝐶] is connected

and 2-regular) if and only if 𝐶∗ is a bond in 𝐺∗ (a minimal nonempty edge cut).

Theorem 26.7. Let 𝐺 be a connected plane multigraph (i.e. 𝐺 is embedded in the plane with

no crossings), and let 𝐺∗ be its planar dual. The following are equivalent:

(A) 𝐺 is bipartite.

(B) Every face of 𝐺 has even length.

(C) 𝐺∗ is Eulerian (equivalently, every vertex of 𝐺∗ has even degree).

Planar graphs 239

Proof. (A)⇒(B). If 𝐺 is bipartite, then every closed walk in 𝐺 has even length (colors must

alternate). The boundary of each face is a closed walk in 𝐺 (possibly repeating vertices/edges

in a multigraph), hence its length is even.

(B)⇔(C). Vertices of𝐺∗ correspond to faces of𝐺. Fix a face 𝐹 of𝐺 and let 𝑣𝐹 be the corresponding

vertex of 𝐺∗. Each time an edge 𝑒 of 𝐺 appears on the boundary walk of 𝐹, the dual edge 𝑒∗ is

incident with 𝑣𝐹. (If 𝑒 is a bridge of 𝐺, then 𝑒∗ is a loop in 𝐺∗ and contributes 2 to deg𝐺∗(𝑣𝐹),
exactly matching the fact that 𝑒 appears twice on the boundary walk of the unique incident

face.) Therefore

deg𝐺∗(𝑣𝐹) = ℓ (𝐹) for every face 𝐹 of 𝐺.

Hence all face-lengths are even iff all degrees in 𝐺∗ are even. Since 𝐺 is connected, 𝐺∗ is

connected, so “all degrees even” is exactly the Eulerian condition.

(B)⇒(A). Assume every face has even length. If 𝐺 were not bipartite, it would contain an odd

cycle 𝐶. As a simple closed curve in the plane, 𝐶 has an interior region. Let 𝐹1 , . . . , 𝐹𝑡 be the

faces of 𝐺 lying strictly inside 𝐶, and let 𝐸int be the set of edges of 𝐺 that lie strictly inside 𝐶 (i.e.

not on 𝐶).

Every interior edge is incident with two interior faces, hence is counted twice in the sum∑𝑡
𝑖=1
ℓ (𝐹𝑖), while each edge of 𝐶 is incident with exactly one interior face, hence is counted once.

Thus

𝑡∑
𝑖=1

ℓ (𝐹𝑖) = 2|𝐸int| + |𝐶|.

The left-hand side is even (sum of even numbers), and 2|𝐸int| is even, so |𝐶|must be even. This

contradicts that 𝐶 is an odd cycle. Therefore 𝐺 has no odd cycle, hence 𝐺 is bipartite.

We have shown (A)⇒(B)⇔(C) and (B)⇒(A), so all three conditions are equivalent. □

26.3 Outerplanar graphs

Definition 26.8 (Outerplanar graphs). A (multi)graph 𝐺 is outerplanar if it has a planar

drawing in which every vertex lies on the boundary of the outer face. A specific such drawing is

called an outerplane embedding of 𝐺.

Proposition 26.8 (2-connected outerplanar⇒ Hamiltonian cycle). If 𝐺 is a 2-connected

outerplanar graph, then 𝐺 has a Hamilton cycle.

Proof. Fix an outerplane embedding of 𝐺, so all vertices lie on the boundary of the outer face.

Let𝑊 be the closed walk obtained by traversing the boundary of the outer face.

We claim that𝑊 is in fact a simple cycle (no vertex repeats). Indeed, if some vertex 𝑣 appeared at

least twice on this boundary walk, then the edges of 𝐺 incident with 𝑣 would split locally into

at least two separate “intervals” of 𝑊 , and the portion of 𝐺 drawn between two consecutive

appearances of 𝑣 would be separated from the rest by 𝑣. That makes 𝑣 a cut-vertex, contradicting

that 𝐺 is 2-connected.

Hence the boundary of the outer face is a cycle containing every vertex of 𝐺, i.e. a Hamilton

cycle. □

Planar graphs 240

Example 26.2. 𝐾4 and 𝐾2,3 are planar but not outerplanar. (Equivalently: they are exactly the

two forbidden minors for outerplanarity; we will prove this characterization later.)

Proposition 26.9 (Outerplanar graphs have a low-degree vertex). Every simple outerplanar

graph 𝐺 has a vertex of degree at most 2. In fact, if |𝑉(𝐺)| ≥ 4 then 𝐺 has two nonadjacent
vertices 𝑥, 𝑦 with 𝑑𝐺(𝑥) ≤ 2 and 𝑑𝐺(𝑦) ≤ 2 (so in particular 𝑥𝑦 ∉ 𝐸(𝐺)).

Proof. Take an outerplane embedding of𝐺 and add edges one-by-one (without creating crossings)

until no further edge can be added while keeping all vertices on the outer face. This produces a

maximal outerplanar supergraph 𝐻 on the same vertex set.

Facts about maximal outerplanar graphs:

• the boundary of the outer face is a Hamilton cycle 𝐶 containing all vertices (by the previous

proposition applied to each 2-connected block; maximal outerplanar graphs are 2-connected

when |𝑉 | ≥ 3);

• every bounded face of 𝐻 is a triangle (otherwise we could add a chord inside a face and

contradict maximality).

Now consider the weak dual of 𝐻: its vertices are the bounded faces of 𝐻, with two faces adjacent

if they share an edge. Because all bounded faces are triangles and the embedding is outerplane,

this weak dual is a tree. Therefore it has a leaf face 𝐹.

A leaf face 𝐹 shares exactly one edge with another bounded face, so in 𝐻 the triangle 𝐹 has

exactly one internal edge and its other two edges lie on the outer Hamilton cycle 𝐶. Let 𝑣 be the

vertex of 𝐹 opposite the internal edge. Then 𝑣 is incident only with those two outer-face edges,

so 𝑑𝐻(𝑣) = 2.

Doing the same with a different leaf face gives another vertex 𝑢 with 𝑑𝐻(𝑢) = 2. These two

degree-2 vertices can be chosen nonadjacent (in a triangulated polygon, distinct ears are never

adjacent unless the graph is very small; for |𝑉 | ≥ 4 we can pick two leaf faces whose ear vertices

are not consecutive on 𝐶).

Finally, since 𝐺 is a subgraph of 𝐻 on the same vertices,

𝑑𝐺(𝑣) ≤ 𝑑𝐻(𝑣) = 2 and 𝑑𝐺(𝑢) ≤ 𝑑𝐻(𝑢) = 2,

and if 𝑢, 𝑣 are nonadjacent in 𝐻 then certainly 𝑢𝑣 ∉ 𝐸(𝐺). □

26.4 Maximal planar graphs

Definition 26.9 (Maximal planar). A simple planar graph 𝐺 is maximal planar if 𝐺 is planar

and for every nonedge 𝑢𝑣 ∉ 𝐸(𝐺), the graph 𝐺 + 𝑢𝑣 is nonplanar. Equivalently: 𝐺 is planar

and you cannot add any new edge without destroying planarity.

Definition 26.10 (Triangulation). A triangulation (or maximal plane graph) is a plane em-

bedding of a simple graph in which every face (including the outer face) has boundary a

triangle.

Planar graphs 241

Remark 26.2 (Plane vs. sphere). A plane embedding is equivalent to an embedding on the

sphere 𝑆2
: adding a single “point at infinity” to R2

turns the outer face into an ordinary face.

This is why triangulations are usually defined as “every face is a triangle,” outer face included.

Theorem 26.10. Let 𝐺 be a connected simple plane graph on 𝑛 ≥ 3 vertices and 𝑚 edges.

The following are equivalent:

(A) 𝑚 = 3𝑛 − 6.

(B) 𝐺 is a triangulation (every face is a triangle).

(C) 𝐺 is maximal planar.

Proof. We use two standard facts for connected plane graphs:∑
𝐹

ℓ (𝐹) = 2𝑚 and 𝑛 − 𝑚 + 𝑓 = 2,

where ℓ (𝐹) is the length of face 𝐹 and 𝑓 is the number of faces.

(B)⇒(A). If every face is a triangle then ℓ (𝐹) = 3 for all faces, so

2𝑚 =

∑
𝐹

ℓ (𝐹) = 3 𝑓 ⇒ 𝑓 =
2𝑚

3

.

Plug into Euler:

𝑛 − 𝑚 + 2𝑚

3

= 2 ⇒ 𝑚 = 3𝑛 − 6.

(A)⇒(B). In any simple plane graph, every face has length at least 3, so

2𝑚 =

∑
𝐹

ℓ (𝐹) ≥ 3 𝑓 .

Using Euler, 𝑓 = 2 − 𝑛 + 𝑚, hence

2𝑚 ≥ 3(2 − 𝑛 + 𝑚) = 6 − 3𝑛 + 3𝑚 ⇒ 𝑚 ≤ 3𝑛 − 6.

If 𝑚 = 3𝑛 − 6 holds, then all inequalities above must be equalities. In particular

∑
𝐹 ℓ (𝐹) = 3 𝑓 ,

which forces ℓ (𝐹) = 3 for every face 𝐹. So 𝐺 is a triangulation.

(B)⇒(C). Assume 𝐺 is a triangulation and suppose we try to add a new edge 𝑢𝑣. In any plane

embedding, a new edge can be drawn without crossings only if 𝑢 and 𝑣 lie on the boundary of

a common face. But every face boundary is a triangle, so any two vertices on that boundary

are already adjacent. Hence no new edge can be added while preserving planarity, i.e. 𝐺 is

maximal planar.

(C)⇒(B). Assume 𝐺 is maximal planar. If some face 𝐹 has boundary length ℓ (𝐹) ≥ 4, then the

boundary walk of 𝐹 contains two nonconsecutive vertices on the face boundary; adding the

diagonal between them inside 𝐹 creates no crossings, producing a larger planar graph. This

contradicts maximality. Therefore every face has length 3, so 𝐺 is a triangulation.

Combining the implications yields (A)⇔(B)⇔(C). □

Planar graphs 242

26.5 Kuratowski and Wagner’s Theorems

Definition 26.11 (Subdivision of an edge). Let 𝐺 be a graph and let 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺). A

subdivision of 𝑒 is obtained by deleting 𝑒 and replacing it by a path

𝑢 − 𝑥1 − 𝑥2 − · · · − 𝑥𝑡 − 𝑣

where the new vertices 𝑥1 , . . . , 𝑥𝑡 are distinct and have degree 2 in the resulting graph. More

generally, a subdivision of 𝐺 is any graph obtained from 𝐺 by subdividing some (possibly

zero) edges.

Remark 26.3. Subdividing edges preserves planarity: if 𝐺 has a plane drawing, then we can

place the new degree-2 vertices along the drawn curve for each subdivided edge, so no crossings

are created.

Theorem 26.11 (Kuratowski, 1930). A graph 𝐺 is planar if and only if 𝐺 contains no

subgraph that is a subdivision of 𝐾5 or 𝐾3,3.

Definition 26.12 (Edge contraction). Let 𝐺 be a simple graph and let 𝑒 = 𝑥𝑦 ∈ 𝐸(𝐺). The

contraction of 𝑒 is the graph 𝐺/𝑥𝑦 obtained by deleting 𝑥 and 𝑦, adding a new vertex 𝑥 ∗ 𝑦,

and joining 𝑥 ∗ 𝑦 to every vertex in

𝑁𝐺(𝑥) ∪ 𝑁𝐺(𝑦) \ {𝑥, 𝑦}.

(If this produces parallel edges, we keep only one so that 𝐺/𝑥𝑦 remains simple.)

Definition 26.13 (Minor). A graph 𝐻 is a minor of a graph 𝐺 if 𝐻 can be obtained from 𝐺

by a sequence of the following operations:

1. deleting a vertex,

2. deleting an edge,

3. contracting an edge.

We write 𝐻 ⪯ 𝐺 to indicate that 𝐻 is a minor of 𝐺.

Proposition 26.12. If 𝐺 is planar, then contracting any edge of 𝐺 yields a planar graph.

Proof. Take a plane drawing of 𝐺. Contracting an edge 𝑥𝑦 can be realized by “shrinking” the

drawn curve for 𝑥𝑦 to a point, merging 𝑥 and 𝑦 into a single vertex. This operation does not

create crossings, so the resulting graph is still planar. □

Theorem 26.13 (Wagner). A graph 𝐺 is planar if and only if 𝐺 has no minor isomorphic to

𝐾5 or 𝐾3,3.

Planar graphs 243

Proof. We prove both directions by contrapositive.

(⇒ contrapositive.) Assume that 𝐺 contains a minor 𝐻 with 𝐻 � 𝐾5 or 𝐻 � 𝐾3,3. Since 𝐾5 and

𝐾3,3 are nonplanar, 𝐻 is nonplanar. By Observation 26.12, planarity is preserved under edge

contractions, and it is clearly preserved under deletions. Therefore, if 𝐺 were planar then every

minor of 𝐺 would be planar. Since 𝐻 is a minor of 𝐺 and 𝐻 is not planar, it follows that 𝐺 is not

planar.

(⇐ contrapositive.) Assume that 𝐺 is not planar. By Kuratowski’s Theorem, 𝐺 contains a

subgraph 𝐺′ that is a subdivision of some 𝐻 ∈ {𝐾5 , 𝐾3,3}. But if 𝐺′ is a subdivision of 𝐻, then

contracting each subdivided path back to a single edge produces 𝐻. Hence 𝐻 is a minor of 𝐺′.
Finally, every subgraph of 𝐺 is a minor of 𝐺 (just delete the other vertices and edges), so 𝐻 is a

minor of 𝐺. Thus 𝐺 contains 𝐾5 or 𝐾3,3 as a minor. □

Theorem 26.14 (Outerplanar characterization). A graph 𝐺 is outerplanar if and only if 𝐺

contains no subdivision of 𝐾4 and no subdivision of 𝐾2,3.

Proof. Let 𝐺★
be the graph obtained from 𝐺 by adding one new vertex 𝑦 adjacent to every vertex

of 𝐺 (so 𝑦 is a universal vertex for 𝐺).

Lemma 26.15. 𝐺★
is planar if and only if 𝐺 is outerplanar.

Proof of Lemma. (⇒) Suppose 𝐺★
is planar. Take a planar embedding of 𝐺★

and choose the outer

face so that it contains 𝑦 on its boundary. Delete the vertex 𝑦 and its incident edges. In the

remaining drawing of 𝐺, every vertex of 𝐺 lies on the boundary of the outer face (because each

was adjacent to 𝑦), hence 𝐺 is outerplanar.

(⇐) Suppose 𝐺 is outerplanar. Then 𝐺 has an embedding in which all vertices lie on the

boundary of the outer face. Place a new vertex 𝑦 in that outer face and draw edges from 𝑦 to

every vertex of 𝐺 inside the outer face without crossings. This yields a planar embedding of

𝐺★
. □

By the claim, 𝐺 is outerplanar ⇐⇒ 𝐺★
is planar. By Kuratowski’s Theorem, 𝐺★

is planar if and

only if it contains no subdivision of 𝐾5 and no subdivision of 𝐾3,3.

(⇒) Assume 𝐺 is outerplanar. Then 𝐺★
is planar, so 𝐺★

has no subdivision of 𝐾5 or 𝐾3,3. If 𝐺

contained a subdivision of 𝐾4, then (since 𝑦 is adjacent to every vertex of 𝐺) adding 𝑦 would turn

it into a subdivision of 𝐾5 inside 𝐺★
, contradiction. Similarly, if 𝐺 contained a subdivision of 𝐾2,3,

then adding 𝑦 (adjacent to all branch vertices) yields a subdivision of 𝐾3,3 in 𝐺★
, contradiction.

Hence 𝐺 contains no subdivision of 𝐾4 or 𝐾2,3.

(⇐) Assume 𝐺 is not outerplanar. Then by the lemma 𝐺★
is not planar, so by Kuratowski 𝐺★

contains a subdivision of 𝐾5 or of 𝐾3,3.

If 𝐺★
contains a subdivision of 𝐾5, then deleting the universal vertex 𝑦 from that subdivision

leaves a subdivision of 𝐾4 contained in 𝐺 = 𝐺★ − 𝑦.

If 𝐺★
contains a subdivision of 𝐾3,3, then 𝑦 cannot lie in one of the two bipartition classes (since

𝑦 is adjacent to every vertex of 𝐺), so deleting 𝑦 leaves a subdivision of 𝐾2,3 inside 𝐺.

Thus 𝐺 contains a subdivision of 𝐾4 or 𝐾2,3, completing the contrapositive.

Therefore 𝐺 is outerplanar if and only if it contains no subdivision of 𝐾4 and no subdivision of

𝐾2,3. □

Planar graphs 244

Theorem 26.16 (Fáry). Every planar graph has a plane drawing in which every edge is

drawn as a straight line segment (i.e., a straight-line embedding).

Definition 26.14 (Convex embedding). A plane drawing of a planar graph is a convex
embedding if every face (including the outer face) is bounded by a convex polygon.

Theorem 26.17 (Tutte, Convex Embedding Theorem). Let 𝐺 be a 3-connected planar graph.

Then 𝐺 admits a convex straight-line embedding in the plane. Equivalently, 𝐺 has a plane

straight-line drawing in which every face boundary is a convex polygon.

Example 26.3. Petersen graph is not planar

Figure 5: The Petersen graph. Brown spokes are the edges to be contracted in Proof (2).

We present three independent proofs that the Petersen graph is not planar.

1. Subdivision of 𝐾3,3. The Petersen graph contains a subdivision of 𝐾3,3. Indeed, removing

every other vertex on the outer 5-cycle and following the spokes into the inner 5-cycle

produces three vertices on one side and three on the other, with internally disjoint paths

between them. Since 𝐾3,3 is nonplanar and subdivisions preserve nonplanarity, the Petersen

graph is nonplanar.

2. After contracting the entire inner 5-cycle, the resulting graph becomes a copy of 𝐾5. Since

edge contraction preserves nonplanarity, the original Petersen graph is also nonplanar.

3. Edge-counting argument. The Petersen graph has

𝑛 = 10, 𝑚 = 15.

If a simple planar graph has 𝑛 ≥ 3, then 𝑚 ≤ 3𝑛 − 6. For 𝑛 = 10, this gives

𝑚 ≤ 3(10) − 6 = 24.

This inequality is satisfied, so we refine the bound: the Petersen graph is cubic and has girth

5. A planar graph of girth 𝑔 satisfies

𝑚 ≤ 𝑔

𝑔 − 2

(𝑛 − 2).

For 𝑔 = 5, this becomes

𝑚 ≤ 5

3

(10 − 2) = 5

3

· 8 =
40

3

< 14.

But the Petersen graph has 𝑚 = 15, violating the planar girth bound. Thus it cannot be planar.

Planar graphs 245

26.6 Four Color Theorem

The Four Color Problem (posed in 1852) asked whether every planar map can be colored with at

most four colors so that adjacent regions receive different colors. Over the next century it helped

create modern graph theory: repeated “proofs” (notably Kempe’s 1879 argument) were later

found to have subtle gaps, and the search for a correct proof forced people to invent sharper

structural ideas about planar graphs.

In the mid-1970s, Kenneth Appel and Wolfgang Haken at UIUC developed a strategy that

reduces the theorem to checking a finite list of unavoidable configurations in any minimal

counterexample, and then verifying (by computer) that each such configuration is reducible
(cannot occur in a minimal counterexample). The computer part was not a cute afterthought: the

argument required checking a large family of cases that was beyond reasonable hand-verification.

When Appel and Haken announced success in 1976, it became the first mainstream, high-profile

computer-assisted proof, and it triggered a real (and frankly healthy) fight about verification,

standards of certainty, and how the community should audit proofs that are longer than a

human can reliably re-check end-to-end. A famous insult-compliment attributed to His Majesty,

Paul Erdős, who spent time in Urbana-Champaign: after seeing the computer-heavy proof, he

supposedly said,

“I’m not sure God has this proof in The Book. Maybe He has it in The File.”

(Translation for those unfortunate epsilons who do not understand fluent Erdős: ”It’s correct

and historic, but it is not what I would call beautiful”)

After the announcement, skeptics didn’t just attack the math; they attacked the physics of the

computer. Critics argued: “How do you know a cosmic ray didn’t hit a vacuum tube in the IBM

360 and flip a bit from FALSE to TRUE?”. This sounds like a joke, but it was a serious philosophical

debate. Appel and Haken had to argue that the probability of a cosmic ray flipping a specific bit

in a way that preserved the program’s syntax and produced a valid-looking Reducible” result

was statistically lower than the probability of a human making a typo in a 500-page handwritten

proof. They essentially introduced the concept of Probabilistic Proof” to mainstream topology.

The math world hated it.

Theorem 26.18 (Four Color Theorem (Appel–Haken, 1976)). Every planar graph is 4-

colorable. Equivalently, for every planar graph 𝐺,

𝜒(𝐺) ≤ 4.

Remark 26.4 (Map-coloring form). In any plane embedding, the faces can be colored with at

most 4 colors so that any two faces sharing an edge receive different colors. Equivalently, the

dual graph 𝐺∗ satisfies 𝜒(𝐺∗) ≤ 4.

A bit of UIUC four-color lore

There is a story that floats around about the very end of the Appel–Haken computer check.

Disclaimer for the overly responsible reader: I have only ever heard this as oral lore; it may be

apocryphal or embellished. Please treat this as confidential department heritage folklore:

the kind of thing you hear in a hallway. Please do not cite this in a journal article.

Planar graphs 246

The legend goes like this:

June 21, 1976: the last night of the computer run. They were basically done, but not all the way
done. Appel and Haken were in the Digital Computer Laboratory (DCL) watching an IBM 360

grind through the final batch of configurations. For each configuration, the program prints TRUE

(good, proof lives) or FALSE (bad, proof collapses).

By this point, the machine had been chewing through case checks for something like 1,200 hours
of CPU time. The administration, allegedly, had begun to ask questions of the form “how much

longer?” and “what is this for?” and “why does DCL have its own weather system?” It was not

subtle that the proof had acquired a second adversary: not a planar counterexample, but the

electric bill. In 1976, computer time was billed internally at hundreds of dollars per hour.

At around this point (so the story says), Haken’s daughter, Dorothea Blostein (who wasn’t just

a visitor, but a paid research assistant and UIUC undergrad), visited the lab over at DCL and

showed up with champagne.

The vibe was tense. Logic dictates you wait for the output. But according to the story, they

looked at the machine, looked at the months of successful runs, and decided: “Screw it. The

algorithm hasn’t failed yet.” They popped the cork while the mainframe was still processing,

toasting their victory before the final verification was actually complete.

If the computer had spit out FALSE ten minutes later, . . .

Luckily, it didn’t.

26.7 Five Color Theorem

In 1879 Alfred Kempe published what was widely accepted as a proof of the Four Color Theorem,

and for about a decade the problem was treated as essentially closed. Then, in 1890, Percy

Heawood found a genuine structural flaw in Kempe’s argument, resurrecting map coloring as a

live problem.

Here is the part that makes the Five Color Theorem historically satisfying: Heawood did not

merely break Kempe’s proof and walk away. Kempe’s ideas were powerful but not powerful

enough to reach four. He extracted from it what was salvageable, repaired the method, and

proved a clean, unconditional replacement: five colors alwa

Theorem 26.19 (Heawood’s Five Color Theorem). Every planar graph is properly vertex-

colorable with at most 5 colors. Equivalently, if 𝐺 is planar then 𝜒(𝐺) ≤ 5.

Proof. We may assume 𝐺 is connected (color components independently with the same palette).

We prove the statement by induction on 𝑛 := |𝑉(𝐺)|.

Lemma 1 (Low-degree vertex). Every simple planar graph has a vertex of degree at most 5.

Proof of Lemma 1. If 𝑛 ≤ 2 the claim is obvious. For 𝑛 ≥ 3, Euler’s formula gives 𝑛 − 𝑚 + 𝑓 = 2.

In a simple planar graph every face has length at least 3, so

∑
𝐹 ℓ (𝐹) ≥ 3 𝑓 . Also

∑
𝐹 ℓ (𝐹) = 2𝑚

(each edge borders two faces), hence 2𝑚 ≥ 3 𝑓 and therefore 𝑓 ≤ 2𝑚
3

. Substitute into Euler:

2 = 𝑛 − 𝑚 + 𝑓 ≤ 𝑛 − 𝑚 + 2𝑚

3

= 𝑛 − 𝑚
3

,

so 𝑚 ≤ 3𝑛 − 6. Thus the average degree is

1

𝑛

∑
𝑣∈𝑉(𝐺)

𝑑(𝑣) = 2𝑚

𝑛
≤ 2(3𝑛 − 6)

𝑛
= 6 − 12

𝑛
< 6.

Planar graphs 247

Hence some vertex has degree ≤ 5. □

Induction step. Let 𝑣 ∈ 𝑉(𝐺) be a vertex with 𝑑(𝑣) ≤ 5 (exists by Lemma 1), and set 𝐻 := 𝐺 − 𝑣.

Then 𝐻 is planar with 𝑛 − 1 vertices, so by induction 𝐻 has a proper 5-coloring.

We try to extend this coloring to 𝑣.

Case 1: 𝑑(𝑣) ≤ 4. At most 4 colors appear on 𝑁(𝑣), so one of the 5 colors is missing there. Color

𝑣 with a missing color and we are done.

Case 2: 𝑑(𝑣) = 5. If fewer than 5 distinct colors appear on 𝑁(𝑣), we again color 𝑣 with a missing

color. So assume the five neighbors of 𝑣 use all five colors.

Fix a planar embedding and list the neighbors in cyclic order around 𝑣:

𝑣1 , 𝑣2 , 𝑣3 , 𝑣4 , 𝑣5.

Relabel the colors so that

𝑐(𝑣𝑖) = 𝑖 for 𝑖 = 1, 2, 3, 4, 5.

For colors 𝑖 ≠ 𝑗, let 𝐻𝑖 𝑗 be the subgraph of 𝐻 induced by vertices colored 𝑖 or 𝑗. Each component

of 𝐻𝑖 𝑗 is bipartite and therefore has exactly two possible 𝑖/𝑗-colorings (swap 𝑖 and 𝑗 within

that component). Such components are called Kempe components, and paths inside them are 𝑖–𝑗
Kempe chains.

Claim 2. If 𝑣1 and 𝑣3 lie in different components of 𝐻13, then we can recolor 𝐻 (preserving

propriety) so that color 1 is missing on 𝑁(𝑣).

Proof. Swap colors 1 and 3 on the Kempe component of 𝐻13 that contains 𝑣1. This keeps the

coloring proper (we only permute colors inside a 1/3-induced component), and it changes 𝑐(𝑣1)
from 1 to 3 while 𝑐(𝑣3) stays 3 (since 𝑣3 is in a different component). Hence no neighbor of 𝑣 has

color 1 anymore, so we can color 𝑣 with 1.

So assume the opposite: 𝑣1 and 𝑣3 are in the same component of 𝐻13. Then there exists a 1–3

Kempe chain 𝑃13 in 𝐻 joining 𝑣1 to 𝑣3.

Now consider the closed curve in the embedding formed by the edges 𝑣𝑣1, 𝑣𝑣3, and the chain

𝑃13. By the Jordan curve theorem, this closed curve separates the plane into an “inside” and

an “outside” region. Because the neighbors occur around 𝑣 in the order 𝑣1 , 𝑣2 , 𝑣3 , 𝑣4 , 𝑣5, the

vertices 𝑣2 and 𝑣4 lie on different sides of that curve. In particular, any path in the drawing from

𝑣2 to 𝑣4 that avoids 𝑣 must cross the curve.

Claim 3. 𝑣2 and 𝑣4 lie in different components of 𝐻24.

Proof. If they were in the same component of 𝐻24, there would be a 2–4 Kempe chain 𝑃24

in 𝐻 joining 𝑣2 to 𝑣4. This chain uses only vertices of colors 2 and 4, so it is disjoint from

the 1–3 chain 𝑃13. Also it avoids 𝑣 because 𝑣 ∉ 𝐻. But then 𝑃24 would give a curve in the

embedding connecting 𝑣2 to 𝑣4 without crossing the separating curve built from 𝑣𝑣1 ∪ 𝑃13 ∪ 𝑣𝑣3,

contradicting planarity. Hence no such 𝑃24 exists, i.e. 𝑣2 and 𝑣4 are in different components of

𝐻24.

By Claim 3, we may swap colors 2 and 4 on the 𝐻24-component containing 𝑣2. This keeps the

coloring proper and changes 𝑐(𝑣2) from 2 to 4 while leaving 𝑐(𝑣4) = 4 unchanged. Therefore

color 2 is now missing on 𝑁(𝑣), so we color 𝑣 with 2.

In all cases the 5-coloring of 𝐻 extends to a 5-coloring of 𝐺. This completes the induction.

Planar graphs 248

26.8 Discharging method

The following proposition illustrates the discharging method, which was used in the proof of

Four Color Theorem

Proposition 26.20. Every planar graph 𝐺 contains either

1. a vertex of degree at most 4, or

2. a vertex 𝑣 of degree 5 that has at least two neighbors of degree at most 6.

Proof. Assume for contradiction that 𝐺 is a planar graph with neither (1) nor (2). In particular,

𝛿(𝐺) ≥ 5, (14)

and every 5-vertex has at most one neighbor of degree ≤ 6.

Fix a plane embedding of 𝐺 and add edges inside faces until every face is a triangle; let 𝑇 be the

resulting plane triangulation on the same vertex set. (Adding edges preserves planarity and

does not decrease any vertex degree.)

We claim that 𝑇 also has neither (1) nor (2). Indeed, if 𝑇 had a vertex of degree ≤ 4, then the

same vertex in 𝐺 would also have degree ≤ 4 (degrees only increase), contradicting (14). If 𝑇

had a vertex 𝑣 of degree 5, then 𝑣 also has degree 5 in 𝐺 (since degrees only increase), so no

added edge is incident with 𝑣; hence 𝑁𝑇(𝑣) = 𝑁𝐺(𝑣). Moreover, any neighbor with degree ≤ 6

in 𝑇 also has degree ≤ 6 in 𝐺. Thus (2) in 𝑇 would imply (2) in 𝐺, contradiction. Therefore it

suffices to derive a contradiction for the triangulation 𝑇.

So from now on assume 𝐺 itself is a plane triangulation with neither (1) nor (2).

Step 1: Initial charge and total charge. Define the initial charge

𝜇(𝑥) := 𝑑(𝑥) − 6 (𝑥 ∈ 𝑉(𝐺)).

Since 𝐺 is a plane triangulation with 𝑛 := |𝑉(𝐺)| ≥ 3, we have 𝑒(𝐺) = 3𝑛 − 6 (standard:

2𝑒 =
∑
𝐹 ℓ (𝐹) = 3 𝑓 and 𝑛 − 𝑒 + 𝑓 = 2). Hence∑

𝑥∈𝑉(𝐺)
𝜇(𝑥) =

∑
𝑥∈𝑉(𝐺)

(𝑑(𝑥) − 6) = 2𝑒(𝐺) − 6𝑛 = (6𝑛 − 12) − 6𝑛 = −12.

So the total initial charge is negative.

Step 2: Discharging rule (redistribution). Redistribute charge along edges as follows:

Every vertex 𝑥 with 𝑑(𝑥) ≥ 7 sends
1

4
to each neighbor 𝑦 with 𝑑(𝑦) = 5. Vertices of

degree ≤ 6 send nothing.

Let 𝜇′(𝑥) be the final charge of 𝑥 after this redistribution. Because we only move charge between

vertices, the total charge is unchanged:∑
𝑥∈𝑉(𝐺)

𝜇′(𝑥) =
∑

𝑥∈𝑉(𝐺)
𝜇(𝑥) = −12.

We will show that, under our counterexample assumptions, every vertex has 𝜇′(𝑥) ≥ 0, which

contradicts the total being −12.

Step 3: Verify 𝜇′(𝑥) ≥ 0 for every vertex. We consider cases by 𝑑(𝑥).

Planar graphs 249

Case 1: 𝑑(𝑥) ≤ 4. This cannot occur by assumption (otherwise we already have outcome (1)).

Case 2: 𝑑(𝑥) = 5. By assumption, 𝑥 has at most one neighbor of degree ≤ 6. Since 𝑑(𝑥) = 5, it

follows that 𝑥 has at least four neighbors of degree ≥ 7, and each such neighbor sends
1

4
to 𝑥.

Thus

𝜇′(𝑥) ≥ (5 − 6) + 4 · 1
4

= 0.

Case 3: 𝑑(𝑥) = 6. Vertex 𝑥 neither sends nor receives charge (it is not a 5-vertex and does not

send). Hence

𝜇′(𝑥) = 𝜇(𝑥) = 6 − 6 = 0.

Case 4: 𝑑(𝑥) ≥ 8. In the worst case, 𝑥 sends
1

4
to every neighbor (i.e. all neighbors have degree 5),

so 𝑥 sends at most
1

4
𝑑(𝑥) in total. Therefore

𝜇′(𝑥) ≥ (𝑑(𝑥) − 6) − 1

4

𝑑(𝑥) = 3

4

𝑑(𝑥) − 6 ≥ 3

4

· 8 − 6 = 0.

Case 5: 𝑑(𝑥) = 7. Write the neighbors of 𝑥 in their cyclic order around 𝑥 in the embedding:

𝑁(𝑥) = {𝑢1 , 𝑢2 , . . . , 𝑢7},

where 𝑢𝑖𝑢𝑖+1 ∈ 𝐸(𝐺) (indices mod 7), since 𝐺 is a triangulation. Let 𝑡 be the number of

5-neighbors among the 𝑢𝑖 . We claim 𝑡 ≤ 4.

If 𝑡 ≥ 5, then on the 7-cycle 𝑢1𝑢2 · · · 𝑢7𝑢1 there must exist three consecutive vertices of degree

5 (because with only two non-5 vertices, you cannot separate five 5-vertices from forming a

length-3 consecutive block). So for some 𝑖, the vertices 𝑢𝑖−1 , 𝑢𝑖 , 𝑢𝑖+1 all have degree 5. Then 𝑢𝑖
is a 5-vertex with two neighbors 𝑢𝑖−1 and 𝑢𝑖+1 of degree 5 ≤ 6, which is exactly outcome (2),

contradicting our assumption. Hence indeed 𝑡 ≤ 4.

Therefore 𝑥 sends at most 𝑡 · 1

4
≤ 4 · 1

4
= 1 total charge, and so

𝜇′(𝑥) ≥ (7 − 6) − 1 = 0.

We have shown 𝜇′(𝑥) ≥ 0 for every vertex 𝑥. Summing gives

∑
𝑥 𝜇
′(𝑥) ≥ 0, contradicting∑

𝑥 𝜇
′(𝑥) = −12. This contradiction proves that our initial assumption was false, so 𝐺 must

contain either a vertex of degree at most 4 or a 5-vertex with at least two neighbors of degree at

most 6. □

Ramsey Theory 250

27 Ramsey Theory

Ramsey Theory constitutes a profound segment of combinatorial mathematics, showing that

complete disorder is an impossibility within sufficiently large systems. It investigates the

conditions under which a structure, no matter how chaotic or random its organization, must

inevitably contain a substructure exhibiting a high degree of regularity.

The fundamental question Ramsey Theory poses is: “How many elements must a system

possess to guarantee the existence of a specific monochromatic property?” This generalizes the

Pigeonhole Principle to structural collisions within partitions of graphs and sets.

27.1 Graph Ramsey Theory

Definition 27.1 (2-edge-coloring and monochromatic copy). A 2-edge-coloring of a graph 𝐺

is a map 𝑐 : 𝐸(𝐺) → {red, blue}. A subgraph 𝐻 ⊆ 𝐺 is monochromatic if all its edges have

the same color.

Remark 27.1. The coloring is not necessarily a proper edge coloring

Definition 27.2 (Ramsey number 𝑅(𝑠, 𝑡)). For integers 𝑠, 𝑡 ≥ 2, the Ramsey number 𝑅(𝑠, 𝑡) is
the smallest 𝑛 such that every red/blue coloring of the edges of 𝐾𝑛 contains either a red 𝐾𝑠
or a blue 𝐾𝑡 .

Theorem 27.1 (Ramsey). Every red/blue coloring of the edges of 𝐾6 contains a monochro-

matic triangle. Equivalently, 𝑅(3, 3) = 6.

Proof. Let the vertices of 𝐾6 be {𝑣, 1, 2, 3, 4, 5} and consider the 5 edges incident to 𝑣. By the

pigeonhole principle, at least 3 of these edges have the same color.

WLOG, assume 𝑣 is joined by red edges to three vertices, say 𝑎, 𝑏, 𝑐. Now look at the triangle on

{𝑎, 𝑏, 𝑐}:

• If any of 𝑎𝑏, 𝑏𝑐, 𝑐𝑎 is red, say 𝑎𝑏 is red, then 𝑣𝑎𝑏 is a red triangle.

• If none of 𝑎𝑏, 𝑏𝑐, 𝑐𝑎 is red, then all three are blue, so 𝑎𝑏𝑐 is a blue triangle.

In either case there is a monochromatic triangle. Hence every 2-edge-coloring of 𝐾6 forces a

monochromatic 𝐾3. □

Proposition 27.2. There exists a red/blue coloring of 𝐸(𝐾5)with no monochromatic triangle.

Hence 𝑅(3, 3) > 5.

Ramsey Theory 251

Proof.

1

2

3 4

5

□

Theorem 27.3.
𝑅(𝑝, 𝑞) ≤ 𝑅(𝑝 − 1, 𝑞) + 𝑅(𝑝, 𝑞 − 1).

Proof. Let

𝑁 = 𝑅(𝑝 − 1, 𝑞), 𝑀 = 𝑅(𝑝, 𝑞 − 1),
and consider any red/blue coloring of the edges of the complete graph

𝐾𝑁+𝑀 .

Choose a vertex 𝑥. Among the 𝑁 +𝑀 − 1 edges incident to 𝑥, the Pigeonhole Principle implies

that 𝑥 has at least 𝑁 red edges or at least 𝑀 blue edges.

Case 1: 𝑥 has at least 𝑁 red incident edges. Let 𝑆 be the set of neighbors of 𝑥 joined to 𝑥 by red

edges; then |𝑆| ≥ 𝑁 = 𝑅(𝑝 − 1, 𝑞). By the definition of 𝑅(𝑝 − 1, 𝑞), the induced subgraph on 𝑆

contains either

1. a red (𝑝 − 1)-clique, or

2. a blue 𝑞-clique.

If it contains a blue 𝑞-clique, we are done. If it contains a red (𝑝 − 1)-clique with vertices

{𝑣1 , . . . , 𝑣𝑝−1}, then adding 𝑥 yields a red 𝑝-clique, since all edges 𝑥𝑣𝑖 are red.

Thus in this case there is a monochromatic 𝐾𝑝 (red) or 𝐾𝑞 (blue).

Case 2: 𝑥 has at least 𝑀 blue incident edges. Let 𝑇 be the set of neighbors of 𝑥 joined to 𝑥 by

blue edges; then |𝑇 | ≥ 𝑀 = 𝑅(𝑝, 𝑞 − 1). By the definition of 𝑅(𝑝, 𝑞 − 1), the induced subgraph

on 𝑇 contains either

1. a red 𝑝-clique, or

2. a blue (𝑞 − 1)-clique.

If it contains a red 𝑝-clique, we are done. If it contains a blue (𝑞 − 1)-clique with vertices

{𝑢1 , . . . , 𝑢𝑞−1}, then adding 𝑥 produces a blue 𝑞-clique, since all edges 𝑥𝑢𝑖 are blue.

Thus in this case as well there is a monochromatic 𝐾𝑝 (red) or 𝐾𝑞 (blue).

Since every red/blue coloring of 𝐾𝑁+𝑀 produces a red 𝐾𝑝 or a blue 𝐾𝑞 , we conclude that

𝑅(𝑝, 𝑞) ≤ 𝑁 +𝑀 = 𝑅(𝑝 − 1, 𝑞) + 𝑅(𝑝, 𝑞 − 1).

□

Ramsey Theory 252

Corollary 27.4.

𝑅(𝑝, 𝑞) ≤
(
𝑝 + 𝑞 − 2

𝑝 − 1

)
.

Proof. A 2-edge-coloring of 𝐾𝑝 either has an edge of the second color or does not, so

𝑅(𝑝, 2) = 𝑝.

Hence the upper bound holds with equality when 𝑞 (or 𝑝) is 2. This provides the basis for

induction on 𝑝 + 𝑞.
By Theorem 27.1 and the induction hypothesis,

𝑅(𝑝, 𝑞) ≤ 𝑅(𝑝 − 1, 𝑞) + 𝑅(𝑝, 𝑞 − 1) ≤
(
𝑝 + 𝑞 − 3

𝑝 − 2

)
+

(
𝑝 + 𝑞 − 3

𝑝 − 1

)
.

By Pascal’s Identity, (
𝑝 + 𝑞 − 3

𝑝 − 2

)
+

(
𝑝 + 𝑞 − 3

𝑝 − 1

)
=

(
𝑝 + 𝑞 − 2

𝑝 − 1

)
.

Therefore,

𝑅(𝑝, 𝑞) ≤
(
𝑝 + 𝑞 − 2

𝑝 − 1

)
.

□

27.2 Erdős lower bound for diagonal Ramsey numbers

To prove a lower bound on 𝑅(𝑝, 𝑝), we want to exhibit one coloring of 𝐾𝑛 with no monochromatic

𝐾𝑝 . Constructing such a coloring explicitly is hard, so we do the classic Erdős probabilistic

method proof: pick a random coloring and prove it has the desired property with positive

probability. If something happens with positive probability, then it happens for at least one

outcome, so an appropriate coloring exists.

Theorem 27.5 (Erdős, 1947).

𝑅(𝑝, 𝑝) ≥ 1

𝑒
√

2

𝑝 2
𝑝/2(1 − 𝑜(1)).

Proof. Let the edges of 𝐾𝑛 be colored independently at random, where each edge is assigned

the color red or blue with probability
1

2
. The expected number of red 𝑝-cliques is

E
[
#{red 𝑝-cliques}

]
=

(
𝑛

𝑝

) (
1

2

)(𝑝
2
)
.

Similarly, the expected number of blue 𝑝-cliques is

E
[
#{blue 𝑝-cliques}

]
=

(
𝑛

𝑝

) (
1

2

)(𝑝
2
)
.

Hence the expected number of monochromatic 𝑝-cliques is

E
[
#{monochromatic 𝑝-cliques}

]
=

(
𝑛

𝑝

)
2

(
1

2

)(𝑝
2
)
.

Ramsey Theory 253

If (
𝑛

𝑝

)
2

(
1

2

)(𝑝
2
)
< 1,

then there exists a coloring with no monochromatic 𝑝-clique. Hence such an 𝑛 is a lower bound

on 𝑅(𝑝, 𝑝).
Using the estimate (

𝑛

𝑝

)
<

(
𝑛𝑒

𝑝

)𝑝
,

it suffices to have (
𝑛𝑒

𝑝

)𝑝
< 2
(𝑝

2
)−1.

Now we solve this inequality for 𝑛. Taking natural logs,

𝑝
(
ln 𝑛 + 1 − ln 𝑝

)
<

((𝑝
2

)
− 1

)
ln 2 =

(
𝑝(𝑝 − 1)

2

− 1

)
ln 2.

Divide by 𝑝:

ln 𝑛 <
𝑝 − 1

2

ln 2 − ln 2

𝑝
− 1 + ln 𝑝.

Exponentiating gives

𝑛 < exp

(
ln 𝑝 − 1

)
exp

(
𝑝 − 1

2

ln 2

)
exp

(
− ln 2

𝑝

)
=
𝑝

𝑒
2
(𝑝−1)/2

2
−1/𝑝 .

Since 2
(𝑝−1)/2 = 2

𝑝/2/
√

2 and 2
−1/𝑝 = 1 − 𝑜(1) as 𝑝 →∞, we get

𝑛 < (1 − 𝑜(1)) 𝑝

𝑒
√

2

2
𝑝/2.

Therefore, for such 𝑛 there exists a 2-coloring of 𝐸(𝐾𝑛)with no monochromatic 𝐾𝑝 , so

𝑅(𝑝, 𝑝) ≥ (1 − 𝑜(1)) 𝑝

𝑒
√

2

2
𝑝/2.

□

27.3 General Ramsey’s Theorem

Definition 27.3 (𝑟-uniform 𝑘-coloring). Let 𝑆 be a set and 𝑟 ∈ N. Write(
𝑆

𝑟

)
:= {𝐴 ⊆ 𝑆 : |𝐴| = 𝑟 }

for the family of 𝑟-subsets of 𝑆. A 𝑘-coloring of
(
𝑆
𝑟

)
is a map

𝑓 :

(
𝑆

𝑟

)
−→ [𝑘] := {1, 2, . . . , 𝑘}.

Ramsey Theory 254

Definition 27.4 (Homogeneous set). Given a 𝑘-coloring 𝑓 :

(
𝑆
𝑟

)
→ [𝑘], a subset 𝑇 ⊆ 𝑆 is

𝑖-homogeneous (or monochromatic of color 𝑖) if

𝑓 (𝐴) = 𝑖 for every 𝐴 ∈
(
𝑇

𝑟

)
.

Equivalently, all 𝑟-subsets of 𝑇 receive the same color 𝑖.

Definition 27.5 (Ramsey number). Fix 𝑘, 𝑟 ∈ N and target sizes 𝑝1 , . . . , 𝑝𝑘 ∈ N. We write

𝑅(𝑝1 , . . . , 𝑝𝑘 ; 𝑟)

for the minimum 𝑁 such that for every 𝑘-coloring 𝑓 :

([𝑁]
𝑟

)
→ [𝑘] there exists some 𝑖 ∈ [𝑘]

and an 𝑖-homogeneous set 𝑇 ⊆ [𝑁]with |𝑇 | = 𝑝𝑖 .

Remark 27.2. When 𝑟 = 2, a 𝑘-coloring of

([𝑁]
2

)
is just an edge-coloring of the complete graph

𝐾𝑁 with 𝑘 colors, and a homogeneous set is a monochromatic clique. For example,

𝑅(3, 3; 2) = 6.

Also note that adding a parameter 2 does nothing in the graph case:

𝑅(3, 3, 2; 2) = 𝑅(3, 3; 2),

since any two vertices already form a monochromatic 𝐾2 in whatever color the edge has.

Theorem 27.6 (Ramsey, 1930). For all 𝑘, 𝑟 ∈ N and all 𝑝1 , . . . , 𝑝𝑘 ∈ N,

𝑅(𝑝1 , . . . , 𝑝𝑘 ; 𝑟) < ∞.

Proof. We prove finiteness by induction on the uniformity 𝑟; for fixed 𝑟 we use a secondary

induction on

∑
𝑖 𝑝𝑖 (equivalently, on

∑
𝑖(𝑝𝑖 − 1)).

Base case 𝑟 = 1. A 𝑘-coloring of

([𝑁]
1

)
is just a coloring of the points 1, 2, . . . , 𝑁 . By the pigeonhole

principle, if

𝑁 = (𝑝1 − 1) + · · · + (𝑝𝑘 − 1) + 1 = 𝑝1 + · · · + 𝑝𝑘 − 𝑘 + 1,

then some color class has size at least 𝑝𝑖 , giving an 𝑖-homogeneous set of size 𝑝𝑖 . Hence

𝑅(𝑝1 , . . . , 𝑝𝑘 ; 1) ≤ 𝑁 .

Vacuous case. If some 𝑝𝑖 < 𝑟, then any set 𝑇 of size 𝑝𝑖 is automatically 𝑖-homogeneous, because(
𝑇
𝑟

)
= ∅. Thus 𝑅(𝑝1 , . . . , 𝑝𝑘 ; 𝑟) ≤ 𝑝𝑖 < ∞. So we may assume from now on that 𝑟 ≥ 2 and 𝑝𝑖 ≥ 𝑟

for all 𝑖.

Inductive step. Fix 𝑟 ≥ 2 and assume all Ramsey numbers for uniformity 𝑟 − 1 are finite

(induction on 𝑟), and also that all numbers of the form 𝑅(𝑝1 , . . . , 𝑝𝑖 − 1, . . . , 𝑝𝑘 ; 𝑟) are finite

(secondary induction, since the sum of the parameters decreases).

For each 𝑖 ∈ [𝑘], define

𝑞𝑖 := 𝑅(𝑝1 , . . . , 𝑝𝑖−1 , 𝑝𝑖 − 1, 𝑝𝑖+1 , . . . , 𝑝𝑘 ; 𝑟),

Ramsey Theory 255

and set

𝑀 := 𝑅(𝑞1 , . . . , 𝑞𝑘 ; 𝑟 − 1), 𝑁 := 𝑀 + 1.

We claim 𝑅(𝑝1 , . . . , 𝑝𝑘 ; 𝑟) ≤ 𝑁 .

Let 𝑓 :

([𝑁]
𝑟

)
→ [𝑘] be an arbitrary 𝑘-coloring. Write 𝑣 := 𝑁 . Define a new coloring of

(𝑟 − 1)-subsets of [𝑁 − 1] by

𝑓 ′ :

(
[𝑁 − 1]
𝑟 − 1

)
→ [𝑘], 𝑓 ′(𝐴) := 𝑓 (𝐴 ∪ {𝑣}).

By the definition of 𝑀 = 𝑅(𝑞1 , . . . , 𝑞𝑘 ; 𝑟 − 1), there exists a color 𝑖 ∈ [𝑘] and a set 𝑇 ⊆ [𝑁 − 1]
with |𝑇 | = 𝑞𝑖 such that 𝑇 is 𝑖-homogeneous for 𝑓 ′, i.e.

∀𝐴 ∈
(
𝑇

𝑟 − 1

)
: 𝑓 (𝐴 ∪ {𝑣}) = 𝑓 ′(𝐴) = 𝑖.

Now restrict the original coloring 𝑓 to

(
𝑇
𝑟

)
. Because |𝑇 | = 𝑞𝑖 and 𝑞𝑖 = 𝑅(𝑝1 , . . . , 𝑝𝑖 − 1, . . . , 𝑝𝑘 ; 𝑟),

by the definition of 𝑞𝑖 one of the following occurs:

1. there is a color 𝑗 ≠ 𝑖 and a 𝑗-homogeneous set𝑈 ⊆ 𝑇 with |𝑈 | = 𝑝 𝑗 (done); or

2. there is an 𝑖-homogeneous set 𝑆 ⊆ 𝑇 with |𝑆| = 𝑝𝑖 − 1.

In case (2), we claim 𝑆 ∪ {𝑣} is 𝑖-homogeneous for 𝑓 and has size 𝑝𝑖 . Indeed, take any 𝑟-subset

𝐵 ∈
(
𝑆∪{𝑣}
𝑟

)
. If 𝑣 ∉ 𝐵, then 𝐵 ∈

(
𝑆
𝑟

)
, so 𝑓 (𝐵) = 𝑖 because 𝑆 is 𝑖-homogeneous in 𝑓 . If 𝑣 ∈ 𝐵, write

𝐵 = 𝐴 ∪ {𝑣}where 𝐴 ∈
(
𝑆
𝑟−1

)
⊆

(
𝑇
𝑟−1

)
; then 𝑓 (𝐵) = 𝑓 (𝐴 ∪ {𝑣}) = 𝑖 by the 𝑖-homogeneity of 𝑇 for

𝑓 ′. Thus all 𝑟-subsets of 𝑆 ∪ {𝑣} have color 𝑖, as required.

Therefore every 𝑘-coloring of

([𝑁]
𝑟

)
produces an 𝑖-homogeneous set of size 𝑝𝑖 for some 𝑖, so

𝑅(𝑝1 , . . . , 𝑝𝑘 ; 𝑟) ≤ 𝑁 < ∞. □

Remark 27.3. The proof yields the bound

𝑅(𝑝1 , . . . , 𝑝𝑘 ; 𝑟) ≤ 1 + 𝑅
(
𝑅(𝑝1 − 𝛿1𝑖 , . . . , 𝑝𝑘 − 𝛿𝑘𝑖 ; 𝑟) for 𝑖 ∈ [𝑘]; 𝑟 − 1

)
,

i.e. if 𝑞𝑖 = 𝑅(𝑝1 , . . . , 𝑝𝑖 − 1, . . . , 𝑝𝑘 ; 𝑟) then

𝑅(𝑝1 , . . . , 𝑝𝑘 ; 𝑟) ≤ 1 + 𝑅(𝑞1 , . . . , 𝑞𝑘 ; 𝑟 − 1).

27.4 Erdős–Szekeres on points in convex position

Theorem 27.7 (Erdős–Szekeres, 1935). For each integer 𝑚 ≥ 3, there exists an integer 𝑁(𝑚)
such that every set of 𝑁(𝑚) points in the plane in general position contains 𝑚 points in

convex position.

Proof. A set of points is in general position if no three lie on a line. The theorem states that if

the total number of points is sufficiently large, then one can always find 𝑚 of them forming the

vertex set of a convex polygon.

The classical bounds satisfy

2
𝑚−2 ≤ 𝑁(𝑚) ≤

(
2𝑚 − 4

𝑚 − 2

)
≤ 2

2𝑚 ,

and it remains an open problem whether 𝑁(𝑚) = 2
𝑚+𝑜(𝑚)

.

The proof is based on the following two lemmas.

Ramsey Theory 256

Lemma 27.8. Every set of five points in general position contains four points in convex

position.

Proof of lemma 1. Given any five points in general position, either one of them lies inside the

convex hull of the other four, or none of them does. In the first case, the remaining four already

form a convex quadrilateral. In the second case, all five points lie on the boundary of their

convex hull, and any four consecutive vertices again give four points in convex position. In

either case four convex-position points exist. □

Lemma 27.9. If every four-element subset of a point set 𝑃 of size 𝑚 is in convex position,

then the entire set 𝑃 is in convex position.

Proof of lemma 2. Assume for contradiction that 𝑃 is not in convex position. Then some point of

𝑃 lies strictly inside the convex hull of the remaining points. Let 𝑣 be such a point. Consider any

three points on the hull that form a triangle containing 𝑣. Together with 𝑣 they form four points

that fail to be in convex position, contradicting the assumption that every four-subset is convex.

Therefore all points must lie on the boundary of the convex hull, and 𝑃 is in convex position. □

To prove the theorem, consider 𝑁 = 𝑅(𝑚, 5), the Ramsey number for red-blue colorings of 𝑚-

and 5-subsets. Given any 𝑁 points in general position, color each 4-element subset red if it is in

convex position and blue otherwise. By the choice of 𝑁 there is either a red 𝑚-set or a blue 5-set.

If there is a blue 5-set, Claim 1 shows this is impossible, since every five points contain four

convex-position points. Thus no blue 5-set exists. Therefore the Ramsey argument produces a

red 𝑚-set, meaning every 4-subset of these 𝑚 points is in convex position. By Claim 2 the entire

set of 𝑚 points is in convex position. This establishes the existence of 𝑁(𝑚). □

27.5 Schur’s Theorem

Theorem 27.10 (Schur, 1916). Given 𝑘 > 0, there exists an integer 𝑠𝑘 such that every

𝑘-coloring of {1, 2, . . . , 𝑆𝑘} has a monochromatic solution (𝑥, 𝑦, 𝑧) to

𝑥 + 𝑦 = 𝑧.

Proof. Let 𝑟𝑘 = 𝑅𝑘(3) be the Ramsey number such that every 𝑘-edge-coloring of 𝐾𝑟𝑘 contains a

monochromatic triangle. We show that 𝑠𝑘 ≤ 𝑟𝑘 .
Let

𝑓 : {1, 2, . . . , 𝑟𝑘 − 1} → [𝑘]
be a 𝑘-coloring of the integers {1, 2, . . . , 𝑟𝑘 − 1}. We use 𝑓 to define a 𝑘-edge-coloring 𝑓 ′ of 𝐾𝑟𝑘
as follows. Let 𝑉(𝐾𝑟𝑘) = {1, 2, . . . , 𝑟𝑘}, and for each edge 𝑖 𝑗 define

𝑓 ′(𝑖 𝑗) = 𝑓 (|𝑖 − 𝑗|).

By the definition of 𝑟𝑘 , the coloring 𝑓 ′ contains a monochromatic triangle with vertices 𝑎, 𝑏, 𝑐.

Without loss of generality, assume

𝑎 < 𝑏 < 𝑐.

Ramsey Theory 257

Define

𝑥 = 𝑏 − 𝑎, 𝑦 = 𝑐 − 𝑏, 𝑧 = 𝑐 − 𝑎.
Then 𝑥, 𝑦, 𝑧 are positive integers, and

𝑓 (𝑥) = 𝑓 (|𝑏 − 𝑎|) = 𝑓 ′(𝑎𝑏), 𝑓 (𝑦) = 𝑓 (|𝑐 − 𝑏|) = 𝑓 ′(𝑏𝑐), 𝑓 (𝑧) = 𝑓 (|𝑐 − 𝑎|) = 𝑓 ′(𝑎𝑐).

Since the edges 𝑎𝑏, 𝑏𝑐, and 𝑎𝑐 form a monochromatic triangle under 𝑓 ′, we have

𝑓 (𝑥) = 𝑓 (𝑦) = 𝑓 (𝑧).

Finally, by construction,

𝑥 + 𝑦 = (𝑏 − 𝑎) + (𝑐 − 𝑏) = 𝑐 − 𝑎 = 𝑧.

Thus (𝑥, 𝑦, 𝑧) is a monochromatic solution to the equation 𝑥 + 𝑦 = 𝑧.

□

Probabilistic Method 258

28 Probabilistic Method

The probabilistic method is an indirect strategy: to prove that a combinatorial object exists, we

define a random process that produces such objects and show that the probability of success is

positive. If Pr(success) > 0, then at least one successful outcome must exist.

28.1 Two basic tools: the first moment and alteration

Lemma 28.1 (First moment method). Let 𝑋 be a nonnegative integer-valued random

variable. If E[𝑋] < 1, then Pr(𝑋 = 0) > 0. In particular, there exists an outcome with 𝑋 = 0.

Proof. If 𝑋 ≥ 1 then 𝑋 ≥ 1 · 1{𝑋≥1}, hence E[𝑋] ≥ Pr(𝑋 ≥ 1). If E[𝑋] < 1, then Pr(𝑋 ≥ 1) < 1, so

Pr(𝑋 = 0) > 0. □

Lemma 28.2 (Alteration principle). Suppose a random structure contains “bad” substruc-

tures, and let𝑋 be the number of bad substructures. If we can destroy every bad substructure

by deleting at most one vertex per bad substructure, then there exists an outcome in which,

after deleting at most 𝑋 vertices, no bad substructure remains. In particular, there exists an

outcome with at least 𝑛 − 𝑋 vertices and no bad substructure.

Proof. Given an outcome, delete one vertex from each bad substructure (choosing arbitrarily).

Then every bad substructure is destroyed, and we deleted at most 𝑋 vertices. □

28.2 Hypergraphs and Property B (2-colorability)

Definition 28.1 (Hypergraph, 𝑘-uniform). A hypergraph is a pair 𝐻 = (𝑉, 𝐸)where 𝑉 is a

vertex set and 𝐸 ⊆ 2
𝑉

is a family of subsets called hyperedges. It is 𝑘-uniform if every edge

has size 𝑘.

Definition 28.2 (Proper 2-coloring / Property B). A proper 2-coloring of a hypergraph

𝐻 = (𝑉, 𝐸) is a map 𝜑 : 𝑉 → {red, blue} such that no edge is monochromatic (i.e. every

𝑒 ∈ 𝐸 contains at least one red and at least one blue vertex). A hypergraph is 2-colorable if it

admits such a coloring. This property is also called Property B.

Definition 28.3. Let 𝑓 (𝑘) be the minimum number of edges in a non-2-colorable 𝑘-uniform

hypergraph.

Theorem 28.3 (Erdős). For 𝑘 ≥ 2,

2
𝑘−1 ≤ 𝑓 (𝑘) ≤

(
2𝑘 − 1

𝑘

)
.

Probabilistic Method 259

Proof. Upper bound. Let𝑉 be a set of size 2𝑘 − 1, and let 𝐸 be the set of all 𝑘-subsets of𝑉 . Then

|𝐸| =
(
2𝑘−1

𝑘

)
. In any red/blue coloring of 𝑉 , one color class has size at least 𝑘, so it contains a

monochromatic 𝑘-subset, which is an edge of 𝐻. Hence this hypergraph is not 2-colorable, so

𝑓 (𝑘) ≤
(
2𝑘−1

𝑘

)
.

Lower bound. Let 𝐻 = (𝑉, 𝐸) be 𝑘-uniform with |𝐸| = 𝑚. Color each vertex independently

red/blue, each with probability 1/2. For a fixed edge 𝑒 (with |𝑒 | = 𝑘),

Pr(𝑒 is monochromatic) = Pr(𝑒 all red) + Pr(𝑒 all blue) = 2 · 2−𝑘 = 2
1−𝑘 .

Let 𝑋 be the number of monochromatic edges. By linearity of expectation,

E[𝑋] = 𝑚 · 21−𝑘 .

If 𝑚 < 2
𝑘−1

then E[𝑋] < 1, so by Lemma 28.1 there exists a coloring with 𝑋 = 0, i.e. with

no monochromatic edge. Thus any non-2-colorable 𝑘-uniform hypergraph must satisfy 𝑚 ≥
2
𝑘−1

. □

Remark 28.1 (Sharper, more recent bounds). The true order of magnitude of 𝑓 (𝑘) is still subtle.

There are significant improvements known on both sides, for example

𝑓 (𝑘) ≤ (1 + 𝑜(1)) · 𝐶 𝑘2

2
𝑘

and 𝑓 (𝑘) ≥ 𝑐 2
𝑘 ·
√
𝑘

log 𝑘

for absolute constants 𝐶, 𝑐 > 0. (These require deeper ideas beyond the basic first-moment

argument.)

Theorem 28.4 (Alteration-method bound for 𝑅(𝑘, 𝑘)). For every 𝑛 and 𝑘,

𝑅(𝑘, 𝑘) > 𝑛 −
(
𝑛

𝑘

)
2

1−(𝑘
2
).

Consequently, choosing 𝑛 = (1 − 𝑜(1)) 𝑘

𝑒
√

2

2
𝑘/2

yields

𝑅(𝑘, 𝑘) > (1 − 𝑜(1)) 𝑘
𝑒
√

2

2
𝑘/2.

Proof. Randomly 2-color the edges of 𝐾𝑛 (each edge independently red/blue with probability

1/2). For each 𝑘-set 𝑆 ∈
([𝑛]
𝑘

)
, let 𝐴𝑆 be the event that 𝐾𝑛[𝑆] is monochromatic. A fixed 𝑆 spans(

𝑘
2

)
edges, so

Pr(𝐴𝑆) = 2 ·
(

1

2

)(𝑘
2
)
= 2

1−(𝑘
2
).

Let 𝑋 =
∑
𝑆 1𝐴𝑆 be the number of monochromatic 𝐾𝑘 ’s. By linearity of expectation,

E[𝑋] =
(
𝑛

𝑘

)
2

1−(𝑘
2
).

Now alter the graph by deleting one vertex from each monochromatic 𝐾𝑘 . After deleting at most

𝑋 vertices, the remaining induced subgraph has no monochromatic 𝐾𝑘 . Therefore there exists

a coloring with at least 𝑛 − 𝑋 vertices and no monochromatic 𝐾𝑘 , so 𝑅(𝑘, 𝑘) > 𝑛 − 𝑋. Taking

expectations gives

𝑅(𝑘, 𝑘) > 𝑛 − E[𝑋] = 𝑛 −
(
𝑛

𝑘

)
2

1−(𝑘
2
).

Probabilistic Method 260

The stated asymptotic choice of 𝑛 comes from making the expected number of monochromatic

𝐾𝑘 ’s smaller than 𝑛 (and then optimizing using

(
𝑛
𝑘

)
≈ (𝑛𝑒/𝑘)𝑘). □

28.3 Lovász Local Lemma (LLL) when union bound is too weak

Definition 28.4 (Dependency graph viewpoint). Let 𝐴1 , . . . , 𝐴𝑁 be events. A graph 𝐷 on

[𝑁] is a dependency graph if each 𝐴𝑖 is independent of the collection {𝐴 𝑗 : 𝑗 ∉ 𝑁𝐷[𝑖]} (i.e.

independent of all events outside its closed neighborhood).

Theorem 28.5 (Symmetric Lovász Local Lemma). Suppose Pr(𝐴𝑖) ≤ 𝑝 for all 𝑖, and each 𝐴𝑖
depends on at most 𝑑 others (i.e. has degree ≤ 𝑑 in some dependency graph). If

𝑒 𝑝 (𝑑 + 1) ≤ 1,

then

Pr

(𝑁⋂
𝑖=1

𝐴𝑖

)
> 0.

Remark 28.2. Compare with the union bound: Pr(⋃𝐴𝑖) ≤
∑

Pr(𝐴𝑖). LLL is what you use when

the 𝐴𝑖 are not independent but are “locally dependent”: each bad event only interacts with a

bounded neighborhood of other bad events.

28.4 Spencer’s LLL proof idea for 𝑅(𝑘, 𝑘)

Theorem 28.6 (Spencer, via LLL). For

𝑛 = (1 + 𝑜(1))
√

2

𝑒
𝑘 2

𝑘/2 ,

there exists a red/blue edge-coloring of 𝐾𝑛 with no monochromatic 𝐾𝑘 . Equivalently,

𝑅(𝑘, 𝑘) > 𝑛.

Proof sketch with the key bookkeeping. Color edges of 𝐾𝑛 independently red/blue with probability

1/2. For each 𝑘-set 𝑆, let 𝐴𝑆 be the event that 𝑆 spans a monochromatic 𝐾𝑘 . As before,

𝑝 := Pr(𝐴𝑆) = 2
1−(𝑘

2
).

Two events 𝐴𝑆 and 𝐴𝑇 are independent whenever 𝐾𝑆 and 𝐾𝑇 share no edges, which happens iff

|𝑆 ∩ 𝑇 | ≤ 1. Thus 𝐴𝑆 depends only on sets 𝑇 with |𝑆 ∩ 𝑇 | ≥ 2. A crude bound on the number of

such 𝑇 is obtained by choosing the intersection size:

𝑑 ≤
𝑘∑
𝑖=2

(
𝑘

𝑖

) (
𝑛 − 𝑘
𝑘 − 𝑖

)
≤

(
𝑘

2

) (
𝑛

𝑘 − 2

)
= 𝑂

(
𝑘2

𝑛𝑘−2

(𝑘 − 2)!

)
.

Now apply Theorem 28.5. The condition 𝑒 𝑝 (𝑑 + 1) ≤ 1 becomes, up to lower-order factors, an

inequality of the form

𝑒 · 2 1−(𝑘
2
) ·

(
𝑘2

𝑛𝑘−2

(𝑘 − 2)!
)
≲ 1,

Probabilistic Method 261

and plugging 𝑛 = (1 + 𝑜(1))
√

2

𝑒 𝑘2
𝑘/2

makes this true. Hence with positive probability none of

the 𝐴𝑆 occur, i.e. no monochromatic 𝐾𝑘 exists in the coloring, so 𝑅(𝑘, 𝑘) > 𝑛. □

28.5 Erdős: large girth and large chromatic number

Definition 28.5. The girth 𝑔(𝐺) of a graph 𝐺 is the length of its shortest cycle (take 𝑔(𝐺) = ∞
if 𝐺 is acyclic). The independence number 𝛼(𝐺) is the maximum size of an independent set.

Theorem 28.7 (Erdős). For all integers 𝑔 ≥ 3 and 𝑘 ≥ 2, there exists a graph 𝐺 with

𝑔(𝐺) ≥ 𝑔 and 𝜒(𝐺) ≥ 𝑘.

Proof. We build 𝐺 from a random graph and then alter it.

Step 1: choose a random graph. Let 𝐺 ∼ 𝐺(𝑛, 𝑝), meaning each edge appears independently

with probability 𝑝. We choose

𝑝 = 𝑛𝑡−1

where 0 < 𝑡 <
1

𝑔
.

(So 𝑝 is small: sparse enough to keep short cycles rare, but not so small that huge independent

sets become likely.)

Step 2: short cycles are rare. Fix 𝑗 ∈ {3, 4, . . . , 𝑔}. The number of (labeled) 𝑗-cycles is at most 𝑛 𝑗 ,

and each specific 𝑗-cycle appears with probability 𝑝 𝑗 . Thus the expected number 𝑋𝑗 of 𝑗-cycles

satisfies

E[𝑋𝑗] ≤ 𝑛 𝑗𝑝 𝑗 = 𝑛 𝑗𝑡 .

Let 𝑋 =
∑𝑔

𝑗=3
𝑋𝑗 be the number of cycles of length ≤ 𝑔. Then

E[𝑋] ≤
𝑔∑
𝑗=3

𝑛 𝑗𝑡 = 𝑜(𝑛),

since 𝑗𝑡 < 1 for every 𝑗 ≤ 𝑔. By Markov,

Pr(𝑋 ≥ 𝑛/2) ≤ 2E[𝑋]
𝑛
→ 0,

so for large 𝑛 there exists a realization with 𝑋 < 𝑛/2.

Step 3: large independent sets are unlikely. Fix an integer 𝑟. The probability that a fixed 𝑟-set

is independent is (1 − 𝑝)(𝑟2) ≤ 𝑒−𝑝(𝑟2). By the union bound,

Pr(𝛼(𝐺) ≥ 𝑟) ≤
(
𝑛

𝑟

)
(1 − 𝑝)(𝑟2) ≤

(
𝑒𝑛

𝑟

) 𝑟
exp

(
− 𝑝

(
𝑟

2

))
.

Choose

𝑟 =

⌈
4 ln 𝑛

𝑝

⌉
.

Then 𝑝
(
𝑟
2

)
≍ (ln 𝑛)2/𝑝 dominates the 𝑟 ln(𝑒𝑛/𝑟) term, and the RHS tends to 0 as 𝑛 →∞. Hence

for large 𝑛 there exists a realization with 𝛼(𝐺) < 𝑟.

Probabilistic Method 262

Step 4: alter to kill short cycles, and count colors. Pick a realization of 𝐺 for which simultane-

ously 𝑋 < 𝑛/2 and 𝛼(𝐺) < 𝑟. Delete one vertex from each cycle of length ≤ 𝑔. This removes all

cycles of length ≤ 𝑔, so the resulting graph 𝐺′ satisfies 𝑔(𝐺′) ≥ 𝑔. We deleted at most 𝑋 < 𝑛/2
vertices, hence |𝑉(𝐺′)| ≥ 𝑛/2. Also, deleting vertices cannot increase 𝛼, so 𝛼(𝐺′) ≤ 𝛼(𝐺) < 𝑟.

Finally,

𝜒(𝐺′) ≥ |𝑉(𝐺
′)|

𝛼(𝐺′) ≥
𝑛/2
𝑟
.

Since 𝑟 ∼ 4(ln 𝑛)/𝑝 = 4(ln 𝑛) 𝑛1−𝑡
, the ratio (𝑛/2)/𝑟 tends to∞ with 𝑛. For 𝑛 large enough we

have 𝜒(𝐺′) ≥ 𝑘. Thus 𝐺′ has girth at least 𝑔 and chromatic number at least 𝑘. □

28.6 Markov, Chebyshev, and the second moment method

Theorem 28.8 (Markov’s Inequality). Let 𝑋 ≥ 0 be a random variable and let 𝑎 > 0. Then

Pr(𝑋 ≥ 𝑎) ≤ E[𝑋]
𝑎

.

Proof. Since 𝑋 ≥ 𝑎1{𝑋≥𝑎}, taking expectations gives E[𝑋] ≥ 𝑎 Pr(𝑋 ≥ 𝑎). □

Theorem 28.9 (Chebyshev’s Inequality). Let 𝑋 be a random variable with finite variance.

Then for every 𝑡 > 0,

Pr

(
|𝑋 − E[𝑋]| ≥ 𝑡

)
≤ Var(𝑋)

𝑡2
.

Proof. Apply Markov to the nonnegative random variable (𝑋 − E[𝑋])2:

Pr

(
(𝑋 − E[𝑋])2 ≥ 𝑡2

)
≤

E
[
(𝑋 − E[𝑋])2

]
𝑡2

=
Var(𝑋)
𝑡2

.

□

Lemma 28.10 (Second moment method / Paley–Zygmund (useful form)). If 𝑋 ≥ 0 and

E[𝑋2] < ∞, then

Pr(𝑋 > 0) ≥ E[𝑋]2
E[𝑋2] .

Proof. By Cauchy–Schwarz,

E[𝑋] = E
[
𝑋1{𝑋>0}

]
≤

√
E[𝑋2] Pr(𝑋 > 0).

Rearrange. □

28.7 Caro–Wei proof of Turán

Probabilistic Method 263

Theorem 28.11 (Caro–Wei bound). For every graph 𝐺,

𝛼(𝐺) ≥
∑

𝑣∈𝑉(𝐺)

1

𝑑(𝑣) + 1

.

Proof. Take a uniformly random ordering (permutation) 𝜋 of 𝑉(𝐺). Let 𝑆 be the set of vertices

that appear before all their neighbors in 𝜋. Then 𝑆 is independent (two adjacent vertices cannot

both be first among the two). For a fixed vertex 𝑣, among the 𝑑(𝑣) + 1 vertices in {𝑣} ∪ 𝑁(𝑣),
each is equally likely to be the earliest in 𝜋, so

Pr(𝑣 ∈ 𝑆) = 1

𝑑(𝑣) + 1

.

Thus by linearity,

E[|𝑆|] =
∑
𝑣

Pr(𝑣 ∈ 𝑆) =
∑
𝑣

1

𝑑(𝑣) + 1

.

Since 𝛼(𝐺) ≥ |𝑆| always, we get 𝛼(𝐺) ≥ E[|𝑆|]. □

Corollary 28.12 (Jensen/Cauchy–Schwarz form). If 𝐺 has 𝑛 vertices and 𝑚 edges, then

𝛼(𝐺) ≥ 𝑛2

2𝑚 + 𝑛 .

Proof. By Cauchy–Schwarz applied to 𝑎𝑣 = 𝑑(𝑣) + 1 > 0,∑
𝑣

1

𝑎𝑣
≥ 𝑛2∑

𝑣 𝑎𝑣
.

Now

∑
𝑣(𝑑(𝑣) + 1) = 2𝑚 + 𝑛 and Caro–Wei gives the result. □

Theorem 28.13 (Turán). If 𝐺 is 𝐾𝑟+1-free on 𝑛 vertices, then

𝑒(𝐺) ≤
(
1 − 1

𝑟

)
𝑛2

2

.

Proof. Let 𝐺 be the complement. “𝐺 is 𝐾𝑟+1-free” means 𝐺 has no independent set of size 𝑟 + 1,

i.e. 𝛼(𝐺) ≤ 𝑟.
Apply the corollary to 𝐺. Since

𝑒(𝐺) =
(
𝑛

2

)
− 𝑒(𝐺),

we get

𝛼(𝐺) ≥ 𝑛2

2𝑒(𝐺) + 𝑛
=

𝑛2

(𝑛2 − 𝑛) − 2𝑒(𝐺) + 𝑛 =
𝑛2

𝑛2 − 2𝑒(𝐺) .

Since 𝛼(𝐺) ≤ 𝑟,
𝑛2

𝑛2 − 2𝑒(𝐺) ≤ 𝑟 =⇒ 𝑛2 − 2𝑒(𝐺) ≥ 𝑛2

𝑟
=⇒ 𝑒(𝐺) ≤

(
1 − 1

𝑟

)
𝑛2

2

.

(This matches the Turán density; the exact best bound 𝑡𝑟(𝑛) differs only by 𝑂(𝑛).) □

Probabilistic Method 264

28.8 Random graphs 𝐺(𝑛, 𝑝): thresholds for isolated vertices and connectivity

Definition 28.6 (𝐺(𝑛, 𝑝)). 𝐺(𝑛, 𝑝) is the random graph on vertex set [𝑛] = {1, . . . , 𝑛} in

which each of the

(
𝑛
2

)
edges is present independently with probability 𝑝 = 𝑝(𝑛).

Theorem 28.14 (Isolated vertices threshold). Let 𝑋 be the number of isolated vertices in

𝐺 ∼ 𝐺(𝑛, 𝑝) and set

𝑝 =
log 𝑛 + 𝑐

𝑛
(𝑐 ∈ R fixed).

Then 𝑋 ⇒ Poisson(𝑒−𝑐), and in particular

Pr(no isolated vertices) = Pr(𝑋 = 0) −→ 𝑒−𝑒
−𝑐
.

Proof sketch via factorial moments. For 𝑡 ≥ 1, let (𝑋)𝑡 = 𝑋(𝑋 − 1) · · · (𝑋 − 𝑡 + 1). Choose 𝑡 vertices;

they are all isolated iff every edge incident to them is absent, including edges among the 𝑡

themselves. The number of forbidden edges is

𝑡(𝑛 − 𝑡) +
(
𝑡

2

)
.

Hence

E[(𝑋)𝑡] = (𝑛)𝑡 (1 − 𝑝) 𝑡(𝑛−𝑡)+(
𝑡
2
).

With 𝑝 = (log 𝑛 + 𝑐)/𝑛 and fixed 𝑡, one checks

(𝑛)𝑡 ∼ 𝑛𝑡 , (1 − 𝑝)𝑡(𝑛−𝑡) ∼ 𝑒−𝑝𝑡𝑛 ∼ 𝑒−𝑡(log 𝑛+𝑐) = 𝑛−𝑡 𝑒−𝑐𝑡 ,

and (1−𝑝)(𝑡2) → 1. ThusE[(𝑋)𝑡] → (𝑒−𝑐)𝑡 , which are exactly the factorial moments of Poisson(𝑒−𝑐).
Therefore 𝑋 converges in distribution to that Poisson law, giving Pr(𝑋 = 0) → 𝑒−𝑒

−𝑐
. □

Theorem 28.15 (Connectivity threshold). Let 𝐺 ∼ 𝐺(𝑛, 𝑝) with 𝑝 = (log 𝑛 + 𝑐)/𝑛 and fixed

𝑐 ∈ R. Then

Pr(𝐺 is connected) −→ 𝑒−𝑒
−𝑐
.

In particular, the threshold for connectivity is 𝑝 ∼ (log 𝑛)/𝑛.

Proof sketch: “only obstruction is isolated vertices”. Clearly,

Pr(𝐺 connected) ≤ Pr(no isolated vertices) → 𝑒−𝑒
−𝑐
.

It remains to show that

Pr(no isolated vertices but disconnected) → 0.

If 𝐺 is disconnected and has no isolated vertices, then it has a component 𝑆 with size 2 ≤ 𝑠 :=

|𝑆| ≤ 𝑛/2. For a fixed set 𝑆 of size 𝑠, the event “𝑆 is a component” implies: (i) there are no edges

from 𝑆 to 𝑉 \ 𝑆 and (ii) 𝐺[𝑆] is connected. Thus by union bound,

Pr(∃ component of size 𝑠) ≤
(
𝑛

𝑠

)
Pr(𝐺[𝑆] connected) (1 − 𝑝)𝑠(𝑛−𝑠).

Probabilistic Method 265

Bound Pr(𝐺[𝑆] connected) by spanning trees: if 𝐺[𝑆] is connected it contains some spanning

tree; there are 𝑠𝑠−2
trees (Cayley) and each appears with probability 𝑝𝑠−1

, so

Pr(𝐺[𝑆] connected) ≤ 𝑠𝑠−2 𝑝𝑠−1.

Hence

Pr(∃ component of size 𝑠) ≤
(
𝑛

𝑠

)
𝑠𝑠−2𝑝𝑠−1(1 − 𝑝)𝑠(𝑛−𝑠).

Now plug 𝑝 = (log 𝑛 + 𝑐)/𝑛. The factor (1 − 𝑝)𝑠(𝑛−𝑠) ≤ 𝑒−𝑝𝑠(𝑛−𝑠) ≤ 𝑒−𝑠(log 𝑛+𝑐)/2 = 𝑛−𝑠/2𝑒−𝑐𝑠/2 (for

𝑠 ≤ 𝑛/2), which kills the

(
𝑛
𝑠

)
≤ (𝑒𝑛/𝑠)𝑠 term strongly, and the remaining 𝑠𝑠−2𝑝𝑠−1

is at most

polynomial in log 𝑛 times 𝑛−(𝑠−1)
. Summing over 𝑠 = 2, . . . , ⌊𝑛/2⌋ gives a total 𝑜(1). Therefore

the probability of being disconnected without isolated vertices vanishes, and

Pr(𝐺 connected) ∼ Pr(no isolated vertices) → 𝑒−𝑒
−𝑐
.

□

Partially Ordered Sets 266

29 Partially Ordered Sets

29.1 Structure of Posets

Definition 29.1 (Partially ordered set (poset)). A partially ordered set (or poset) is a pair (𝑃,≤)
where 𝑃 is a set and ≤ is a binary relation on 𝑃 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑃:

1. (Reflexive) 𝑥 ≤ 𝑥.

2. (Antisymmetric) If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦.

3. (Transitive) If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧.

We say 𝑥 and 𝑦 are comparable if 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. Otherwise, they are incomparable.

Example 29.1 (The divisibility poset). Let 𝑃 = Z≥1. Define a relation ⪯ on 𝑃 by

𝑎 ⪯ 𝑏 ⇐⇒ 𝑎 | 𝑏.

Then (Z≥1 ,⪯) is a poset, called the divisibility poset. More generally, for a fixed 𝑛 ∈ Z≥1, the set of

positive divisors of 𝑛,

𝐷(𝑛) = {𝑑 ∈ Z≥1 : 𝑑 | 𝑛},
ordered by divisibility is a finite poset.

Definition 29.2 (Hasse diagram). Let (𝑃,≤) be a finite poset. The Hasse diagram of 𝑃 is the

directed graph obtained from the relation ≤ by drawing an edge 𝑥 → 𝑦 exactly when 𝑥 < 𝑦

and 𝑦 covers 𝑥 (i.e. 𝑥 < 𝑦 and there is no 𝑧 ∈ 𝑃 with 𝑥 < 𝑧 < 𝑦), and omitting all edges

implied by transitivity. By convention, the diagram is usually drawn with edges pointing

upward, so the arrows are often suppressed. When viewed as a directed graph, transitivity

means 𝐻 has no directed cycles.

Example 29.2. The following diagram is a Hasse diagram for the poset ([12], |) restricted to

{2, 3, 4, 6, 12}.

12

6 4

3

1

2

We have 6 ≤ 12 since 6 | 12.

We do not draw an edge between 3 and 12 since 6 lies between them in the order.

29.2 Dilworth’s Theorem

Definition 29.3 (Chain and antichain). Let (𝑃,≤) be a poset. A subset 𝐶 ⊆ 𝑃 is a chain if for

all 𝑥, 𝑦 ∈ 𝐶, we have 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 (i.e. every pair is comparable).

A subset 𝐴 ⊆ 𝑃 is an antichain if for all distinct 𝑥, 𝑦 ∈ 𝐴, neither 𝑥 ≤ 𝑦 nor 𝑦 ≤ 𝑥 (i.e. every

distinct pair is incomparable).

Partially Ordered Sets 267

Theorem 29.1 (Dilworth). Let (𝑃,≤) be a finite poset. Let

𝑤 = max{ |𝐴| : 𝐴 ⊆ 𝑃 is an antichain }

be the width of 𝑃. Then the minimum number of chains whose disjoint union is 𝑃 (i.e. a

partition of 𝑃 into chains) is exactly 𝑤.

Proof. Let 𝑛 = |𝑃|.
(1) Easy inequality. If 𝑃 is partitioned into 𝑘 chains, then any antichain meets each chain in at

most one element, so |𝐴| ≤ 𝑘 for every antichain 𝐴. Hence 𝑤 ≤ 𝑘, and therefore

𝑤 ≤ 𝑘min ,

where 𝑘min denotes the minimum number of chains in a chain-partition of 𝑃.

(2) Build a bipartite graph. Form a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸)where 𝐿 = {𝑥𝐿 : 𝑥 ∈ 𝑃} and

𝑅 = {𝑥𝑅 : 𝑥 ∈ 𝑃}, and put an edge

𝑥𝐿𝑦𝑅 ∈ 𝐸 ⇐⇒ 𝑥 < 𝑦 in 𝑃.

Let 𝜈(𝐺) be the size of a maximum matching, and 𝜏(𝐺) the size of a minimum vertex cover. By

Kőnig’s theorem for bipartite graphs,

𝜈(𝐺) = 𝜏(𝐺).

Chain partitions⇐⇒matchings. We claim

𝑘min = 𝑛 − 𝜈(𝐺).

Indeed, if 𝑃 is partitioned into 𝑘 chains, write each chain as

𝑐1 < 𝑐2 < · · · < 𝑐𝑡 .

Add the edges 𝑐1,𝐿𝑐2,𝑅 , 𝑐2,𝐿𝑐3,𝑅 , . . . , 𝑐𝑡−1,𝐿𝑐𝑡 ,𝑅 to a set 𝑀. Across all chains this produces a

matching (each element appears in at most one chosen left endpoint and at most one chosen

right endpoint), and |𝑀| = ∑(𝑡 − 1) = 𝑛 − 𝑘. Thus 𝜈(𝐺) ≥ 𝑛 − 𝑘, so 𝑘 ≥ 𝑛 − 𝜈(𝐺), hence

𝑘min ≥ 𝑛 − 𝜈(𝐺).
Conversely, given a matching 𝑀 of size 𝑚, interpret each matched edge 𝑥𝐿𝑦𝑅 as a directed link

𝑥 → 𝑦. Because 𝑀 is a matching, every vertex has outdegree ≤ 1 and indegree ≤ 1 under these

links, so the links decompose 𝑃 into vertex-disjoint directed paths; each such path is a chain in 𝑃

(since every link respects <). Adding isolated vertices as length-1 paths, we get a chain-partition

with exactly 𝑛 − 𝑚 chains. Taking 𝑚 = 𝜈(𝐺) gives 𝑘min ≤ 𝑛 − 𝜈(𝐺). So 𝑘min = 𝑛 − 𝜈(𝐺), as

claimed.

(3) Extract a large antichain from a minimum vertex cover. Let 𝐶 be a minimum vertex cover

in 𝐺, so |𝐶| = 𝜏(𝐺). Define

𝐴 = { 𝑥 ∈ 𝑃 : 𝑥𝐿 ∉ 𝐶 and 𝑥𝑅 ∉ 𝐶 }.

Then 𝐴 is an antichain: if 𝑥 < 𝑦 with 𝑥, 𝑦 ∈ 𝐴, the edge 𝑥𝐿𝑦𝑅 exists but neither endpoint lies in

𝐶, contradicting that 𝐶 covers all edges.

Partially Ordered Sets 268

Let 𝑇 = {𝑥 ∈ 𝑃 : 𝑥𝐿 ∈ 𝐶 or 𝑥𝑅 ∈ 𝐶}. Then |𝑇 | ≤ |𝐶| = 𝜏(𝐺) (since each vertex of 𝐶 contributes to

at most one element of 𝑃, but some elements might contribute two vertices). Hence

|𝐴| = 𝑛 − |𝑇 | ≥ 𝑛 − 𝜏(𝐺).

Therefore 𝑤 ≥ |𝐴| ≥ 𝑛 − 𝜏(𝐺).

Using 𝜈(𝐺) = 𝜏(𝐺) and the formula for 𝑘min,

𝑘min = 𝑛 − 𝜈(𝐺) = 𝑛 − 𝜏(𝐺) ≤ 𝑤.

Combined with (1), 𝑤 ≤ 𝑘min, we conclude 𝑘min = 𝑤. □

29.3 LYM Inequality and Sperner’s Theorem

Definition 29.4 (Boolean lattice and Sperner family). Let [𝑛] = {1, 2, . . . , 𝑛} and let 2
[𝑛]

be

the family of all subsets of [𝑛], ordered by inclusion ⊆. A family ℱ ⊆ 2
[𝑛]

is called a Sperner
family (or an antichain) if it contains no two distinct sets with one contained in the other:

∀𝐴, 𝐵 ∈ ℱ , 𝐴 ≠ 𝐵 =⇒ ¬(𝐴 ⊆ 𝐵) and ¬(𝐵 ⊆ 𝐴).

Equivalently, ℱ is an antichain in the poset (2[𝑛] ,⊆).

Theorem 29.2 (LYM inequality (Lubell–Yamamoto–Meshalkin)). If ℱ ⊆ 2
[𝑛]

is a Sperner

family, then ∑
𝐴∈ℱ

1(
𝑛
|𝐴|

) ≤ 1.

Lubell’s proof. A maximal chain in (2[𝑛] ,⊆) is a chain of length 𝑛 + 1 of the form

∅ = 𝐶0 ⊂ 𝐶1 ⊂ · · · ⊂ 𝐶𝑛 = [𝑛], |𝐶𝑘 | = 𝑘.

Every permutation 𝜋 = (𝜋1 , . . . ,𝜋𝑛) of [𝑛] determines a maximal chain by 𝐶𝑘 = {𝜋1 , . . . ,𝜋𝑘},
and every maximal chain arises from exactly 1 permutation in this way (up to the obvious

correspondence), so choosing a uniformly random permutation is equivalent to choosing a

uniformly random maximal chain.

Fix 𝐴 ⊆ [𝑛] with |𝐴| = 𝑘. We compute the probability that a random maximal chain contains 𝐴.

The chain contains 𝐴 exactly when the first 𝑘 elements of the random permutation are precisely

the elements of 𝐴 (in some order). The number of permutations with this property is 𝑘!(𝑛 − 𝑘)!,
hence

Pr(𝐴 lies on the random chain) =
𝑘!(𝑛 − 𝑘)!

𝑛!

=
1(
𝑛
𝑘

) .
Let 𝑋 be the random variable counting how many sets of ℱ lie on the random maximal chain.

Since ℱ is Sperner, a chain can meet ℱ in at most one set, so 𝑋 ≤ 1 always. By linearity of

expectation,

E[𝑋] =
∑
𝐴∈ℱ

Pr(𝐴 lies on the random chain) =
∑
𝐴∈ℱ

1(
𝑛
|𝐴|

) .

Partially Ordered Sets 269

But also E[𝑋] ≤ 1 because 𝑋 ≤ 1 surely. Therefore∑
𝐴∈ℱ

1(
𝑛
|𝐴|

) ≤ 1,

which is the LYM inequality. □

Theorem 29.3 (Sperner). If ℱ ⊆ 2
[𝑛]

is a Sperner family, then

|ℱ | ≤
(
𝑛

⌊𝑛/2⌋

)
.

Moreover, equality is achieved by taking ℱ to be the entire middle level

([𝑛]
⌊𝑛/2⌋

)
(and also([𝑛]

⌈𝑛/2⌉
)

when 𝑛 is odd).

Proof. Let 𝑀 = max0≤𝑘≤𝑛
(
𝑛
𝑘

)
=

(
𝑛
⌊𝑛/2⌋

)
. For every 𝐴 ∈ ℱ we have

(
𝑛
|𝐴|

)
≤ 𝑀, hence

1(
𝑛
|𝐴|

) ≥ 1

𝑀
.

Summing over 𝐴 ∈ ℱ gives ∑
𝐴∈ℱ

1(
𝑛
|𝐴|

) ≥ ∑
𝐴∈ℱ

1

𝑀
=
|ℱ |
𝑀
.

By the LYM inequality, the left-hand side is ≤ 1, so

|ℱ |
𝑀
≤ 1 =⇒ |ℱ | ≤ 𝑀 =

(
𝑛

⌊𝑛/2⌋

)
.

Taking ℱ =
([𝑛]
⌊𝑛/2⌋

)
is clearly an antichain and has size 𝑀, so the bound is tight. □

29.4 Erdős–Ko–Rado Theorem and Katona circle method

Definition 29.5 (Intersecting family). A family ℱ ⊆
([𝑛]
𝑘

)
is intersecting if

∀𝐴, 𝐵 ∈ ℱ , 𝐴 ∩ 𝐵 ≠ ∅.

A star is an intersecting family of the form

𝒮𝑖 = {𝐴 ∈
(
[𝑛]
𝑘

)
: 𝑖 ∈ 𝐴} (𝑖 ∈ [𝑛]).

Theorem 29.4 (Erdős–Ko–Rado). Assume 𝑛 ≥ 2𝑘 and let ℱ ⊆
([𝑛]
𝑘

)
be intersecting. Then

|ℱ | ≤
(
𝑛 − 1

𝑘 − 1

)
.

Moreover, equality is attained by a star 𝒮𝑖 .

Partially Ordered Sets 270

Katona’s circle method. A cyclic order on [𝑛]means a permutation written around a circle, where

rotations are identified. The number of cyclic orders is (𝑛 − 1)!.
Fix a cyclic order 𝜎. After labeling the positions around the circle as 1, 2, . . . , 𝑛 in clockwise

order, define the 𝑘-intervals (also called cyclic consecutive 𝑘-sets) by

𝐼𝜎(𝑡) = {𝑡 , 𝑡 + 1, . . . , 𝑡 + 𝑘 − 1} (mod 𝑛), 𝑡 = 1, 2, . . . , 𝑛.

Let ℐ (𝜎) = {𝐼𝜎(𝑡) : 1 ≤ 𝑡 ≤ 𝑛} be the set of all 𝑘-intervals in 𝜎.

Lemma 29.5. If 𝑛 ≥ 2𝑘 and 𝒢 ⊆ ℐ (𝜎) is intersecting, then |𝒢| ≤ 𝑘.

Proof of Lemma. Rotate the labels so that some member of 𝒢 is 𝐼𝜎(1) = {1, 2, . . . , 𝑘}. Let 𝐼𝜎(𝑡) ∈ 𝒢
be any other interval. If 𝑡 ∈ {𝑘 + 1, 𝑘 + 2, . . . , 𝑛 − 𝑘 + 1}, then

𝐼𝜎(𝑡) = {𝑡 , 𝑡 + 1, . . . , 𝑡 + 𝑘 − 1} ⊆ {𝑘 + 1, 𝑘 + 2, . . . , 𝑛}

and hence 𝐼𝜎(𝑡) ∩ 𝐼𝜎(1) = ∅, contradicting that 𝒢 is intersecting. Therefore every 𝑡 with 𝐼𝜎(𝑡) ∈ 𝒢
must lie in

{1, 2, . . . , 𝑘} ∪ {𝑛 − 𝑘 + 2, . . . , 𝑛}.
But since we already forced 1 ∈ {𝑡 : 𝐼𝜎(𝑡) ∈ 𝒢} by rotation, we may keep the labels fixed so that 1

is the smallest start index among those in 𝒢 , which rules out {𝑛 − 𝑘 + 2, . . . , 𝑛}. Hence all start

indices in 𝒢 lie in {1, 2, . . . , 𝑘}, so |𝒢| ≤ 𝑘. □

Now do a double count. Let

𝑋 = {(𝐴, 𝜎) : 𝜎 a cyclic order on [𝑛], 𝐴 ∈ ℱ , 𝐴 ∈ ℐ (𝜎)}.

Upper bound on |𝑋 |. For each fixed 𝜎, the subfamily ℱ ∩ ℐ (𝜎) is intersecting, so by the Lemma it

has size at most 𝑘. Since there are (𝑛 − 1)! cyclic orders,

|𝑋 | =
∑
𝜎

|ℱ ∩ ℐ (𝜎)| ≤ 𝑘 (𝑛 − 1)!.

Exact count of |𝑋 | by fixing 𝐴 ∈ ℱ . Fix a particular 𝑘-set 𝐴 ⊆ [𝑛]. Count cyclic orders 𝜎 for which

𝐴 is consecutive, i.e. 𝐴 ∈ ℐ (𝜎). Treat 𝐴 as a single block plus the 𝑛 − 𝑘 remaining elements as

singletons. Then we have 𝑛 − 𝑘 + 1 objects arranged cyclically, giving (𝑛 − 𝑘)! cyclic orders on

the objects. Inside the block, the 𝑘 elements of 𝐴 can appear in any of 𝑘! linear orders around

the circle. Thus the number of cyclic orders with 𝐴 consecutive is

𝑘! (𝑛 − 𝑘)!.

Therefore

|𝑋 | =
∑
𝐴∈ℱ

𝑘! (𝑛 − 𝑘)! = |ℱ | 𝑘! (𝑛 − 𝑘)!.

Combine the two counts.
|ℱ | 𝑘! (𝑛 − 𝑘)! = |𝑋 | ≤ 𝑘 (𝑛 − 1)!,

so

|ℱ | ≤ 𝑘 (𝑛 − 1)!
𝑘! (𝑛 − 𝑘)! =

(𝑛 − 1)!
(𝑘 − 1)! (𝑛 − 𝑘)! =

(
𝑛 − 1

𝑘 − 1

)
.

Finally, the star 𝒮𝑖 = {𝐴 ∈
([𝑛]
𝑘

)
: 𝑖 ∈ 𝐴} is intersecting and has size |𝒮𝑖 | =

(
𝑛−1

𝑘−1

)
, so the bound is

tight. □

	0 Contents
	Basic Combinatorics
	Binomial coefficients
	Binomial coefficients
	Multisets, Stars and Bars
	Binomial Identities

	Combinatorial arguments
	Delannoy numbers
	Lattice balls in Zn
	Delannoy identity
	Cayley's Formula
	Multinomial coefficients
	Ballot Theorem
	Catalan numbers

	Recurrences
	Fibonacci recurrences
	Derangements
	Simple words, set partitions and permutations with cycles
	Delannoy recurrences

	Solution methods for linear recurrences
	Recurrence relation
	Linear recurrences with constant coefficients
	General homogeneous recurrence with distinct roots
	General solution with repeated roots
	Tower of Hanoi
	Non-homogeneous recurrences
	Regions of the plane

	Generating function methods for recurrences
	The negative binomial / ``stars and bars'' generating function
	Structure theorem for linear recurrences
	Example: Catalan numbers
	Main theorem of linear recurrences
	Substitution Method
	Stirling’s formula

	Ordinary generating functions
	Why generating functions exist
	Combinatorial classes and weights
	Definition of the OGF
	Two fundamental combinatorial operations
	Disjoint union addition
	Product construction multiplication (convolution)

	Restricted multiplicities
	Bivariate OGFs (tracking two statistics)
	Extracting coefficients
	Shifting indices
	OGF Vandermonde convolution
	Catalan recurrence
	How to manipulate OGFs for coefficients?
	Snake Oil

	Permutations statistics
	Inversions
	Permutation Cycles
	Eulerian numbers
	Worpitzky's Identity

	Exponential generating functions
	Why EGFs exist
	The labeled product construction
	Product rule for EGFs
	9.4 A tiny sanity-check example
	Basic examples
	Stirling numbers of the second kind
	Stirling numbers of the first kind
	Binomial inversion
	Exponential formula and connected structures
	Lagrange Inversion Formula
	Cayley’s Formula from Lagrange Inversion

	Integer Partitions
	10.1 Partitions with restricted part sizes
	Hardy–Ramanujan asymptotics and a simple upper bound
	Ferrers diagrams and conjugation
	Distinct parts versus odd parts (Frobenius 1882)
	Integer triangles and partitions
	Euler's identity for self-conjugate partitions

	Inclusion–Exclusion Principle (PIE)
	Basic statement
	Derangements
	Euler's totient function
	A PIE formula for Stirling numbers
	Multisets via inclusion–exclusion
	PIE as an evaluation tool for sums
	11.7 Generalization of derangements
	Rook polynomials
	Polynomial Inclusion–Exclusion
	Fixed points of a random permutation

	Symmetric counting
	Signed permutations, parity, and determinants
	Burnside's Lemma
	Colorings and cycle structure
	Cycle index
	Pólya–Redfield counting
	Cube rotation group
	12.7 Action on vertices, faces, and edges
	Graphs up to isomorphism

	Basics of Graph Theory
	Subgraphs and basic operations
	Complements, cliques and independent sets
	Bipartite and multipartite graphs
	Matrices associated to a graph
	Isomorphisms and automorphisms
	The Petersen graph
	Girth and circumference
	Kneser Graph
	The k-dimensional hypercube.

	Vertex Degrees
	Graphic Sequences
	Havel-Hakimi Theorem for graphic sequences
	Extremal problems
	Existence of large bipartite subgraph
	Turan's Theorem

	Directed Graphs
	Tournaments and Landau's Theorem

	Connection and Decomposition
	Walks and Paths
	Kőnig's Theorem characterizing bipartite graphs
	Cut vertices and edges
	Eulerian circuits

	Trees
	Basic properties of trees
	Characterization of trees
	Distance in graphs

	Matchings in bipartite graphs
	Hall's Marriage Theorem
	Hakimi's Theorem on orientations with given outdegrees
	Birkhoff–von Neumann Theorem
	Defect formula in bipartite graphs
	Vertex covers and König–Egerváry
	Edge covers and Gallai's Theorem

	Matchings in general graphs
	Tutte's 1-factor theorem
	Berge-Tutte formula
	Algorithmic aspects of matchings

	Connectivity
	Vertex connectivity
	Edge connectivity
	Block decomposition

	Properties of k-connected graphs
	Menger's Theorem
	Network flows and Max-Flow Min-Cut Theorem
	The Ford–Fulkerson algorithm
	Expansion and Fan Lemma
	Dirac's theorem on k vertices on common cycle
	Ford-Fulkerson CSDR
	Characterization of 2-connected graphs
	Whitney's Ear Decomposition

	Hamiltonian Cycles
	Necessary conditions
	Ore's Lemma and Dirac's Theorem on Hamiltonian graphs
	Chvatal's Theorem
	Erdős–Chvátal Theorem
	Erdős–Gallai Theorem

	Vertex Coloring
	Basics of vertex coloring
	Greedy coloring
	Brooks Theorem
	Degeneracy and Szekeres-Wilf Theorem
	Gallai-Roy Theorem
	Mycielski's Construction

	Color-critical graphs
	Connectivity properties of color-critical graphs
	Hajós construction (building k-critical graphs of connectivity 2)
	Proof of Brooks Theorem
	List coloring

	Edge Coloring
	Basics of edge-coloring
	Shannon's Theorem
	Vizing's Theorem
	Konig's Line Coloring Theorem

	Planar graphs
	Basics of planar graphs
	Euler's Formula
	Outerplanar graphs
	Maximal planar graphs
	Kuratowski and Wagner's Theorems
	Four Color Theorem
	Five Color Theorem
	Discharging method

	Ramsey Theory
	Graph Ramsey Theory
	Erdős lower bound for diagonal Ramsey numbers
	General Ramsey's Theorem
	Erdős–Szekeres on points in convex position
	Schur's Theorem

	Probabilistic Method
	Two basic tools: the first moment and alteration
	Hypergraphs and Property B (2-colorability)
	Lovász Local Lemma (LLL) when union bound is too weak
	Spencer's LLL proof idea for R(k,k)
	Erdős: large girth and large chromatic number
	Markov, Chebyshev, and the second moment method
	Caro–Wei proof of Turán
	Random graphs G(n,p): thresholds for isolated vertices and connectivity

	Partially Ordered Sets
	Structure of Posets
	Dilworth's Theorem
	LYM Inequality and Sperner's Theorem
	Erdős–Ko–Rado Theorem and Katona circle method

